
Exploring the Test Driven Development of a Big Data Infrastructure
Examining Gun Violence Incidents in the United States of America

Daniel Staegemann a, Malte Rathjens b, Hannes Hinniger, Vivian Schmidt c
and Klaus Turowski d

Magdeburg Research and Competence Cluster VLBA, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

Keywords: Software Engineering, Big Data, Test Driven Development, TDD, Testing, Quality Assurance, Microservice,
Prediction, Gun Violence.

Abstract: Big data (BD) and the systems used for its harnessing heavily impact many aspects of today’s society and it
has been repeatedly shown that they can positively impact the operations of organizations that incorporate
them. However, creating and maintaining these applications is extremely challenging. Therefore, it is
necessary to pay additional attention to the corresponding quality assurance. One software engineering
approach that combines high test coverage, the enabling of comprehensive regression tests, but also positively
impacts the developed applications’ design, is test driven development. Even though by now it has a somewhat
long history in software development in general, its use in the context of BD engineering is not common.
However, an approach for the test driven development of BD applications that is based on microservices has
been proposed rather recently. To gain further insights into its feasibility, the publication at hand explores its
application in the context of a prototypical project implementation. Hereby, the chosen use case is the analysis
and prediction of gun violence incidents in the United States of America, which also incorporates NFL match
game data, under the assumption that the games could potentially influence the occurrence of such incidents.

1 INTRODUCTION

In the contemporary landscape of technological
advancement, the proliferation of data has emerged as
a significant driver of innovation and progress,
presenting both unprecedented opportunities as well
as challenges. The exponential growth in the volume,
velocity, and variety (Laney 2001), led to a situation,
where common technologies were no longer able to
keep up with the demands (Chang and Grady 2019),
which is generally described by the term big data
(BD), even though there is not a single, universally
applied definition for it (Diebold 2021; Volk et al.
2022). Since its emergence, BD has been identified as
a facilitator of increased productivity (Müller et al.
2018) and shifted how organizations perceive,
analyze, and leverage information. Thus, the ability
to harness the insights buried within all this data has
become instrumental in addressing issues across

a https://orcid.org/0000-0001-9957-1003
b https://orcid.org/0009-0001-9229-4303
c https://orcid.org/0009-0008-0530-5643
d https://orcid.org/0000-0002-4388-8914

various domains, like, for instance, enabling
evidence-based policymaking and targeted
interventions (Höchtl et al. 2016).

However, assuring the quality of the
corresponding applications is a challenging task
(Staegemann et al. 2019), whose importance also
shows in the vastness of the related research
endeavors (Ji et al. 2020).

In turn, test driven development (TDD) is a
popular approach for developing software. Due to its
associated advantages (Agha et al. 2023) that could
be also valuable in the BD realm, the idea was
proposed (Staegemann et al. 2020b) to apply it not
only for common software but also in the context of
big data engineering (BDE). However, despite the
associated potential advantages and some
corresponding works such as (Staegemann et al.
2023), it is still rather underexplored in the context of
BD and the related applications. To contribute to the

Staegemann, D., Rathjens, M., Hinniger, H., Schmidt, V. and Turowski, K.
Exploring the Test Driven Development of a Big Data Infrastructure Examining Gun Violence Incidents in the United States of America.
DOI: 10.5220/0012829600003764
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Smart Business Technologies (ICSBT 2024), pages 103-114
ISBN: 978-989-758-710-8; ISSN: 2184-772X
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

103

corresponding knowledge base and help assess its
viability, in the following, TDD will be applied to
develop a microservice-based BD application that
analyzes gun violence incidents in the United States
of America (USA). More precisely, the application is
designed to provide users with an overview of the
expected incidents of gun violence in each state of the
USA. By analyzing historical data, probabilities for
incidents leading to injuries and/or deaths within a
specified time period will be calculated and displayed.
The calculations are based on a dataset (Ko 2018) on
gun violence in the USA, which records more than
260,000 gun violence incidents from January 2013 to
March 2018 (inclusive). This data will be processed
along with seasonal patterns, specifically NFL game
data (Horowitz 2018), by a predictive microservice to
generate forecasts for the expected incidents. The
results are then visually presented to the users. Based
on its objectives, the application is, therefore, of a
descriptive and predictive nature (Roy et al. 2022).

Even though the presented prototypical
implementation uses historical data that are available
in batch, stream processing will be simulated by
transmitting the data in a somewhat continuous way
over time, instead of providing it all at once. Thus,
even though the dataset is rather small in volume in
the context of BD, the developed application still
showcases a highly typical BD use case (Volk et al.
2020). Moreover, the developed architecture is
designed in a way to allow for future scaling, leaning
further into the demands associated with BD.

While the pursued analytical task is generally
interesting, it has to be noted that the publications’
primary focus is not on the actual content of the use
case but on the technical aspects with the goal of
further exploring the application of TDD in BDE
itself. For this reason, the actual quality of the
prediction is of secondary importance. Moreover, the

application is only of a prototypical nature and does
not aspire to be fully refined.

The publication is structured as follows.
Following this introduction, the general TDD
approach is described. Afterward, the application’s
basic design is outlined. This is followed by a section
that describes the actual implementation including the
testing. Subsequently, the findings are discussed and,
finally, a conclusion of the work is given.

2 THE DESIGN

The following section describes the developed
application’s design, including the BD infrastructure,
and the utilized technologies, and broadly outlines the
corresponding functionality. To meet the project
requirements, a message-driven BD infrastructure
setup was selected and automated, with Apache
Kafka (Apache Software Foundation 2024a) being
specifically chosen as the central component. In the
scope of this work, Kafka and its ecosystem
component ZooKeeper (Apache Software Foundation
2024b) are harnessed for scalability. This strategic
implementation guarantees high availability,
allowing the system to effortlessly adapt to growing
data volumes and user requirements while
maintaining consistent performance and minimizing
downtime. Figure 1 provides an overview of the
infrastructure created.

For the implementation of the functionalities, the
programming language Python is predominantly used
due to its widespread use in the data science field.
Moreover, the open-source automation tool Ansible
(Red Hat 2024) is also based on this programming
language. For this reason, both the Kafka Producer
and Consumer in the backend, as well as a Flask

Figure 1: The Developed application’s architecture.

ICSBT 2024 - 21st International Conference on Smart Business Technologies

104

Application (Ronacher 2024) on the frontend side,
will be based on Python.

2.1 Ansible

Within the scope of this prototypical implementation,
Ansible serves as the foundational technology for
both, the deployment and the execution of automated
tests. To meet the demands of the proposed TDD
approach, it is mandated that tests are written for all
services provided by Ansible, which are primarily
Docker containers (Docker Inc. 2024), before
composing the code for the automated deployment.
This practice ensures that the functionality and
reliability of each service are verified at the outset,
laying a robust groundwork for facilitating
continuous integration and continuous delivery
(CI/CD) while adhering to the principles of TDD.

2.2 Docker

For this implementation, containerization is a
fundamental element. The chosen development
approach and the defined use case favor the decision
to containerize individual functions of the
infrastructure and the web application. For this,
Docker has been chosen. In line with the prototype’s
requirements, the installation or general provisioning
and subsequent availability check of Docker
including Docker Networks are validated by tests that
are predefined. The Docker network is essential to
ensure that the various microservices can
communicate with each other without disruption.
With the aid of Docker and Ansible, the infrastructure
for processing the data can then be set up and tested.

2.3 Zookeeper

For the operation of the presented application,
ZooKeeper is indispensable, managing fundamental
Kafka operations such as broker coordination and
maintaining state. Its functionality is particularly
crucial to ensuring a reliable messaging system and
must be considered in the implementation phase when
applying TDD.

2.4 Kafka Broker

In this project, a Kafka Broker enables the efficient
management and transfer of data streams and is
central to high availability and scalability. In
connection with TDD, unit and integration tests must
be carried out, with particular emphasis placed on
correct interaction with the broker. When defining

tests, it must be noted that the Kafka Broker is
dependent on ZooKeeper.

2.5 Kafka Producer

Within the implemented infrastructure, a Kafka
Producer is deployed and tested as a Python container.
The Producer reads data on gun violence incidents
from a given CSV file and sends it to Kafka. As part
of the tests, it must be ensured that the Producer
container is not only set up and running but also
capable of reaching and processing the provided data.

2.6 Kafka Consumer

The Consumers are responsible for reading and
processing the messages, where they filter, pre-
process, and subsequently store the data in a database.
Within this application, each Consumer is responsible
for a certain number of (federal) states, which can
vary depending on the number of Consumers. This
ensures that with increased data traffic, the
deployment of more Consumers and, hence, faster
processing can be facilitated.

The NFL Game data is retrieved from a CSV file
in the prototype, then processed and written to a
database. In a production environment, this data
would most likely be pulled from an API. This
process takes place at regular intervals to ensure that
the latest data is available and can be used by the
prediction algorithm. The retrieved NFL data
includes the game ID, game day, home team, and
away team. This data is enriched in pre-processing by
mapping the available team data with the states of
origin of these teams. This information (game ID,
game day, home team, away team, home state, away
state) is then written to the database in order to make
it persistently available to Consumers. A Consumer
instance then retrieves the Gun Violence data relevant
to it, which are those for the states assigned to the
Consumer.

During the pre-processing step, the data provided
by the Producer are filtered and cleaned. For instance,
only those raw datasets that have at least an incident
ID, a date, and an assigned state are processed.
Additionally, fields such as state, county, and city are
checked and cleansed of simple spelling errors, such
as special characters. Moreover, for incidents that
lack a value for killed persons, this value is set to zero.
These pre-processing steps are essential to
meaningfully feed the data into the fbprophet
(Prophet) algorithm (Facebook Open Source 2024),
in accordance with the objective.

Exploring the Test Driven Development of a Big Data Infrastructure Examining Gun Violence Incidents in the United States of America

105

The processing of data for the purpose of
forecasting, using the Prophet service, subsequently
also takes place within the producer. As soon as data
for an additional month are available (these are
consumed sorted by date), another forecast for the
coming 365 days is carried out. This forecast is
carried out for each state the Consumer is handling.
The results of the forecast, as well as the incident
numbers, are written into the connected database.

The Prophet forecasting procedure retrieves all
incidents per state, as well as the NFL game dates,
where an NFL team from the specific state is involved.
With respect to the given data, Prophet will forecast
the expected number of incidents and victims.

To complement the existing forecasting
mechanism focused on fatalities within the
Consumers, an additional Consumer will be
introduced to establish predictions related to injuries.
This data is already provided by the producer. This
expansion introduces a microservice to the
architecture that can, in theory, be seamlessly
replaced, and is validated and secured by the
corresponding existing tests (Staegemann et al.
2020b). Such adaptability needs to be considered not
only in a TDD context but also in the actual
deployment and maintenance of the system. This
ensures that as the project evolves and different
analytical needs emerge, the system remains agile and
capable of integrating new functionalities with
minimal disruption, which is common in real systems
(Staegemann et al. 2020a).

For error analysis and monitoring purposes, in this
artificial setting (Sonnenberg and Vom Brocke 2012),
the preprocessed raw data are additionally stored in
the database.

2.7 Database

To have the generated data persistently available for
the web application, it is stored in a database. As
previously introduced, the database stores a
prediction value for each day and state per forecast.
Since the forecast always projects one year ahead,
after a successful run upon reaching the month-end of
a given date, there will be 12 values per date and state
in the table, comprising eleven predictions and the
actual realized value.

By maintaining all forecasts, not only can
transparency be ensured, but also the values can be
provided as an additional feature to the users on the
front end, allowing them to gain an implicit
understanding of the error tolerance.

Within the microservices architecture, the
database should be structured to enable the seamless

integration and testing of different database services.
Additionally, ensuring this modularity aligns with the
proposed TDD for BDE approach (Staegemann et al.
2020b). This, in turn, needs to be considered in the
implementation phase.

2.8 Access

The user can access the application through a Flask
web application, which can be reached via an instance
of HAProxy (Tarreau 2023), which is an open-source
high-performance load balancer and proxy. However,
these are of little relevancy to the actual use case and
are, therefore, only occasionally mentioned but not
further discussed in the following.

3 THE IMPLEMENTATION

The implementation of the showcased application can
be generally divided into two logical areas. These are
the infrastructure and the application.

Since the main motivation of the implementation
is to showcase the use of TDD in BDE, both of these
were strictly implemented following this approach.

3.1 General Implementation Approach

The general approach adopted in this study entails
several sequential steps aimed at ensuring efficient
implementation. Initially, the implementation process
was conceptualized. Subsequently, thorough
planning of necessary integration tests and unit tests
was conducted to ensure comprehensive coverage.
An essential aspect of the TDD is the test
implementation prior to the development of code.
Thus, the approach facilitates the creation of code that
aligns closely with the predefined testing criteria.
Finally, the implementation of the actual productive
code follows after the completion of the test planning
and implementation. The iterative nature of this
process allows for the incorporation of additional
tests as deemed necessary during the implementation
phase.

The development approach for the infrastructure
follows TDD principles. In doing so, the following
decisions needed to be focused during the
conceptualization of the tests.

Emphasizing scalability and efficiency, a primary
objective of the endeavor is to construct a
microservice-based infrastructure tailored for a BD
application. This infrastructure is intended to
encompass functionalities such as data creation,

ICSBT 2024 - 21st International Conference on Smart Business Technologies

106

storage, consumption, processing, analysis, and
visualization.

To achieve these objectives, a message-driven
architecture utilizing Apache Kafka was chosen. This
architectural choice necessitates the inclusion of
ZooKeepers, Kafka Brokers, Kafka Producers, and
Kafka Consumers. Additionally, a database is
required to store both the processed raw data and
predictions based on these data, along with the Flask-
based web application.

The web application, the Kafka producer
responsible for processing CSV files, as well as the
Consumers performing data processing and
prediction tasks, are implemented in Python.

A crucial consideration in the design is the
scalability of the Consumers to handle high message
volumes. Consequently, the Kafka brokers are also
engineered with scalability in mind.

Notably, the microservice architecture's flexibility
as well as the availability of the corresponding tests
allow for the interchangeability of components,
including the database, which can be seamlessly
switched between PostgreSQL and MySQL. The
robustness of the test framework is paramount to
ensure smooth transitioning between these database
systems.

3.2 The Infrastructure

In accordance with the development approach, the
development process for the infrastructure part
adhered to rigorous testing procedures. Before the
commencement of any coding activities, the testing
strategy and specific test cases were planned. Given
that the infrastructure setup was orchestrated using
Ansible, the testing framework was conceptualized
within the context of Ansible's operational
environment.

Leveraging Ansible's modular structure
encompassing plays, playbooks, tasks, and roles
facilitated the planning of both unit and integration
tests. In this framework, a unit is defined as either an
individual Ansible task or a cohesive set of tasks
(combined as a playbook) aimed at accomplishing a
specific objective. Conversely, an integration test is a
play consisting of a collection of roles or playbooks
that are interdependent in at least one direction.

Each unit test adheres to a standardized procedure,
encompassing the following sequential steps:
1) Verification of preconditions to ensure that the

specified conditions were not fulfilled prior to
executing the unit

2) Provision possible prerequisites
3) Execution of the unit under test

4) Validation to confirm that the prescribed
conditions have been successfully met subsequent
to the unit's execution

5) Cleanup of any artifacts or residual elements
generated during the testing process to maintain
the integrity of subsequent tests

By systematically following this testing regimen, the
robustness and reliability of the infrastructure were
continuously validated, ensuring adherence to
defined specifications and facilitating the detection
and resolution of potential issues at an early stage of
development.

To ensure that each unit is tested properly and that
the respective mapping is always clearly visible, there
is a test in a test directory that has the same name as
the tested unit. In most cases, a unit in this project is
a playbook that contains a test playbook with the
same name as the setup playbook.

3.2.1 Docker

In accordance with prior specifications, the Docker
environment is configured using Ansible. The setup
process is designed to be a singular playbook. In order
to validate this playbook, initial verification ensures
the absence of Docker. Subsequently, execution of
the setup-docker playbook occurs, followed by
validation to confirm Docker installation completion.
These procedural steps are combined into an Ansible
play with three distinct playbooks:
1) The initial playbook verifies preconditions.
2) The "setup-docker" playbook is imported.
3) The final playbook verifies postconditions.
The preconditions verification playbook utilizes
Ansible's service_facts module to ascertain the
absence of the Docker service. Additionally, the
package_facts module confirms the non-existence of
container.io, docker-ce-cli, and docker-ce packages.

Conversely, the postconditions verification
playbook validates the presence of the Docker binary
in service_facts, confirms the Docker service status
as running, and verifies the installation of
container.io, docker-ce-cli, and docker-ce packages.
These validations collectively fulfill the requirements
of the unit test.

It is deemed unnecessary to individually test
minor tasks such as repository addition or GPG Key
insertion, as failure in any of these tasks would result
in the failure of the Docker installation playbook.

At this stage, a dedicated integration test is
deemed unnecessary, as subsequent container tests
inherently verify the integrity of Docker integration.

Exploring the Test Driven Development of a Big Data Infrastructure Examining Gun Violence Incidents in the United States of America

107

3.2.2 Docker Network

To enable inter-container communication, especially
via Docker container names, a dedicated Docker
bridge network is set up. This network configuration
is encapsulated within a specialized playbook to
facilitate ease of customization or substitution with
alternative network setups.

Similar to the testing methodology outlined for
Docker, the validation of this playbook can be
approached through unit testing via an Ansible play.
This combines a pre-validation playbook, the import
of the setup-docker-network playbook, a post-
validation playbook, and the incorporation of a
cleanup playbook to remove the network upon test
completion.

Pre-validation utilizes the docker network
command to verify the non-existence of the
designated network. An expected outcome is the
failure of docker network inspect NETWORK_NAME
if the network is absent.

Conversely, post-validation involves the
verification that docker network inspect
NETWORK_NAME no longer results in failure,
indicating successful network creation.

Given the subsequent testing of inter-container
communication during integration tests for
components, additional integration tests specific to
the Docker network are deemed redundant. The
functionality of the Docker network will be implicitly
affirmed during these broader integration tests.

The Ansible implementation of the mentioned test,
as an example of how these look like, is depicted in
Figure 2.

3.2.3 Zookeeper

The infrastructure, centered around Apache Kafka,
necessitates the inclusion of ZooKeepers to oversee
various aspects of the cluster such as Kafka topics and
management. In consideration of ensuring high
availability as well as scalability, for this
implementation, a foundational configuration
comprising three ZooKeepers has been established.
Scaling the number of ZooKeepers is facilitated by a
singular Ansible variable within the inventory.

The ZooKeeper setup, as well as previous setup
steps, consists of a single Ansible playbook, and an
Ansible play is used to verify the setup-zookeeper
unit.

To ensure the correctness of the test, a pre-
validation playbook within the Ansible unit test is
essential. This playbook aims to verify that the
specified number, denoted as N, of ZooKeepers has
not yet been instantiated. This validation process
involves iterating over the designated quantity of
ZooKeepers and examining their existence through
the utilization of the docker_container_info Ansible
module. This module yields a crucial exists fact,
indicating the presence or absence of the container.

After preconditions are validated, necessary
dependencies are provisioned. This includes the setup
of Docker as well as the setup of the Docker bridge
network.

Subsequently, a post-validation playbook is
executed following the execution of the imported
setup-zookeepers playbook. Similar to the pre-
validation phase, this post-validation playbook
iterates over the specified number of ZooKeepers.

Figure 2: The docker network test.

ICSBT 2024 - 21st International Conference on Smart Business Technologies

108

However, in this phase, the playbook reassesses the
existence of each container and further ensures that
after a time interval of 20 seconds, the status of the
container transitions to running, and the ExitCode
attains a value of 0. These additional checks serve to
corroborate the successful instantiation and
operational state of each ZooKeeper instance since
misconfigurations of ZooKeepers will result in an
instant fail on start-up.

This validation could be strengthened by parsing
the logs of ZooKeeper, but this would lead to a fragile
test, which was, therefore, omitted.

Upon completion of the post-validation phase, a
cleanup task is initiated to remove all containers and
associated dependencies. This measure ensures that
the testing process leaves no residual artifacts within
the system, maintaining the integrity and cleanliness
of the testing environment.

Integration tests specific to ZooKeeper are
considered redundant. The functionality of
ZooKeeper will be implicitly affirmed during
integration tests of Kafka.

3.2.4 Kafka Broker

In the context of the developed application, Apache
Kafka serves as the central component. Given that the
infrastructure design relies on Apache Kafka's
integration with ZooKeeper, the testing of Kafka can
be construed as an integration test for the ZooKeeper
setup described earlier. Consequently, testing Kafka
essentially entails testing ZooKeeper as well.

Just as the previously discussed test
implementations, the testing process involves the
utilization of Ansible Play, which combines various
playbooks. Initially, a pre-validation-checking
Ansible playbook is executed to ascertain the absence
of the Kafka container. This verification is conducted
using the docker_container_info and assert Ansible
modules, which validate the absence of the container
by assessing the boolean value of exists.

Subsequently, the setup entails configuring any
requisite preconditions, including Docker, Docker
Bridge Network, and Zookeepers. Following this, the
setup-kafka playbook is imported to initiate the Kafka
setup process.

Upon completion of the setup, a post-validation
step is undertaken. This involves verifying the
existence of the container, ascertaining its
operational status as running, and confirming the
absence of any error exit codes. This validation
process employs the docker_container_info and
assert Ansible modules, which assess the boolean

values of exists, the status of the container, and the
absence of error exit codes, respectively.

Finally, the cleanup phase ensues, wherein any
artifacts generated during the testing process are
removed to maintain a clean testing environment.

3.2.5 Kafka Producers

In the context of Kafka Producers within the
infrastructure setup, it shall be noted that the decision
to implement the Kafka Producer in Python is aligned
with the utilization of the official Python container
image. As outlined previously, the Producer connects
to Kafka, establishes the gun-violence-raw-data
Kafka topic, reads the Gun Violence Dataset from a
CSV file, and subsequently writes each line to the
specified Kafka topic. Upon successful execution of
the send command, a log entry is generated,
indicating the delivery of messages to the gun-
violence-raw-data topic. The log message is Message
delivered to the gun-violence-raw-data topic.

From an infrastructure standpoint, the entire setup
of the Kafka Producer constitutes a unit, necessitating
a unit test for the infrastructure setup using Ansible.
This test encompasses the verification of a running
Kafka broker, which relies on ZooKeeper, as well as
the existence of a functional Docker bridge network
and Docker. This comprehensive integration test is
designed to specifically evaluate the Kafka Producer
unit.

The testing methodology for the setup-kafka-
producer unit is structured similarly to the tests
conducted for other components discussed earlier.
Pre-validation checks are conducted, prerequisites
are established, the setup-kafka-producer playbook is
imported, post-validation assessments are performed,
and a cleanup playbook is executed to remove any
generated artifacts.

The pre-validation stage involves confirming the
existence of containers. From an infrastructure
perspective, the validation of the Kafka Producer's
functionality is based on the logging of the specific
message upon successful message delivery to Kafka.
This validation is incorporated into the post-
validation playbook, wherein the Ansible command
module is combined with the until module to retrieve
container logs intermittently over a 30-second period,
with a 3-second interval, to verify the occurrence of
the expected log message.

3.2.6 Kafka Consumers

In alignment with the architectural decisions, the
Kafka Consumer is implemented utilizing the official
Python container image. As previously outlined, the

Exploring the Test Driven Development of a Big Data Infrastructure Examining Gun Violence Incidents in the United States of America

109

Consumer connects to Kafka, subscribes to the gun-
violence-raw-data Kafka topic, retrieves messages,
processes them, and subsequently stores both
predictions and processed raw data in a designated
database (either MySQL or PostgreSQL). Upon
successful message processing, the Consumer logs a
confirmation message, denoted as Successfully
processed message.

Similar to the approach taken for the Kafka
Producer, the entire setup of the Kafka Consumer is
regarded as a unit from an infrastructure standpoint.
Therefore, it necessitates a unit test for the
infrastructure setup utilizing Ansible. This
comprehensive test encompasses the verification of a
running database, Kafka Producer, Kafka Broker
(which in turn requires ZooKeeper), as well as the
existence of a functional Docker bridge network and
Docker.

As elaborated previously, the Kafka Consumer
script also requires unit tests from a software
development perspective, which will be discussed in
section 3.3.

The Ansible Play designed to test the setup-kafka-
consumer unit mirrors the structure of the Kafka
Producer test described earlier. However, there are
notable differences:
• Additional prerequisites include the presence of

the database and Kafka Producer.
• The expected log message during post-validation

differs.
From an infrastructure perspective, the validation of
the Kafka Consumer's functionality depends on the
logging of a specific message upon successful
message processing. This validation process is similar
to that of the Kafka Producer. It incorporates the
Ansible command module combined with the until
module. This combination facilitates the retrieval of
container logs intermittently over a 30-second period,
with a 3-second interval, to verify the occurrence of
the expected log message.

3.2.7 Database

In accordance with the architecture described earlier
and depicted in Figure 1, a switch for the database
technology has been implemented. The choice
between MySQL and PostgreSQL can be determined
via the Ansible variable database_technology.
Consequently, two technology-specific unit tests are
necessary to validate the playbook's functionality. It
is imperative that integration tests are robust enough
to seamlessly handle the switch between databases
without any additional complexities.

Integration tests are performed during the testing
of the Kafka Consumer unit, as it necessitates a
database and orchestrates the setup of the selected
database beforehand. The unit tests for MySQL and
PostgreSQL share a similar structure, as consistency
in testing approaches for analogous components is
paramount (Staegemann et al. 2022).

Similar to the aforementioned tests, both MySQL
and PostgreSQL unit tests follow a standardized
structure:
1) Pre-validations are executed
2) Prerequisites are established
3) The playbook responsible for setting up the

database is imported
4) Post-validation procedures are undertaken
5) Artifacts generated during the testing process are

cleaned up
To comprehensively test the database setup and
functionality, the post-validation phase involves
initiating a database client container. Subsequently,
various SQL commands are executed on the database
using the docker_container Ansible module and its
command option. These commands include creating
a table and inserting data into it. Following this,
database logs are retrieved and analyzed to verify that
the executed commands are appropriately reflected.
This validation is conducted using the assert Ansible
module to ensure the integrity of the database
operations. Once the validation of database
functionality is complete, the database instance is
removed to simulate cleanup operations.
Subsequently, the database is restarted to confirm the
persistence of data through volume management.
Finally, the persistence of data is validated by
utilizing the database client and executing a SELECT
statement to verify that the data remains intact within
the newly created database container.

3.3 The Application

The testing of the application adheres to the same
principles as outlined for infrastructure setup testing.
However, unlike the infrastructure components
implemented with Ansible, the application is
developed in Python. It comprises three major
components: Kafka Producer logic, Kafka Consumer
logic, and a web application, whereby the latter, as
previously mentioned, will not be further described.

Although each of these components undergoes
integration and unit testing from the perspective of
the infrastructure setup, as previously detailed,
additional unit tests are required to validate the

ICSBT 2024 - 21st International Conference on Smart Business Technologies

110

internal implementation of the Python code. To
facilitate this, the unittest Python module is employed.

Each Python script or project is accompanied by a
tests.py file, which contains multiple unit tests
validating the internal functionality of the project.
These tests cover various aspects of the script's
functionality, ensuring the correctness of its behavior.

From a procedural standpoint, these unit tests
could be executed before deploying the logic via
Ansible or integrated as a dedicated step within a
CI/CD pipeline.

Again, the development process follows the
principles of TDD as well, wherein tests are written
prior to the implementation of logic, ensuring a robust
and testable codebase.

3.3.1 Kafka Producer

As mentioned earlier, in this implementation, to
simulate real data creation, the Kafka Producer
ingests data from a CSV file, wherein each line of the
file is transmitted as a message to the Kafka cluster.

In real-world scenarios, assessing the
functionality of the Python function responsible for
data production proves to be challenging due to its
indefinite runtime. Consequently, unit testing of this
function becomes challenging. As a result, validating
the implementation relies on integration tests. These
integration tests, implemented in Ansible, were
described in section 3.2.5.

An aspect of the internal functionality can be
tested, however, by ensuring that the function fails
when presented with an invalid path to the CSV file.
While this file is only used as an input for the
simulated data streaming, to adhere to the TDD
philosophy, this aspect will still be tested.

Furthermore, the Kafka producer's connectivity to
the Kafka cluster is testable. This can be validated by
calling the function with erroneous addresses, which
shall lead to failure while valid addresses facilitate
successful connection establishment, returning an
instance. The Kafka connection test is shown in
Figure 3.

Figure 3: Kafka connection test.

3.3.2 Kafka Consumer

As shown in section 2.6, the Kafka Consumer serves
a multi-faceted role within the project, extending
beyond mere data consumption. To summarize, it

engages in the consumption of Gun violence data
from the Kafka broker by subscribing to a designated
topic. A connection to the database is established, and
it proceeds to iterate over the consumed data,
determining its responsibility based on the US state
mentioned in each message. Each message undergoes
pre-processing, encompassing data cleanup, invalid
data filtering, and relevancy assessment. The pre-
processed data are then stored in a dedicated database
table. Additionally, the Kafka Consumer periodically
conducts predictions using fbprophet (with
seasonality adjusted for NFL Game days) regarding
gun violence per assigned state for the ensuing 365
days. By doing this, eleven predictions are created per
state and date followed by the actual value. The
predictions as well as the actual values are,
subsequently, written to another database table,
facilitating data comparison. Since the Kafka
Consumer constitutes a sophisticated script, it
necessitates comprehensive test coverage to validate
critical functionalities. Accordingly, prior to
implementation, multiple tests are provided.

Even though the script could mostly be tested
locally, some of the tests require several
dependencies to be deployed. This includes a working
database, as well as a working Kafka Broker.

As described earlier, there can be 1 to n Kafka
Consumers. Each Consumer is responsible for
handling a subset of all messages. The assignment is
based on the US state the message mentions.
Therefore, each Consumer instance calculates a
subset of US states, based on the total number of
Consumers as well as its own id, defined via input
argument.

For this, a basic test ensures the script fails with a
non-zero exit code, if the input data is invalid. Invalid
could mean that the ID is greater than the total number
of Consumers, or that an ID is smaller than 1.
Additionally, it is crucial to validate that the summed-
up number of all states distributed to the Consumers,
is equal to the actual total number. This ensures that
the logic constantly handles individual numbers of
Consumers, without duplicated or missing entries.
The corresponding code is shown in Figure 4.

To further validate the consistency, an additional
check is performed, which does not count the entries
but instead validates that the combined list of all
states that were distributed between the Consumers
only contains unique values.

Exploring the Test Driven Development of a Big Data Infrastructure Examining Gun Violence Incidents in the United States of America

111

Figure 4: Test to verify the number of states after distribution to the consumers.

Moreover, there are specific fields like state,
incident_id, and date that are mandatory for further
processing. Additionally, there are invalid messages
that need to be either cleaned up or ignored. Based on
the fact that the raw data is static and well-known, all
critical errors within the data are known as well.

The function parse_kafka_message is used to
parse the input and perform the preprocessing for
each consumed message. It's evident that this is a
crucial part of the logic. Therefore, several tests are
planned and implemented.

The test test_parsing_messages validates:
• parsed valid messages contain 29 comma-

separated attributes
• parsed valid messages contain non-empty

incident_id, state, and date attributes
• parsed invalid messages that contain empty

incident_id, state, or date attributes are expected
to be filtered out by the function

• special characters, thus all characters other than
alphanumeric signs (letters and numbers) and “.”
(period), “ “ (space), + (plus), and “-“ (hyphen),
are removed from parsed messages

Further tests are provided for the mapping of teams
from the NFL data to US states. Here,
• the function should return an error if an invalid

state is provided
• the function should return an empty list if a state

has no NFL Team with scheduled games
• the function should fail if the input is not a string
• the function should return a list if a state has 1 to

n teams with scheduled games
• the function should return a unique list of games

even if two teams in the same state are opponents

4 DISCUSSION

During the development of the described BD
application, the utilization of TDD has yielded
several benefits.

Since BD projects entail unique challenges
(Staegemann et al. 2019), including scalability, high
availability, handling peaking heavy loads of data,
and managing times of reduced data flow, an effective
infrastructure must be capable of addressing these
challenges. TDD, in turn, compels developers to
consider edge cases and possibilities that may
otherwise be overlooked, which, in turn, can help to
reduce the developed applications’ susceptibility to
errors that might impact correctness or performance.

A notable example arises from the dynamic
handling of Consumers and workload distribution
across all instances. An unexpected edge case
identified was a potential scenario, where the total
number of US states may not be evenly divisible by
the total number of Consumers.

Additionally, several situations were encountered
where mishandling a single invalid message could
disrupt consumption, potentially leading to the need
for manual intervention or overlooking missing
information. Yet, the use of TDD facilitated the
identification and proactive handling of errors as
crucial aspects of the development process. This is
important because potential malfunctions that are not
proactively eliminated during the development phase
might, at worst, not even be noticed in the
environment of BD applications in productive
operation but still negatively impact the obtained
results.

Consequently, to minimize the risk of such issues,
without adhering to the TDD approach, most likely,
several additional iterations of error search and code
refactoring would have been necessary during the

ICSBT 2024 - 21st International Conference on Smart Business Technologies

112

implementation of the infrastructure as well as the
application logic.

However, the extensive data infrastructure, which
is characterized by numerous co-dependencies, has
led to many integration tests. Although these prove to
be more costly than unit tests, they are essential for
validating the interactions between all the
interconnected components. Further, ensuring the
smooth implementation of unit tests in the presence
of interdependencies presented challenges that
required prior consideration of testing strategies.

Nevertheless, overall, the proposed TDD
approach for BDE has shown its feasibility and utility.
Hereby, especially the added flexibility through the
option to swap a part of the infrastructure rather
effortlessly (in this case the database) with an
alternative, while being protected through a net of
existing tests, highlighted the approach’s potential to
increase the flexibility and maintainability of the
developed solutions. This, in turn, can prove highly
valuable in dynamic business environments as
discussed in (Staegemann et al. 2020a).

5 CONCLUSION

The harnessing of BD has been shown to have a
positive impact on organizational operations.
However, creating the corresponding applications is
a demanding task and one of the big challenges is to
ensure that the applications have the necessary quality.
While quality assurance for BD applications is widely
researched, this is still far from a solved problem. In
response, one rather recent suggestion was the
utilization of the TDD approach in the BD domain.

Thus, to further explore the application of TDD in
BDE, in this research, a corresponding
implementation was created. As a use case for this,
the prediction of incidents of gun violence in the USA
was chosen as this is a typical BD use case. Further,
even though the data were available in batch, stream-
processing was simulated, since this is a rather typical
requirement in BD scenarios.

Within the implementation, there are two major
parts, the infrastructure and the application logic,
which were both created in a test driven manner.

For the prediction itself, historical gun violence
data were used, which were amended by NFL match
day data that were considered a potentially impactful
influencing factor. In doing so, the combination of
data from different sources, as another typical BD
requirement, was reflected.

Through the project, it was not only shown that it
is possible to apply the test driven approach for the

regarded use case but also that it benefitted the
development. This happened on one hand through
positive impacts on the developed application’s
design and on the other hand through the associated
quality assurance that helped to avoid errors that
would have necessitated cumbersome and time-
consuming additional code reviews to find them or
might, in a worst case scenario, even have been
undetected at all without the use of TDD.

Moreover, as a particularly noteworthy feature,
the increased flexibility and maintainability of the
developed application stand out because the
availability of the corresponding tests facilitates the
swapping of components with alternatives with
comparatively low effort while being protected
through the previously implemented tests. Thereby,
the proposed test driven approach seems especially
valuable in dynamic business environments, where
the applications continuously need to evolve to adapt
to changing environments, circumstances, and
business needs.

However, it has to be noted that the focus was
decisively on the technical realization of the approach
itself, therefore, the quality of the results of the
prediction algorithm and the frontend application
used for visualization were not part of the main
priority.

As part of similar future research endeavors,
beyond the here employed unit- and integration tests,
for instance, End-to-End testing could be conducted
to validate the system’s entire functionality from end
to end. Performance and security tests on the other
hand could help to identify other issues. Further,
exploring the implementation of hardening measures
for strengthening the system’s security, such as TLS-
encrypted communications, might also be worthwhile,
since it could potentially significantly influence the
required test framework and tests themselves.

REFERENCES

Agha, D., Sohail, R., Meghji, A. F., Qaboolio, R., and
Bhatti, S. (2023). “Test Driven Development and Its
Impact on Program Design and Software Quality: A
Systematic Literature Review,” VAWKUM
Transactions on Computer Sciences (11:1), pp. 268-
280 (doi: 10.21015/vtcs.v11i1.1494).

Apache Software Foundation. (2024a). “Apache Kafka,”
available at https://kafka.apache.org, accessed on Apr
11 2024.

Apache Software Foundation. (2024b). “Welcome to
Apache ZooKeeper,” available at https://
zookeeper.apache.org/, accessed on Apr 11 2024.

Exploring the Test Driven Development of a Big Data Infrastructure Examining Gun Violence Incidents in the United States of America

113

Chang, W. L., and Grady, N. (2019). “NIST Big Data
Interoperability Framework: Volume 1, Definitions,”
Special Publication (NIST SP), Gaithersburg, MD:
National Institute of Standards and Technology.

Diebold, F. X. (2021). “What's the big idea? “Big Data” and
its origins,” Significance (18:1), pp. 36-37 (doi:
10.1111/1740-9713.01490).

Docker Inc. (2024). “docker,” available at https://
www.docker.com/, accessed on Apr 11 2024.

Facebook Open Source. (2024). “Prophet: Forecasting at
scale.,” available at https://facebook.github.io/prophet/,
accessed on Apr 12 2024.

Höchtl, J., Parycek, P., and Schöllhammer, R. (2016). “Big
data in the policy cycle: Policy decision making in the
digital era,” Journal of Organizational Computing and
Electronic Commerce (26:1-2), pp. 147-169 (doi:
10.1080/10919392.2015.1125187).

Horowitz, M. (2018). “Detailed NFL Play-by-Play Data
2009-2018: nflscrapR generated NFL dataset wiith
expected points and win probability,” available at
https://www.kaggle.com/datasets/maxhorowitz/nflplay
byplay2009to2016/data, accessed on Apr 12 2024.

Ji, S., Li, Q., Cao, W., Zhang, P., and Muccini, H. (2020).
“Quality Assurance Technologies of Big Data
Applications: A Systematic Literature Review,”
Applied Sciences (10:22), p. 8052 (doi:
10.3390/app10228052).

Ko, J. (2018). “Gun Violence Data: Comprehensive record
of over 260k US gun violence incidents from 2013-
2018,” available at https://www.kaggle.com/datasets/
jameslko/gun-violence-data, accessed on Apr 12 2024.

Laney, D. (2001). “3D data management: Controlling data
volume, velocity and variety,” META group research
note (6:70).

Müller, O., Fay, M., and Vom Brocke, J. (2018). “The
Effect of Big Data and Analytics on Firm Performance:
An Econometric Analysis Considering Industry
Characteristics,” Journal of Management Information
Systems (35:2), pp. 488-509 (doi: 10.1080/
07421222.2018.1451955).

Red Hat. (2024). “Ansible,” available at https://
www.ansible.com/, accessed on Apr 11 2024.

Ronacher, A. (2024). “Flask,” available at https://
flask.palletsprojects.com/en/3.0.x/, accessed on Jan 16
2024.

Roy, D., Srivastava, R., Jat, M., and Karaca, M. S. (2022).
“A Complete Overview of Analytics Techniques:
Descriptive, Predictive, and Prescriptive,” in Decision
Intelligence Analytics and the Implementation of
Strategic Business Management, P. M. Jeyanthi, T.
Choudhury, D. Hack-Polay, T. P. Singh and S. Abujar
(eds.), Cham: Springer International Publishing, pp. 15-
30 (doi: 10.1007/978-3-030-82763-2_2).

Sonnenberg, C., and Vom Brocke, J. (2012). “Evaluations
in the Science of the Artificial – Reconsidering the
Build-Evaluate Pattern in Design Science Research,” in
Design Science Research in Information Systems.
Advances in Theory and Practice, D. Hutchison, T.
Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B.

Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, K. Peffers, M. Rothenberger and B.
Kuechler (eds.), Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 381-397 (doi: 10.1007/978-3-642-
29863-9_28).

Staegemann, D., Chadayan, A. K., Mathew, P., Sudhakaran,
S. N., Thalakkotoor, S. J., and Turowski, K. (2023).
“Showing the Use of Test-Driven Development in Big
Data Engineering on the Example of a Stock Market
Prediction Application,” in Proceedings of Eighth
International Congress on Information and
Communication Technology, X.-S. Yang, R. S. Sherratt,
N. Dey and A. Joshi (eds.), Singapore: Springer Nature
Singapore, pp. 867-877 (doi: 10.1007/978-981-99-
3243-6_70).

Staegemann, D., Volk, M., Daase, C., and Turowski, K.
(2020a). “Discussing Relations Between Dynamic
Business Environments and Big Data Analytics,”
Complex Systems Informatics and Modeling Quarterly
(23), pp. 58-82 (doi: 10.7250/csimq.2020-23.05).

Staegemann, D., Volk, M., Jamous, N., and Turowski, K.
(2020b). “Exploring the Applicability of Test Driven
Development in the Big Data Domain,” in Proceedings
of the 31st Australasian Conference on Information
Systems (ACIS), Wellington, New Zealand. 01.12.2020
- 04.12.2020.

Staegemann, D., Volk, M., Nahhas, A., Abdallah, M., and
Turowski, K. (2019). “Exploring the Specificities and
Challenges of Testing Big Data Systems,” in
Proceedings of the 15th International Conference on
Signal Image Technology & Internet based Systems,
Sorrento, Italy. 26.11.2019 - 29.11.2019.

Staegemann, D., Volk, M., Pohl, M., Haertel, C., Hintsch,
J., and Turowski, K. (2022). “Identifying Guidelines for
Test-Driven Development in Software Engineering—A
Literature Review,” in Proceedings of Seventh
International Congress on Information and
Communication Technology, X.-S. Yang, S. Sherratt, N.
Dey and A. Joshi (eds.), Singapore: Springer Nature
Singapore, pp. 327-336 (doi: 10.1007/978-981-19-
2397-5_30).

Tarreau, W. (2023). “HAProxy,” available at
https://www.haproxy.org/, accessed on Apr 11 2024.

Volk, M., Staegemann, D., Trifonova, I., Bosse, S., and
Turowski, K. (2020). “Identifying Similarities of Big
Data Projects–A Use Case Driven Approach,” IEEE
Access (8), pp. 186599-186619 (doi: 10.1109/
ACCESS.2020.3028127).

Volk, M., Staegemann, D., and Turowski, K. (2022).
“Providing Clarity on Big Data: Discussing Its
Definition and the Most Relevant Data Characteristics,”
in Proceedings of the 14th International Joint
Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management, Valletta,
Malta. 24.10.2022 - 26.10.2022, SCITEPRESS -
Science and Technology Publications, pp. 141-148
(doi: 10.5220/0011537500003335).

ICSBT 2024 - 21st International Conference on Smart Business Technologies

114

