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Abstract: Big data (BD) and the systems used for its harnessing heavily impact many aspects of today’s society and it 
has been repeatedly shown that they can positively impact the operations of organizations that incorporate 
them. However, creating and maintaining these applications is extremely challenging. Therefore, it is 
necessary to pay additional attention to the corresponding quality assurance. One software engineering 
approach that combines high test coverage, the enabling of comprehensive regression tests, but also positively 
impacts the developed applications’ design, is test driven development. Even though by now it has a somewhat 
long history in software development in general, its use in the context of BD engineering is not common. 
However, an approach for the test driven development of BD applications that is based on microservices has 
been proposed rather recently. To gain further insights into its feasibility, the publication at hand explores its 
application in the context of a prototypical project implementation. Hereby, the chosen use case is the analysis 
and prediction of gun violence incidents in the United States of America, which also incorporates NFL match 
game data, under the assumption that the games could potentially influence the occurrence of such incidents. 

1 INTRODUCTION 

In the contemporary landscape of technological 
advancement, the proliferation of data has emerged as 
a significant driver of innovation and progress, 
presenting both unprecedented opportunities as well 
as challenges. The exponential growth in the volume, 
velocity, and variety (Laney 2001), led to a situation, 
where common technologies were no longer able to 
keep up with the demands (Chang and Grady 2019), 
which is generally described by the term big data 
(BD), even though there is not a single, universally 
applied definition for it (Diebold 2021; Volk et al. 
2022). Since its emergence, BD has been identified as 
a facilitator of increased productivity (Müller et al. 
2018) and shifted how organizations perceive, 
analyze, and leverage information. Thus, the ability 
to harness the insights buried within all this data has 
become instrumental in addressing issues across 

 
a  https://orcid.org/0000-0001-9957-1003 
b  https://orcid.org/0009-0001-9229-4303 
c  https://orcid.org/0009-0008-0530-5643 
d  https://orcid.org/0000-0002-4388-8914 

various domains, like, for instance, enabling 
evidence-based policymaking and targeted 
interventions (Höchtl et al. 2016). 

However, assuring the quality of the 
corresponding applications is a challenging task 
(Staegemann et al. 2019), whose importance also 
shows in the vastness of the related research 
endeavors (Ji et al. 2020). 

In turn, test driven development (TDD) is a 
popular approach for developing software. Due to its 
associated advantages (Agha et al. 2023) that could 
be also valuable in the BD realm, the idea was 
proposed (Staegemann et al. 2020b) to apply it not 
only for common software but also in the context of 
big data engineering (BDE). However, despite the 
associated potential advantages and some 
corresponding works such as (Staegemann et al. 
2023), it is still rather underexplored in the context of 
BD and the related applications. To contribute to the 
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corresponding knowledge base and help assess its 
viability, in the following, TDD will be applied to 
develop a microservice-based BD application that 
analyzes gun violence incidents in the United States 
of America (USA). More precisely, the application is 
designed to provide users with an overview of the 
expected incidents of gun violence in each state of the 
USA. By analyzing historical data, probabilities for 
incidents leading to injuries and/or deaths within a 
specified time period will be calculated and displayed. 
The calculations are based on a dataset (Ko 2018) on 
gun violence in the USA, which records more than 
260,000 gun violence incidents from January 2013 to 
March 2018 (inclusive). This data will be processed 
along with seasonal patterns, specifically NFL game 
data (Horowitz 2018), by a predictive microservice to 
generate forecasts for the expected incidents. The 
results are then visually presented to the users. Based 
on its objectives, the application is, therefore, of a 
descriptive and predictive nature (Roy et al. 2022).  

Even though the presented prototypical 
implementation uses historical data that are available 
in batch, stream processing will be simulated by 
transmitting the data in a somewhat continuous way 
over time, instead of providing it all at once. Thus, 
even though the dataset is rather small in volume in 
the context of BD, the developed application still 
showcases a highly typical BD use case (Volk et al. 
2020). Moreover, the developed architecture is 
designed in a way to allow for future scaling, leaning 
further into the demands associated with BD. 

While the pursued analytical task is generally 
interesting, it has to be noted that the publications’ 
primary focus is not on the actual content of the use 
case but on the technical aspects with the goal of 
further exploring the application of TDD in BDE 
itself. For this reason, the actual quality of the 
prediction is of secondary importance. Moreover, the 

application is only of a prototypical nature and does 
not aspire to be fully refined. 

The publication is structured as follows. 
Following this introduction, the general TDD 
approach is described. Afterward, the application’s 
basic design is outlined. This is followed by a section 
that describes the actual implementation including the 
testing. Subsequently, the findings are discussed and, 
finally, a conclusion of the work is given. 

2 THE DESIGN 

The following section describes the developed 
application’s design, including the BD infrastructure, 
and the utilized technologies, and broadly outlines the 
corresponding functionality. To meet the project 
requirements, a message-driven BD infrastructure 
setup was selected and automated, with Apache 
Kafka (Apache Software Foundation 2024a) being 
specifically chosen as the central component. In the 
scope of this work, Kafka and its ecosystem 
component ZooKeeper (Apache Software Foundation 
2024b) are harnessed for scalability. This strategic 
implementation guarantees high availability, 
allowing the system to effortlessly adapt to growing 
data volumes and user requirements while 
maintaining consistent performance and minimizing 
downtime. Figure 1 provides an overview of the 
infrastructure created.  

For the implementation of the functionalities, the 
programming language Python is predominantly used 
due to its widespread use in the data science field. 
Moreover, the open-source automation tool Ansible 
(Red Hat 2024) is also based on this programming 
language. For this reason, both the Kafka Producer 
and Consumer in the backend, as well as a Flask  
 

 
Figure 1: The Developed application’s architecture. 
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Application (Ronacher 2024) on the frontend side, 
will be based on Python. 

2.1 Ansible 

Within the scope of this prototypical implementation, 
Ansible serves as the foundational technology for 
both, the deployment and the execution of automated 
tests. To meet the demands of the proposed TDD 
approach, it is mandated that tests are written for all 
services provided by Ansible, which are primarily 
Docker containers (Docker Inc. 2024), before 
composing the code for the automated deployment. 
This practice ensures that the functionality and 
reliability of each service are verified at the outset, 
laying a robust groundwork for facilitating 
continuous integration and continuous delivery 
(CI/CD) while adhering to the principles of TDD. 

2.2 Docker 

For this implementation, containerization is a 
fundamental element. The chosen development 
approach and the defined use case favor the decision 
to containerize individual functions of the 
infrastructure and the web application. For this, 
Docker has been chosen. In line with the prototype’s 
requirements, the installation or general provisioning 
and subsequent availability check of Docker 
including Docker Networks are validated by tests that 
are predefined. The Docker network is essential to 
ensure that the various microservices can 
communicate with each other without disruption. 
With the aid of Docker and Ansible, the infrastructure 
for processing the data can then be set up and tested. 

2.3 Zookeeper 

For the operation of the presented application, 
ZooKeeper is indispensable, managing fundamental 
Kafka operations such as broker coordination and 
maintaining state. Its functionality is particularly 
crucial to ensuring a reliable messaging system and 
must be considered in the implementation phase when 
applying TDD. 

2.4 Kafka Broker 

In this project, a Kafka Broker enables the efficient 
management and transfer of data streams and is 
central to high availability and scalability. In 
connection with TDD, unit and integration tests must 
be carried out, with particular emphasis placed on 
correct interaction with the broker. When defining 

tests, it must be noted that the Kafka Broker is 
dependent on ZooKeeper. 

2.5 Kafka Producer 

Within the implemented infrastructure, a Kafka 
Producer is deployed and tested as a Python container. 
The Producer reads data on gun violence incidents 
from a given CSV file and sends it to Kafka. As part 
of the tests, it must be ensured that the Producer 
container is not only set up and running but also 
capable of reaching and processing the provided data. 

2.6 Kafka Consumer 

The Consumers are responsible for reading and 
processing the messages, where they filter, pre-
process, and subsequently store the data in a database. 
Within this application, each Consumer is responsible 
for a certain number of (federal) states, which can 
vary depending on the number of Consumers. This 
ensures that with increased data traffic, the 
deployment of more Consumers and, hence, faster 
processing can be facilitated.  

The NFL Game data is retrieved from a CSV file 
in the prototype, then processed and written to a 
database. In a production environment, this data 
would most likely be pulled from an API.  This 
process takes place at regular intervals to ensure that 
the latest data is available and can be used by the 
prediction algorithm. The retrieved NFL data 
includes the game ID, game day, home team, and 
away team. This data is enriched in pre-processing by 
mapping the available team data with the states of 
origin of these teams. This information (game ID, 
game day, home team, away team, home state, away 
state) is then written to the database in order to make 
it persistently available to Consumers. A Consumer 
instance then retrieves the Gun Violence data relevant 
to it, which are those for the states assigned to the 
Consumer. 

During the pre-processing step, the data provided 
by the Producer are filtered and cleaned. For instance, 
only those raw datasets that have at least an incident 
ID, a date, and an assigned state are processed. 
Additionally, fields such as state, county, and city are 
checked and cleansed of simple spelling errors, such 
as special characters. Moreover, for incidents that 
lack a value for killed persons, this value is set to zero. 
These pre-processing steps are essential to 
meaningfully feed the data into the fbprophet 
(Prophet) algorithm (Facebook Open Source 2024), 
in accordance with the objective.  
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The processing of data for the purpose of 
forecasting, using the Prophet service, subsequently 
also takes place within the producer. As soon as data 
for an additional month are available (these are 
consumed sorted by date), another forecast for the 
coming 365 days is carried out. This forecast is 
carried out for each state the Consumer is handling. 
The results of the forecast, as well as the incident 
numbers, are written into the connected database. 

The Prophet forecasting procedure retrieves all 
incidents per state, as well as the NFL game dates, 
where an NFL team from the specific state is involved. 
With respect to the given data, Prophet will forecast 
the expected number of incidents and victims. 

To complement the existing forecasting 
mechanism focused on fatalities within the 
Consumers, an additional Consumer will be 
introduced to establish predictions related to injuries. 
This data is already provided by the producer. This 
expansion introduces a microservice to the 
architecture that can, in theory, be seamlessly 
replaced, and is validated and secured by the 
corresponding existing tests (Staegemann et al. 
2020b). Such adaptability needs to be considered not 
only in a TDD context but also in the actual 
deployment and maintenance of the system. This 
ensures that as the project evolves and different 
analytical needs emerge, the system remains agile and 
capable of integrating new functionalities with 
minimal disruption, which is common in real systems 
(Staegemann et al. 2020a). 

For error analysis and monitoring purposes, in this 
artificial setting (Sonnenberg and Vom Brocke 2012), 
the preprocessed raw data are additionally stored in 
the database. 

2.7 Database 

To have the generated data persistently available for 
the web application, it is stored in a database. As 
previously introduced, the database stores a 
prediction value for each day and state per forecast. 
Since the forecast always projects one year ahead, 
after a successful run upon reaching the month-end of 
a given date, there will be 12 values per date and state 
in the table, comprising eleven predictions and the 
actual realized value.  

By maintaining all forecasts, not only can 
transparency be ensured, but also the values can be 
provided as an additional feature to the users on the 
front end, allowing them to gain an implicit 
understanding of the error tolerance. 

Within the microservices architecture, the 
database should be structured to enable the seamless 

integration and testing of different database services. 
Additionally, ensuring this modularity aligns with the 
proposed TDD for BDE approach (Staegemann et al. 
2020b). This, in turn, needs to be considered in the 
implementation phase. 

2.8 Access 

The user can access the application through a Flask 
web application, which can be reached via an instance 
of HAProxy (Tarreau 2023), which is an open-source 
high-performance load balancer and proxy. However, 
these are of little relevancy to the actual use case and 
are, therefore, only occasionally mentioned but not 
further discussed in the following. 

3 THE IMPLEMENTATION 

The implementation of the showcased application can 
be generally divided into two logical areas. These are 
the infrastructure and the application. 

Since the main motivation of the implementation 
is to showcase the use of TDD in BDE, both of these 
were strictly implemented following this approach. 

3.1 General Implementation Approach 

The general approach adopted in this study entails 
several sequential steps aimed at ensuring efficient 
implementation. Initially, the implementation process 
was conceptualized. Subsequently, thorough 
planning of necessary integration tests and unit tests 
was conducted to ensure comprehensive coverage. 
An essential aspect of the TDD is the test 
implementation prior to the development of code. 
Thus, the approach facilitates the creation of code that 
aligns closely with the predefined testing criteria. 
Finally, the implementation of the actual productive 
code follows after the completion of the test planning 
and implementation. The iterative nature of this 
process allows for the incorporation of additional 
tests as deemed necessary during the implementation 
phase. 

The development approach for the infrastructure 
follows TDD principles. In doing so, the following 
decisions needed to be focused during the 
conceptualization of the tests. 

Emphasizing scalability and efficiency, a primary 
objective of the endeavor is to construct a 
microservice-based infrastructure tailored for a BD 
application. This infrastructure is intended to 
encompass functionalities such as data creation, 
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storage, consumption, processing, analysis, and 
visualization. 

To achieve these objectives, a message-driven 
architecture utilizing Apache Kafka was chosen. This 
architectural choice necessitates the inclusion of 
ZooKeepers, Kafka Brokers, Kafka Producers, and 
Kafka Consumers. Additionally, a database is 
required to store both the processed raw data and 
predictions based on these data, along with the Flask-
based web application. 

The web application, the Kafka producer 
responsible for processing CSV files, as well as the 
Consumers performing data processing and 
prediction tasks, are implemented in Python. 

A crucial consideration in the design is the 
scalability of the Consumers to handle high message 
volumes. Consequently, the Kafka brokers are also 
engineered with scalability in mind. 

Notably, the microservice architecture's flexibility 
as well as the availability of the corresponding tests 
allow for the interchangeability of components, 
including the database, which can be seamlessly 
switched between PostgreSQL and MySQL. The 
robustness of the test framework is paramount to 
ensure smooth transitioning between these database 
systems. 

3.2 The Infrastructure 

In accordance with the development approach, the 
development process for the infrastructure part 
adhered to rigorous testing procedures. Before the 
commencement of any coding activities, the testing 
strategy and specific test cases were planned. Given 
that the infrastructure setup was orchestrated using 
Ansible, the testing framework was conceptualized 
within the context of Ansible's operational 
environment. 

Leveraging Ansible's modular structure 
encompassing plays, playbooks, tasks, and roles 
facilitated the planning of both unit and integration 
tests. In this framework, a unit is defined as either an 
individual Ansible task or a cohesive set of tasks 
(combined as a playbook) aimed at accomplishing a 
specific objective. Conversely, an integration test is a 
play consisting of a collection of roles or playbooks 
that are interdependent in at least one direction. 

Each unit test adheres to a standardized procedure, 
encompassing the following sequential steps: 
1) Verification of preconditions to ensure that the 

specified conditions were not fulfilled prior to 
executing the unit 

2) Provision possible prerequisites 
3) Execution of the unit under test 

4) Validation to confirm that the prescribed 
conditions have been successfully met subsequent 
to the unit's execution 

5) Cleanup of any artifacts or residual elements 
generated during the testing process to maintain 
the integrity of subsequent tests 

By systematically following this testing regimen, the 
robustness and reliability of the infrastructure were 
continuously validated, ensuring adherence to 
defined specifications and facilitating the detection 
and resolution of potential issues at an early stage of 
development. 

To ensure that each unit is tested properly and that 
the respective mapping is always clearly visible, there 
is a test in a test directory that has the same name as 
the tested unit. In most cases, a unit in this project is 
a playbook that contains a test playbook with the 
same name as the setup playbook. 

3.2.1 Docker 

In accordance with prior specifications, the Docker 
environment is configured using Ansible. The setup 
process is designed to be a singular playbook. In order 
to validate this playbook, initial verification ensures 
the absence of Docker. Subsequently, execution of 
the setup-docker playbook occurs, followed by 
validation to confirm Docker installation completion. 
These procedural steps are combined into an Ansible 
play with three distinct playbooks: 
1) The initial playbook verifies preconditions. 
2) The "setup-docker" playbook is imported. 
3) The final playbook verifies postconditions. 
The preconditions verification playbook utilizes 
Ansible's service_facts module to ascertain the 
absence of the Docker service. Additionally, the 
package_facts module confirms the non-existence of 
container.io, docker-ce-cli, and docker-ce packages. 

Conversely, the postconditions verification 
playbook validates the presence of the Docker binary 
in service_facts, confirms the Docker service status 
as running, and verifies the installation of 
container.io, docker-ce-cli, and docker-ce packages. 
These validations collectively fulfill the requirements 
of the unit test. 

It is deemed unnecessary to individually test 
minor tasks such as repository addition or GPG Key 
insertion, as failure in any of these tasks would result 
in the failure of the Docker installation playbook. 

At this stage, a dedicated integration test is 
deemed unnecessary, as subsequent container tests 
inherently verify the integrity of Docker integration. 
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3.2.2 Docker Network 

To enable inter-container communication, especially 
via Docker container names, a dedicated Docker 
bridge network is set up. This network configuration 
is encapsulated within a specialized playbook to 
facilitate ease of customization or substitution with 
alternative network setups. 

Similar to the testing methodology outlined for 
Docker, the validation of this playbook can be 
approached through unit testing via an Ansible play. 
This combines a pre-validation playbook, the import 
of the setup-docker-network playbook, a post-
validation playbook, and the incorporation of a 
cleanup playbook to remove the network upon test 
completion. 

Pre-validation utilizes the docker network 
command to verify the non-existence of the 
designated network. An expected outcome is the 
failure of docker network inspect NETWORK_NAME 
if the network is absent. 

Conversely, post-validation involves the 
verification that docker network inspect 
NETWORK_NAME no longer results in failure, 
indicating successful network creation. 

Given the subsequent testing of inter-container 
communication during integration tests for 
components, additional integration tests specific to 
the Docker network are deemed redundant. The 
functionality of the Docker network will be implicitly 
affirmed during these broader integration tests. 

The Ansible implementation of the mentioned test, 
as an example of how these look like, is depicted in 
Figure 2. 

3.2.3 Zookeeper 

The infrastructure, centered around Apache Kafka, 
necessitates the inclusion of ZooKeepers to oversee 
various aspects of the cluster such as Kafka topics and 
management. In consideration of ensuring high 
availability as well as scalability, for this 
implementation, a foundational configuration 
comprising three ZooKeepers has been established. 
Scaling the number of ZooKeepers is facilitated by a 
singular Ansible variable within the inventory. 

The ZooKeeper setup, as well as previous setup 
steps, consists of a single Ansible playbook, and an 
Ansible play is used to verify the setup-zookeeper 
unit. 

To ensure the correctness of the test, a pre-
validation playbook within the Ansible unit test is 
essential. This playbook aims to verify that the 
specified number, denoted as N, of ZooKeepers has 
not yet been instantiated. This validation process 
involves iterating over the designated quantity of 
ZooKeepers and examining their existence through 
the utilization of the docker_container_info Ansible 
module. This module yields a crucial exists fact, 
indicating the presence or absence of the container. 

After preconditions are validated, necessary 
dependencies are provisioned. This includes the setup 
of Docker as well as the setup of the Docker bridge 
network. 

Subsequently, a post-validation playbook is 
executed following the execution of the imported 
setup-zookeepers playbook. Similar to the pre-
validation phase, this post-validation playbook 
iterates over the specified number of ZooKeepers. 

 
Figure 2: The docker network test. 
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However, in this phase, the playbook reassesses the 
existence of each container and further ensures that 
after a time interval of 20 seconds, the status of the 
container transitions to running, and the ExitCode 
attains a value of 0. These additional checks serve to 
corroborate the successful instantiation and 
operational state of each ZooKeeper instance since 
misconfigurations of ZooKeepers will result in an 
instant fail on start-up. 

This validation could be strengthened by parsing 
the logs of ZooKeeper, but this would lead to a fragile 
test, which was, therefore, omitted. 

Upon completion of the post-validation phase, a 
cleanup task is initiated to remove all containers and 
associated dependencies. This measure ensures that 
the testing process leaves no residual artifacts within 
the system, maintaining the integrity and cleanliness 
of the testing environment. 

Integration tests specific to ZooKeeper are 
considered redundant. The functionality of 
ZooKeeper will be implicitly affirmed during 
integration tests of Kafka. 

3.2.4 Kafka Broker 

In the context of the developed application, Apache 
Kafka serves as the central component. Given that the 
infrastructure design relies on Apache Kafka's 
integration with ZooKeeper, the testing of Kafka can 
be construed as an integration test for the ZooKeeper 
setup described earlier. Consequently, testing Kafka 
essentially entails testing ZooKeeper as well. 

Just as the previously discussed test 
implementations, the testing process involves the 
utilization of Ansible Play, which combines various 
playbooks. Initially, a pre-validation-checking 
Ansible playbook is executed to ascertain the absence 
of the Kafka container. This verification is conducted 
using the docker_container_info and assert Ansible 
modules, which validate the absence of the container 
by assessing the boolean value of exists. 

Subsequently, the setup entails configuring any 
requisite preconditions, including Docker, Docker 
Bridge Network, and Zookeepers. Following this, the 
setup-kafka playbook is imported to initiate the Kafka 
setup process. 

Upon completion of the setup, a post-validation 
step is undertaken. This involves verifying the 
existence of the container, ascertaining its 
operational status as running, and confirming the 
absence of any error exit codes. This validation 
process employs the docker_container_info and 
assert Ansible modules, which assess the boolean 

values of exists, the status of the container, and the 
absence of error exit codes, respectively. 

Finally, the cleanup phase ensues, wherein any 
artifacts generated during the testing process are 
removed to maintain a clean testing environment. 

3.2.5 Kafka Producers 

In the context of Kafka Producers within the 
infrastructure setup, it shall be noted that the decision 
to implement the Kafka Producer in Python is aligned 
with the utilization of the official Python container 
image. As outlined previously, the Producer connects 
to Kafka, establishes the gun-violence-raw-data 
Kafka topic, reads the Gun Violence Dataset from a 
CSV file, and subsequently writes each line to the 
specified Kafka topic. Upon successful execution of 
the send command, a log entry is generated, 
indicating the delivery of messages to the gun-
violence-raw-data topic. The log message is Message 
delivered to the gun-violence-raw-data topic. 

From an infrastructure standpoint, the entire setup 
of the Kafka Producer constitutes a unit, necessitating 
a unit test for the infrastructure setup using Ansible. 
This test encompasses the verification of a running 
Kafka broker, which relies on ZooKeeper, as well as 
the existence of a functional Docker bridge network 
and Docker. This comprehensive integration test is 
designed to specifically evaluate the Kafka Producer 
unit. 

The testing methodology for the setup-kafka-
producer unit is structured similarly to the tests 
conducted for other components discussed earlier. 
Pre-validation checks are conducted, prerequisites 
are established, the setup-kafka-producer playbook is 
imported, post-validation assessments are performed, 
and a cleanup playbook is executed to remove any 
generated artifacts. 

The pre-validation stage involves confirming the 
existence of containers. From an infrastructure 
perspective, the validation of the Kafka Producer's 
functionality is based on the logging of the specific 
message upon successful message delivery to Kafka. 
This validation is incorporated into the post-
validation playbook, wherein the Ansible command 
module is combined with the until module to retrieve 
container logs intermittently over a 30-second period, 
with a 3-second interval, to verify the occurrence of 
the expected log message. 

3.2.6 Kafka Consumers 

In alignment with the architectural decisions, the 
Kafka Consumer is implemented utilizing the official 
Python container image. As previously outlined, the 
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Consumer connects to Kafka, subscribes to the gun-
violence-raw-data Kafka topic, retrieves messages, 
processes them, and subsequently stores both 
predictions and processed raw data in a designated 
database (either MySQL or PostgreSQL). Upon 
successful message processing, the Consumer logs a 
confirmation message, denoted as Successfully 
processed message. 

Similar to the approach taken for the Kafka 
Producer, the entire setup of the Kafka Consumer is 
regarded as a unit from an infrastructure standpoint. 
Therefore, it necessitates a unit test for the 
infrastructure setup utilizing Ansible. This 
comprehensive test encompasses the verification of a 
running database, Kafka Producer, Kafka Broker 
(which in turn requires ZooKeeper), as well as the 
existence of a functional Docker bridge network and 
Docker. 

As elaborated previously, the Kafka Consumer 
script also requires unit tests from a software 
development perspective, which will be discussed in 
section 3.3. 

The Ansible Play designed to test the setup-kafka-
consumer unit mirrors the structure of the Kafka 
Producer test described earlier. However, there are 
notable differences: 
• Additional prerequisites include the presence of 

the database and Kafka Producer. 
• The expected log message during post-validation 

differs. 
From an infrastructure perspective, the validation of 
the Kafka Consumer's functionality depends on the 
logging of a specific message upon successful 
message processing. This validation process is similar 
to that of the Kafka Producer. It incorporates the 
Ansible command module combined with the until 
module. This combination facilitates the retrieval of 
container logs intermittently over a 30-second period, 
with a 3-second interval, to verify the occurrence of 
the expected log message. 

3.2.7 Database 

In accordance with the architecture described earlier 
and depicted in Figure 1, a switch for the database 
technology has been implemented. The choice 
between MySQL and PostgreSQL can be determined 
via the Ansible variable database_technology. 
Consequently, two technology-specific unit tests are 
necessary to validate the playbook's functionality. It 
is imperative that integration tests are robust enough 
to seamlessly handle the switch between databases 
without any additional complexities. 

Integration tests are performed during the testing 
of the Kafka Consumer unit, as it necessitates a 
database and orchestrates the setup of the selected 
database beforehand. The unit tests for MySQL and 
PostgreSQL share a similar structure, as consistency 
in testing approaches for analogous components is 
paramount (Staegemann et al. 2022). 

Similar to the aforementioned tests, both MySQL 
and PostgreSQL unit tests follow a standardized 
structure: 
1) Pre-validations are executed 
2) Prerequisites are established 
3) The playbook responsible for setting up the 

database is imported 
4) Post-validation procedures are undertaken 
5) Artifacts generated during the testing process are 

cleaned up 
To comprehensively test the database setup and 
functionality, the post-validation phase involves 
initiating a database client container. Subsequently, 
various SQL commands are executed on the database 
using the docker_container Ansible module and its 
command option. These commands include creating 
a table and inserting data into it. Following this, 
database logs are retrieved and analyzed to verify that 
the executed commands are appropriately reflected. 
This validation is conducted using the assert Ansible 
module to ensure the integrity of the database 
operations. Once the validation of database 
functionality is complete, the database instance is 
removed to simulate cleanup operations. 
Subsequently, the database is restarted to confirm the 
persistence of data through volume management. 
Finally, the persistence of data is validated by 
utilizing the database client and executing a SELECT 
statement to verify that the data remains intact within 
the newly created database container. 

3.3 The Application 

The testing of the application adheres to the same 
principles as outlined for infrastructure setup testing. 
However, unlike the infrastructure components 
implemented with Ansible, the application is 
developed in Python. It comprises three major 
components: Kafka Producer logic, Kafka Consumer 
logic, and a web application, whereby the latter, as 
previously mentioned, will not be further described. 

Although each of these components undergoes 
integration and unit testing from the perspective of 
the infrastructure setup, as previously detailed, 
additional unit tests are required to validate the 
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internal implementation of the Python code. To 
facilitate this, the unittest Python module is employed. 

Each Python script or project is accompanied by a 
tests.py file, which contains multiple unit tests 
validating the internal functionality of the project. 
These tests cover various aspects of the script's 
functionality, ensuring the correctness of its behavior. 

From a procedural standpoint, these unit tests 
could be executed before deploying the logic via 
Ansible or integrated as a dedicated step within a 
CI/CD pipeline. 

Again, the development process follows the 
principles of TDD as well, wherein tests are written 
prior to the implementation of logic, ensuring a robust 
and testable codebase. 

3.3.1 Kafka Producer 

As mentioned earlier, in this implementation, to 
simulate real data creation, the Kafka Producer 
ingests data from a CSV file, wherein each line of the 
file is transmitted as a message to the Kafka cluster. 

In real-world scenarios, assessing the 
functionality of the Python function responsible for 
data production proves to be challenging due to its 
indefinite runtime. Consequently, unit testing of this 
function becomes challenging. As a result, validating 
the implementation relies on integration tests. These 
integration tests, implemented in Ansible, were 
described in section 3.2.5. 

An aspect of the internal functionality can be 
tested, however, by ensuring that the function fails 
when presented with an invalid path to the CSV file. 
While this file is only used as an input for the 
simulated data streaming, to adhere to the TDD 
philosophy, this aspect will still be tested. 

Furthermore, the Kafka producer's connectivity to 
the Kafka cluster is testable. This can be validated by 
calling the function with erroneous addresses, which 
shall lead to failure while valid addresses facilitate 
successful connection establishment, returning an 
instance. The Kafka connection test is shown in 
Figure 3. 

 
Figure 3: Kafka connection test. 

3.3.2 Kafka Consumer 

As shown in section 2.6, the Kafka Consumer serves 
a multi-faceted role within the project, extending 
beyond mere data consumption. To summarize, it 

engages in the consumption of Gun violence data 
from the Kafka broker by subscribing to a designated 
topic. A connection to the database is established, and 
it proceeds to iterate over the consumed data, 
determining its responsibility based on the US state 
mentioned in each message. Each message undergoes 
pre-processing, encompassing data cleanup, invalid 
data filtering, and relevancy assessment. The pre-
processed data are then stored in a dedicated database 
table. Additionally, the Kafka Consumer periodically 
conducts predictions using fbprophet (with 
seasonality adjusted for NFL Game days) regarding 
gun violence per assigned state for the ensuing 365 
days. By doing this, eleven predictions are created per 
state and date followed by the actual value. The 
predictions as well as the actual values are, 
subsequently, written to another database table, 
facilitating data comparison. Since the Kafka 
Consumer constitutes a sophisticated script, it 
necessitates comprehensive test coverage to validate 
critical functionalities. Accordingly, prior to 
implementation, multiple tests are provided. 

Even though the script could mostly be tested 
locally, some of the tests require several 
dependencies to be deployed. This includes a working 
database, as well as a working Kafka Broker. 

As described earlier, there can be 1 to n Kafka 
Consumers. Each Consumer is responsible for 
handling a subset of all messages. The assignment is 
based on the US state the message mentions. 
Therefore, each Consumer instance calculates a 
subset of US states, based on the total number of 
Consumers as well as its own id, defined via input 
argument. 

For this, a basic test ensures the script fails with a 
non-zero exit code, if the input data is invalid. Invalid 
could mean that the ID is greater than the total number 
of Consumers, or that an ID is smaller than 1. 
Additionally, it is crucial to validate that the summed-
up number of all states distributed to the Consumers, 
is equal to the actual total number. This ensures that 
the logic constantly handles individual numbers of 
Consumers, without duplicated or missing entries. 
The corresponding code is shown in Figure 4. 

To further validate the consistency, an additional 
check is performed, which does not count the entries 
but instead validates that the combined list of all 
states that were distributed between the Consumers 
only contains unique values. 
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Figure 4: Test to verify the number of states after distribution to the consumers. 

Moreover, there are specific fields like state, 
incident_id, and date that are mandatory for further 
processing. Additionally, there are invalid messages 
that need to be either cleaned up or ignored. Based on 
the fact that the raw data is static and well-known, all 
critical errors within the data are known as well. 

The function parse_kafka_message is used to 
parse the input and perform the preprocessing for 
each consumed message. It's evident that this is a 
crucial part of the logic. Therefore, several tests are 
planned and implemented. 

The test test_parsing_messages validates: 
• parsed valid messages contain 29 comma-

separated attributes 
• parsed valid messages contain non-empty 

incident_id, state, and date attributes 
• parsed invalid messages that contain empty 

incident_id, state, or date attributes are expected 
to be filtered out by the function 

• special characters, thus all characters other than 
alphanumeric signs (letters and numbers) and “.” 
(period), “ “ (space), + (plus), and “-“ (hyphen), 
are removed from parsed messages 

Further tests are provided for the mapping of teams 
from the NFL data to US states. Here,  
• the function should return an error if an invalid 

state is provided 
• the function should return an empty list if a state 

has no NFL Team with scheduled games 
• the function should fail if the input is not a string 
• the function should return a list if a state has 1 to 

n teams with scheduled games 
• the function should return a unique list of games 

even if two teams in the same state are opponents 
 
 

4 DISCUSSION 

During the development of the described BD 
application, the utilization of TDD has yielded 
several benefits. 

Since BD projects entail unique challenges 
(Staegemann et al. 2019), including scalability, high 
availability, handling peaking heavy loads of data, 
and managing times of reduced data flow, an effective 
infrastructure must be capable of addressing these 
challenges. TDD, in turn, compels developers to 
consider edge cases and possibilities that may 
otherwise be overlooked, which, in turn, can help to 
reduce the developed applications’ susceptibility to 
errors that might impact correctness or performance. 

A notable example arises from the dynamic 
handling of Consumers and workload distribution 
across all instances. An unexpected edge case 
identified was a potential scenario, where the total 
number of US states may not be evenly divisible by 
the total number of Consumers. 

Additionally, several situations were encountered 
where mishandling a single invalid message could 
disrupt consumption, potentially leading to the need 
for manual intervention or overlooking missing 
information. Yet, the use of TDD facilitated the 
identification and proactive handling of errors as 
crucial aspects of the development process. This is 
important because potential malfunctions that are not 
proactively eliminated during the development phase 
might, at worst, not even be noticed in the 
environment of BD applications in productive 
operation but still negatively impact the obtained 
results. 

Consequently, to minimize the risk of such issues, 
without adhering to the TDD approach, most likely, 
several additional iterations of error search and code 
refactoring would have been necessary during the 
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implementation of the infrastructure as well as the 
application logic. 

However, the extensive data infrastructure, which 
is characterized by numerous co-dependencies, has 
led to many integration tests. Although these prove to 
be more costly than unit tests, they are essential for 
validating the interactions between all the 
interconnected components. Further, ensuring the 
smooth implementation of unit tests in the presence 
of interdependencies presented challenges that 
required prior consideration of testing strategies. 

Nevertheless, overall, the proposed TDD 
approach for BDE has shown its feasibility and utility. 
Hereby, especially the added flexibility through the 
option to swap a part of the infrastructure rather 
effortlessly (in this case the database) with an 
alternative, while being protected through a net of 
existing tests, highlighted the approach’s potential to 
increase the flexibility and maintainability of the 
developed solutions. This, in turn, can prove highly 
valuable in dynamic business environments as 
discussed in (Staegemann et al. 2020a). 

5 CONCLUSION 

The harnessing of BD has been shown to have a 
positive impact on organizational operations. 
However, creating the corresponding applications is 
a demanding task and one of the big challenges is to 
ensure that the applications have the necessary quality. 
While quality assurance for BD applications is widely 
researched, this is still far from a solved problem. In 
response, one rather recent suggestion was the 
utilization of the TDD approach in the BD domain. 

Thus, to further explore the application of TDD in 
BDE, in this research, a corresponding 
implementation was created. As a use case for this, 
the prediction of incidents of gun violence in the USA 
was chosen as this is a typical BD use case. Further, 
even though the data were available in batch, stream-
processing was simulated, since this is a rather typical 
requirement in BD scenarios. 

Within the implementation, there are two major 
parts, the infrastructure and the application logic, 
which were both created in a test driven manner. 

For the prediction itself, historical gun violence 
data were used, which were amended by NFL match 
day data that were considered a potentially impactful 
influencing factor. In doing so, the combination of 
data from different sources, as another typical BD 
requirement, was reflected. 

Through the project, it was not only shown that it 
is possible to apply the test driven approach for the 

regarded use case but also that it benefitted the 
development. This happened on one hand through 
positive impacts on the developed application’s 
design and on the other hand through the associated 
quality assurance that helped to avoid errors that 
would have necessitated cumbersome and time-
consuming additional code reviews to find them or 
might, in a worst case scenario, even have been 
undetected at all without the use of TDD. 

Moreover, as a particularly noteworthy feature, 
the increased flexibility and maintainability of the 
developed application stand out because the 
availability of the corresponding tests facilitates the 
swapping of components with alternatives with 
comparatively low effort while being protected 
through the previously implemented tests. Thereby, 
the proposed test driven approach seems especially 
valuable in dynamic business environments, where 
the applications continuously need to evolve to adapt 
to changing environments, circumstances, and 
business needs. 

However, it has to be noted that the focus was 
decisively on the technical realization of the approach 
itself, therefore, the quality of the results of the 
prediction algorithm and the frontend application 
used for visualization were not part of the main 
priority. 

As part of similar future research endeavors, 
beyond the here employed unit- and integration tests, 
for instance, End-to-End testing could be conducted 
to validate the system’s entire functionality from end 
to end. Performance and security tests on the other 
hand could help to identify other issues. Further, 
exploring the implementation of hardening measures 
for strengthening the system’s security, such as TLS-
encrypted communications, might also be worthwhile, 
since it could potentially significantly influence the 
required test framework and tests themselves. 
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