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Abstract: In the realm of federated learning, the non-identically and independently distributed (non-IID) nature of data 
presents a formidable challenge, often leading to suboptimal model performance. This study introduces a 
novel Bernoulli Distribution-Based Maximum Likelihood Estimation for Dynamic Coefficient Optimization 
method in Model-Contrastive Federated Learning, aiming to address these inherent difficulties. The center of 
the proposed approach is the dynamic adjustment of loss terms concurring to quantifying deviation between 
the global model and local model. There may be a lot of variation in the data. In this case, the proposed manner 
could upgrade the robustness and adaptability of the model itself. Leveraging a Model-Contrastive Federated 
Learning (MOON) framework, this paper proposed a Dynamic Coefficient Optimized MOON (DCO-MOON) 
framework. For the supervised loss term and model-contrastive loss term, the proposed approach incorporates 
a dynamic coefficient adjustment mechanism. The efficacy of this approach is illustrated through the 
simulations on different datasets, including the Modified National Institute of Standards and Technology 
(MNIST), Fashion-MNIST, and Canadian Institute for Advanced Research (CIFAR-10). Experimental results 
show improvements in test accuracy and communication efficiency. It also illustrates that DCO-MOON can 
superiorly adjust to real-world scenarios, which are confronting data-driven challenges with non-IID and 
unbalanced datasets. 

1 INTRODUCTION 

In recent years, data privacy and security have 
become fundamental concerns within the field of 
machine learning (Voigt & Bussche, 2017, Kingston, 
2017). Conventional centralized training strategies 
regularly require the aggregation of large datasets, 
posing huge risks in terms of data privacy and 
security flaws. Moreover, these strategies can be 
inefficient due to the demanding job of transferring 
vast amounts of data to a central server. Federated 
learning's strategy of training models over different 
devices by keeping data local is designed to address 
these issues (Li et al, 2021). 

Federated Learning speaks to a distributed 
machine-learning system. It can benefit a lot from 
prioritizing privacy (Li et al, 2020, Yang et al, 2019). 
In this case, clients, also known as parties, work 
collaboratively in the training of a centralized model. 
This collaboration is then encouraged through the 

sharing of model-related data. Such parameters or 
updates will be exchanged instead of transmitting 
their private datasets. Each client uses its local data to 
train a local model. Then the central server aggregates 
the model parameters of local models to train a global 
model.  These aggregated model parameters are later 
communicated along these lines to the clients. Due to 
its privacy and efficiency performance in distributed 
settings, federated learning is regarded as a great 
advancement in distributed machine learning (Tyagi 
et al, 2023). It allows two or more parties to 
collaboratively train models without sharing raw data. 
This system is vital in today's data-driven world 
where data privacy and security are fundamental. 

Be that as it may, one of the primary challenges in 
federated learning is the non-identically distributed 
(non-IID) nature of data over different clients 
(Kairouz et al, 2021, Zhu et al, 2021). Due to different 
user behaviors and preferences, the data generated by 
distinctive parties often varies widely. In this case, 
this leads to non-IID distributions. The so-called non-
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IID issue regularly leads to model performance 
decline due to the varying data distributions among 
participating clients (Li et al, 2020, Li et al, 2019). 
The statistical heterogeneity is also known as a direct 
result of the non-IID issue. And that is what got 
federated models into trouble with uneven 
performance and convergence issues. 

As a pivotal method in federated learning, 
FedAvg aims to address the challenges of 
communication efficiency and data privacy 
(McMahan et al, 2017). It works by averaging local 
stochastic gradient descent (SGD) updates for the 
primal problem. Over numerous experiments, it has 
been found effective for non-convex problems (Su et 
al, 2023). FedAvg combines models by averaging 
local model parameters from all clients. In any case, 
it is noted that FedAvg can struggle with convergence 
in settings with heterogeneous data. Dealing with data 
heterogeneity frequently leads to suboptimal 
convergence or even divergence of the global model. 
Tending to this issue, recent research has focused on 
Bayesian non-parametric methods for aggregation of 
two or more models. That includes neuron matching 
and merging local models, as seen in approaches like 
PFNM and Claici et al. (Yurochkin et al, 2019, Claici 
et al, 2020). Besides, Shukla et al. presented the 
Infogain FedMA algorithm. This algorithm utilizes a 
strategy based on information-gain sampling for the 
selection of model parameters and joins probabilistic 
federated neural matching (Shukla & Srivastava, 
2021). Though these approaches appear workable and 
innovative, they may not have mainly been used with 
more complex neural networks. Applying them to 
more complex networks to broaden their use is a 
developing research area. 

Li, He, and Song's Model-Contrastive Federated 
Learning (MOON) strategy may be an outstanding 
progression in dealing with non-IID data issues (Li et 
al, 2021). By combining model-contrastive loss, 
similar to NT-Xent loss for contrastive representation 
learning, it optimizes the learning process over 
distributed networks. And this improves federated 
learning's effectiveness. Such tasks like image 
classification can benefit a lot from the MOON 
technique. 

In this work, this paper will deal with non-IID 
issues by utilizing a Bernoulli Distribution-Based 
Maximum Likelihood Estimation for Dynamic 
Coefficient Optimization (DCO). It is a more 
comprehensive framework based on MOON. This 
new framework merges statistical techniques with 
federated learning. Based on local and global model 

differences, it could reasonably adjust the supervised 
loss term and model-contrastive loss term, and thus 
improve accuracy and communication efficiency. 
This article also illustrates that DCO-MOON can 
superiorly adjust to real-world scenarios, which are 
confronting data-driven challenges with non-IID and 
unbalanced datasets. 

2 METHODOLOGY 

To integrate the dynamic coefficient optimization 
within the model-contrastive federated learning 
framework, there is no gainsaying the fact that 
integration is premised on a principal perception: in 
non-IID data settings, local models in a federated 
learning system show varying degrees of deviation 
from the global model. Based on the condition, the 
deviation between the global model and the local 
model can be evaluated by a quantification method. 
For example, given deviations generated by model 
training and aggregation between the global model 
and the local model, it is not wise to aggregate the 
features learned by the bad local models into the 
global model in an unbalanced way. The model 
updates instructed by gradient descent should not 
uncontrollably aggravate the polarization between the 
global model and local models. That is to say, these 
deviations could be detected through a statistical 
method. And then take proactive adjustments to 
optimize gradient descent to a certain degree. 

The common cycle of federated learning is shown 
in Figure 1. The proposed system follows the cycle of 
its initialization, build-up, and repeat stages. 

 

 
Figure 1: The cycle of common federated learning 
(Photo/Picture credit: Original).  
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2.1 Quantifying Deviation with 
Bernoulli Distribution-Based MLE 

To address non-IID issues, this paper presents a novel 
mechanism for quantifying and reacting to these 
deviations. Since there is always drift in the phase of 
local training, this approach first characterizes a 
metric for critical deviation. For each local model i  
at round t , this work calculates the Euclidean 
distance t

id  between its parameter vector t
iw  and the 

parameter vector t
globalw  of global model. In the 

following, mitigating the impact of scale differences 
is needed. The Euclidean distance is then normalized 
according to the norm of the global model's 
parameters. So far, the Euclidean distance t

id  is 
calculated to quantify the deviation: 

( )2

( , )1
 ΔKt t

i i kk
d w

=
=                      (1) 

Where 1Δ     t t t
i iw w w −= −  can denote the distinction 

in parameters between the current model state and 
previous one. And K  is the total number of 
parameters. Here, normalization is to ensure 
comparability:  

-1
Normalized

t
t i
i t

dd
w

=                      (2) 

A binary outcome function t
ib  is then defined to 

indicate significant deviation. The threshold θ  

serves as a hyper-parameter. This allows it to be 
customized by a certain real-world situation: 

1, if 
0, otherwise

t
t i
i

d θ
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   >


   
=


                   (3) 

The normalized deviation is utilized to inform a 
binary outcome function t

ib , adhering to a Bernoulli 
distribution. This function essentially categorizes 
each local model's update as significantly deviating or 
not, based on a pre-set threshold θ . 

Maximum Likelihood Estimation (MLE) is a 
statistical method used to estimate the parameters of 
a statistical model. It selects the parameter values that 
maximize the likelihood function, representing the 
most probable values given the observed data. In the 
context of federated learning, MLE can be utilized to 
estimate the probability of deviation in local models 
from a global model. Given that each local model in 
the federated learning framework is independently 
trained, the samples in the dataset are assumed to be 
independently and identically distributed. This article 
utilizes the Bernoulli distribution to derive the MLE 
of the parameter tp . The observed sample set is 
denoted as 1 2{ , , ... , }t t t

NB b b b  = , where each t
ib  

represents a binary outcome indicating significant 
deviation of the i-th local model at round t  . The 
likelihood function, which is the probability of 
observing the sample set B  given the parameter p  , 
is expressed as: 

  ( ) ( ) ( )1

1
1

tt ii
N bb
i

L p B f B p p p −

=
= = −∏                                                (4) 

The log-likelihood function also known as the 
logarithm of the likelihood function. It is defined as: 

( ) ( ) ( ) ( )1
log log 1 log 1N t t

i ii
L p B b p b p

=
 = + − −                                       (5) 

To get the MLE of tp , the value of p  that 
maximizes the log-likelihood function is determined. 
It first takes the derivative of the log-likelihood 

function with respect to p . Then ensuring that this 
derivative equals zero is needed: 

( ) ( )
( )1

1
log 0

1

tt
N ii
i

bbL p B
p p p=

 −∂  = − =
∂ −  

                                                  (6) 

A MLE of the Bernoulli parameter is then yielded 
after solving Formula 6 for p : 

1

1 N t
t ii

p b
N =

=                          (7) 

In this way, the MLE of the probability tp  of 
deviation is calculated over all local models. In the 
local models at each round t , the empirical 
probability of observing a significant deviation is 
defined. Under the settings of non-IID and 

unbalanced dataset, it is a reasonably statistical metric 
and therefore could have a clear understanding of the 
dynamics and behavior of local models. In the 
following work, this paper will introduce how 
dynamic coefficient optimization is implemented and 
then proposed a DCO-MOON framework. That is to 
say, the learning process could be continuously fine-
tuned in reaction to the deviation. 
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2.2 Proposed Dynamic Coefficient 
Optimized MOON 

To achieve seamless integration between Bernoulli 
Distribution MLE and MOON framework, this paper 
proposed a Dynamic Coefficient Optimized MOON 
(DCO-MOON) framework. The integration is 
fastidiously designed to dynamically adjust the 
coefficient of two loss terms, respectively. According 
to the deviation probability tp  of the local models, 
proposed framework can superiorly adjust to real-
world scenarios, which are confronting data-driven 
challenges with non-IID and unbalanced datasets. 

The DCO-MOON starts with the central server 
initializing the global model 0w , which is the same 
as the MOON system. However, the DCO-MOON 
framework distinguishes itself through the 
introduction of a dynamic adjustment process for the 
learning coefficients. Initially, at 0t = , the base 
learning coefficient is set to a predefined value μ . As 
the training progresses, the framework deviates from 
the traditional MOON model by employing the 
Bernoulli MLE to calculate the deviation probability 

tp  as follows: 

1
1

1 N t
t ii

p b
N

−
=

=                           (8) 

 
This probability then informs the adjustment of the 
learning coefficients in next round, defined as: 
 

t tpμ μ⋅=                            (9) 
 

In the local training phase, each client model 
computes the difference vector 1Δ t t t

i iw w w −= −  and 
the normalized Euclidean distance t

id as Formula 2. A 
binary outcome t

ib , indicating a significant model 
deviation, is determined based on the threshold θ . 

A critical innovation in the DCO-MOON 
framework is the redefinition of the total loss function 
l  to incorporate dynamically adjusted coefficients, 
termed as "Dynamic Coefficients". These coefficients, 
(2 )tμ − μ  and ( )tμ μ+ , are applied to the 
supervised and model-contrastive components of the 
loss function, respectively. The loss function of 
MOON and modified loss function of DCO-MOON 
is given by: 

  
( )( ) ( )1; , ; ; ;t t t t

MOON sup i con i il l w x y μ l w w w x−= + ⋅               (10) 

 ( ) ( )( ) ( )12 ; , ( ) ; ; ;t t t t
DCO MOON t sup i t con i il μ μ l w x y μ μ l w w w x−

− = − ⋅ + + ⋅  (11) 
 
This alteration allows for a flexible adjustment of the 
learning process, adapting to the varying degrees of 
deviation in the local models. 

After a round of local training, the local models 
update their parameters using this adaptive loss 
function and return the updated model t

iw  along with 
the deviation outcome t

ib to the server. The server 
then aggregates these models to form the updated 
global model 1tw + , employing a weighted scheme 
reflective of their contributions. 

The overall DCO-MOON framework is shown in 
Figure 2. During each round, the central server 
dispatches the global model to the clients and 
subsequently gathers the updated local models from 
them. The global model is then refined through a 
process of weighted average computation. In the 
phase of local model training, each client applies 
SGD to adjust the global model using their unique 
dataset. The objective for this adjustment is shown in 
Formula 12. 

 ( ) ( ) ( )( ) ( ) ( )1
sup, ~

m 2 ; , ; ;n ;i
t
i

i
t t t t

t i t con i ix y Dw
l w x y l w w w x− μ − μ + μ + μ E  (12) 

 
The Dynamic Coefficient Optimized MOON 

framework brings forth an adaptive, responsive 
approach to model training and aggregation, 
specifically tailored to overcome the complexities 
associated with non-IID and unbalanced datasets. By 

dynamically modulating learning coefficients based 
on real-time model behavior, the DCO-MOON 
framework promises improved convergence and 
model performance in diverse federated learning 
environments. 
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Figure 2: The DCO-MOON framework (Photo/Picture credit: Original). 
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3 RESULTS & EVALUATION 

In this section, proposed approach evaluates the 
performance of FL algorithms, including FedAvg, 
FedProx, MOON, SOLO and proposed DCO-MOON 
(Li et al, 2020, McMahan et al, 2017, Li et al, 2021). 
First, this article introduces experimental setup. The 
accuracy and communication efficiency of proposed 
DCO-MOON framework is then shown in 
comparison with other up-to-date federated learning 
algorithms. For fair comparison, DCO-MOON and 
all baselines are in non-IID settings. 

To validate the effectiveness of DCO-MOON, 
this research conducted a series of simulations using 
a customized federated learning platform. These 
simulations were designed to address non-IID and 
unbalanced datasets. The simulations were carried out 
on PyCharm. It utilized three datasets, which include 
MNIST, Fashion-MNIST and CIFAR-10, to ensure a 
comprehensive evaluation. CIFAR-10 is generated by 
using Dirichlet distribution to create the non-IID data 
partition among clients. For the CIFAR-10 dataset, 
this paper proposed an approach. It utilizes a CNN 
network as the base encoder. Besides, it comprises 
two convolutional layers: the first convolutional layer 
has 32 filters with a kernel size of 5x5, followed by a 
ReLU activation and a 2x2 max pooling layer. The 
second convolutional layer consists of 64 filters, also 
with a 5x5 kernel, followed by a ReLU activation and 
another 2x2 max pooling layer. Following the 

convolutional layers, the network includes a fully 
connected layer with an input dimensionality of 1600, 
flattened from the output of the convolutional layers, 
and an output size of 512. A final fully connected 
layer maps to the number of classes, which is 10 for 
the CIFAR-10 dataset. For the CIFAR-10 dataset, the 
projection head in the Convolutional Federated 
Learning Model is configured as a single fully 
connected layer, originally serving as the final layer 
of the model. This configuration is distinct from a 
traditional 2-layer MLP, with the output dimension of 
the projection head being aligned with the number of 
classes as defined in the model's architecture. For fair 
comparison, all baselines, including FedAvg and 
MOON, adopt this network architecture and utilize 
the same structure for the projection head. 

The present study rigorously investigates the 
influence of the hyperparameter µ on the performance 
of DCO-MOON. Experimental adjustments of µ 
within the set {0.1, 1, 5, 10} were conducted, and the 
optimal results are documented in Table 1. This table 
illustrates the test accuracy of DCO-MOON with 
varying µ values across datasets such as MNIST, 
Fashion-MNIST, and CIFAR-10. Note that the 
optimal value of µ for DCO-MOON was consistently 
identified as 5 for all three datasets. It is pertinent to 
mention that similar hyperparameters exist in MOON 
and FedProx, with MOON having a µ value of 1 and 
FedProx a µ value of 0.001. Unless specified 
otherwise, the experiments proceeding within this 
article will adhere to these default settings. 

Table 1: Test accuracy of DCO-MOON with μ  from { }0.1 1 5 10, , ,
 on different datasets. 

μ  MNIST Fashion-MNIST CIFAR-10 

0.1 96.9% 81.7% 65.7% 

1 97.4% 84.2% 68.3% 

5 98.3% 85.4% 69.5% 

10 98.0% 84.8% 68.6% 

Table 2 presents the top-1 test accuracies of 
various federated learning algorithms. Under non-IID 
settings, the SOLO algorithm showed obviously 
lower accuracy compared to other FL algorithms. 
DCO-MOON consistently outperformed other FL 
algorithms in all tasks. When assessing the average 
accuracy across all datasets, DCO-MOON surpassed 
MOON by 1.4%. While MOON's performance was 
inferior to DCO-MOON, it was superior to other FL 
algorithms. For FedProx, its test accuracy closely 
aligned with FedAvg, with slightly higher accuracy 
on the Fashion-MNIST and CIFAR-10 datasets. 

Given the small µ value, the proximal term in 
FedProx (i.e., FedProx FedAvg proxL l l= + μ⋅ ) had a 
minimal impact on the training process. 
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Table 2: Test accuracy of different FL algorithms on different datasets. 

FL algorithms MNIST Fashion-MNIST CIFAR-10 
FedAvg 97.9% 79.8% 65.2% 
FedProx 97.7% 81.9% 65.9% 
MOON 98.1% 83.1% 67.8% 
SOLO 89.8% 76.4% 45.7% 
DCO-MOON 98.3% 85.4% 69.5% 

Figure 3 describes the Top-1 accuracy per training 
round. Compared to MOON, DCO-MOON's model-
contrastive loss had a more positive effect on the 
convergence speed of the optimal algorithm. Initially, 
the accuracy improvement rate of DCO-MOON was 
almost same as MOON. However, it achieved better 
accuracy later due to the more positive impact of the 
model-contrastive loss. Consequently, the test 
accuracy of MOON and FedAvg gradually diverged 
from that of DCO-MOON as the number of 
communication rounds increased. For FedProx, the 
optimal µ value is typically small. Thus, the 
increasement of FedProx closely resembles FedAvg, 
especially on Fashion-MNIST. However, with a 
setting 1=μ  , FedProx operates at a considerably 
slower pace due to the added proximal term. This 
illustrates that a big µ value in FedProx leads to slow 

convergence and poor accuracy. So it indicates that 
restricting the L2-norm distance between local and 
global models is not an effective solution. While 
MOON's model-contrastive loss can effectively 
enhance accuracy without decelerating convergence, 
DCO-MOON amplifies this positive effect. The 
dynamic constraint of model-contrastive loss and 
supervised loss actively adjusts with deviation, 
particularly noticeable when there is a significant 
change in deviation between the global and local 
models. Furthermore, DCO-MOON required 
significantly fewer communication rounds to achieve 
similar accuracy levels compared to FedAvg. On 
CIFAR-10, DCO-MOON necessitated approximately 
half the communication rounds of FedAvg. This 
highlights its better performance on communication 
efficiency. 
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Figure 3. The top-1 accuracy on different datasets with the number of communication rounds T = 100 (Photo/Picture credit: 
Original). 

4 CONCLUSION 

This paper proposed DCO-MOON, which can 
achieve a better performance on merging supervised 
loss and model-contrastive loss. It designs a dynamic 
adjustment mechanism according to quantifying 
deviation between global model and local model. 
Experimental results also demonstrate that DCO-
MOON achieve a better performance on accuracy and 
communication efficiency. DCO-MOON can better 

adapt to real-world scenario, which is facing data-
driven challenges with non-IID and unbalanced 
datasets. In future works, evaluating the deviation 
between global and local models in a more detailed 
and quantitative way and designing corresponding 
loss term adjustment mechanisms, are also research 
directions worth exploring. 
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