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Abstract: With the surge in Artificial Intelligence (AI) popularity sparked by ChatGPT, a plethora of Transformer-based 
models have emerged, and the decoder-only architecture has become the mainstream development direction 
of large language models (LLMs) in most big-tech companies. In the rapidly advancing field of Natural 
Language Processing (NLP), understanding the capabilities and limitations of different language model 
architectures is critical for pushing the boundaries of AI. This paper delves into the comparative analysis of 
encoder-only, decoder-only, and encoder-decoder models, illuminating their strengths, weaknesses, and 
optimal use cases within the landscape of NLP. Encoder-only models are highlighted for their efficiency and 
deep understanding, decoder-only models for their generative capabilities and adaptability, and encoder-
decoder hybrids for their versatile application across a broad spectrum of NLP tasks. This comparative 
analysis provides valuable insights into the strategic deployment of these models in real-world applications 
and underscores the ongoing need for innovation in model architecture to optimize performance and 
computational efficiency. 

1 INTRODUCTION 

About six years ago, a renowned paper titled 
"Attention Is All You Need" was officially published, 
the first to introduce the concept of the attention 
mechanism. It created a brand-new model in Natural 
Language Processing (NLP) called the Transformer, 
which is groundbreaking and has become the 
predecessor of most of today’s mainstream Language 
Models (LMs) (Shazeer et al. 2017). The Transformer 
architecture consists of two distinct components: an 
encoder, which processes the input data, and a 
decoder, which generates the output sequence. These 
components are crucial in shaping the subsequent 
evolution of models such as OpenAI's Generative 
Pretrained Transformer (GPT) series, which are 
primarily decoder-based, and Google's Bidirectional 
Encoder Representations from Transformers 
(BERT), which rely exclusively on the Transformer 
model’s encoder mechanism. These three models 
have revolutionized how people approach language 
understanding and generation tasks, especially 
decoder-based models like ChatGPT, as a game 
changer, started a new industrial revolution of 
Artificial General Intelligence (AGI), and pushed the 

AI craze to an unprecedented height. However, before 
the release of GPT-3.0, the decoder-based 
transformer models were not as favored as encoder-
decoder transformer models or even the encoder-only 
models like BERT. What intrinsic differences among 
these three approaches have influenced the rise in 
popularity of GPT over the others? Is decoder-only 
LMs always better? In which case do people use 
BERT, and in which case do people use GPT? 
Exploring the differences among LMs based on these 
three architectures is crucial. Different NLP tasks 
have distinct requirements: some need a deep 
understanding of context, while others prioritize 
creative language generation, or sometimes users 
need quick and accurate Q&A. By conducting a 
comparative analysis of encoder-only, decoder-only, 
and encoder-decoder hybrid LMs, researchers and 
practitioners can gain valuable insights into which 
model is more suited for specific kind of tasks. This 
understanding can lead to more efficient and effective 
deployment of these models in real-world 
applications, ranging from automated customer 
service to advanced research in linguistics and AI. 
This paper aims to provide a comprehensive 
comparative analysis of these three kinds of LMs, 

524
Liu, B.
Comparative Analysis of Encoder-Only, Decoder-Only, and Encoder- Decoder Language Models.
DOI: 10.5220/0012829800004547
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Data Science and Engineering (ICDSE 2024), pages 524-530
ISBN: 978-989-758-690-3
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



shedding light on their strengths, weaknesses, and 
optimal use cases in the ever-evolving landscape of 
NLP. 

2 BACKGROUND 

2.1 Transformer Model and  
Encoder-Decoder Architecture 

The Transformer model comprises two key segments: 
an encoder and a decoder, each with a stack of six 
identical layers (Figure 1). The encoder layers are 
each made up of two sub-layers: a multi-head self-

attention mechanism and a position-wise feed-
forward network, both augmented by residual 
connections and normalized on a layer basis (Shazeer 
et al. 2017). The decoder, mirroring the encoder's 
structure, includes an additional third sub-layer in 
each of its layers, which performs multi-head 
attention over the encoder's output. This feature 
allows the decoder to focus on relevant parts of the 
input sequence, thereby facilitating more accurate and 
contextually informed predictions. A key innovation 
in the Transformer is its use of masked multi-head 
self-attention in the decoder, which ensures 
predictions for a given position are dependent only on 
the known outputs at previous positions, making it 
particularly suited for sequence generation tasks. 

 
Figure 1: The Transformer – model architecture (Shazeer et al. 2017). 

2.2 Encoder-Only Language Models 

Encoder-only LMs only consists of a stack of encoder 
layers (Jacob et al. 2018). BERT is a prominent 
example of an encoder-only LM. These BERT-like 
Models primarily designed for tasks that involve 
understanding or processing input text, such as 
classification, sentimental analysis, and question 
answering. These models typically process the input 
text in a bidirectional manner, meaning that they 
consider the context from both the left and right sides 
of a token within the input sequence. This enables the 
model to possess a thorough grasp of the context 
surrounding each word. 

During its pre-training phase, BERT-like models 
could employ two special tasks: Masked Language 
Modeling (MLM) and Next Sentence Prediction 
(NSP) (Jacob et al. 2018, Radford et al. 2021). 

2.2.1 MLM 

The MLM task is formulated to address the 
unidirectionality constraint by randomly masking a 
portion of the input tokens and training the model to 
predict the original identity of the masked words 
based on their bidirectional context. This is achieved 
by replacing the masked tokens with a [MASK] 
token, random tokens, or leaving them unchanged, 
thereby enforcing the model to infer the missing 
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information from a composite understanding of the 
surrounding words. The MLM objective is 
mathematically represented as: 𝐿ெ௅ெ(𝜃) =  − ∑ log 𝑝ఏ(𝑥௜|𝑥௠௔௦௞௘ௗ)௡௜ୀଵ          (1) 

where 𝑥௠௔௦௞௘ௗ  is the input with some tokens 
masked, 𝑥௜ is the original token, and 𝜃 is the model 
parameters. 

2.2.2 NSP 

BERT incorporates the NSP task to learn 
relationships between sentences. In this binary 
classification task, BERT is designed to take in 
sentence pairs and is trained to predict if the second 
sentence is the logical and chronological next 
sentence in the document. This task enhances BERT's 
ability to capture the relationships between sentences, 
which is crucial for downstream tasks that involve 
understanding the structure of documents, such as 
question answering and natural language inference. 
The NSP task can be formalized as: 𝐿ேௌ௉(𝜃) =  − ଵே ∑ 𝑦௜𝑙𝑜𝑔ேଵ 𝑦ො௜ + (1 − 𝑦௜)log (1 −𝑦ො௜) (2) 

where 𝑁  is the number of sentence pairs, 𝑦௜ 
indicates whether sentences are consecutive, and 𝑦ො௜ is 
the model predicted probability. 

2.3 Decoder-Only Language Models 

Decoder-only LMs, like OpenAI’s GPT, generally 
consist of multiple layers of modified Transformer 
decoder blocks stacked on top of each other. Each 
block comprises components of Masked Muti-head 
Self Attention, Position-wised Feed-Forward 
Networks, and Layer Normalization (Radford et al. 
2021). 

In contrast to encoder models, decoder-only 
models typically pertained and generate text in a 
unidirectional or auto-regressive manner. This means 
each token is generated based on the previously 
generated tokens without seeing future tokens in the 
sequence.  

The autoregressive language modeling task can be 
mathematically represented as follows: 

Given a sequence of tokens 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ , the 
model predicts the next token  𝑥௡ାଵ  based on all 
previous tokens. The probability of the sequence can 
be factorized as: 𝑃(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =  ∏ 𝑃(𝑥௜ | 𝑥ଵ, 𝑥ଶ, … , 𝑥௜ିଵ)௡௜ୀଵ      
(3) 

For each step 𝑖, the model outputs a probability 
distribution over the vocabulary for the next token 𝑥௜, 
based on the previous tokens. 

2.4 Mainstream LLMs of Different 
Architecture 

While OpenAI’s ChatGPT is undoubtedly the 
most popular and well-known language model in 
recent years, there are large numbers of decoder-only 
LMs, such as the latest Google AI model Gemini, 
Llama and Llama 2 developed by Meta, Google’s 
Bard, LaMDA, PaLM, etc. For encoder-only LMs, 
there are also many other LMs besides BERT like 
Microsoft’s DeBERTa, Google’s ALBERT, and 
Meta’s RoBERTa. Apart from encoder-only and 
decoder-only, seq2seq (encoder-decoder) models like 
Meta’s BART and Google’s T5 are also widely 
applied. 

3 TRAINING EFFICIENCY 

Since few studies focus specifically on training 
efficiency, and the actual training efficiency depends 
on various factors, this part will compare decoder 
LMs' and encoder LMs’ training efficiency mainly 
from a theoretical perspective.  

3.1 Pretraining Tasks Complexity and 
Time 

For encoder-only LMs, tasks like MLM are 
inherently parallelizable since each masked token's 
prediction is relatively independent of others. This 
parallelism can lead to efficient use of computational 
resources, potentially reducing pretraining time. Due 
to their ability to process input tokens in parallel, 
encoder-only models can efficiently handle large 
batches of data, which can shorten the overall time 
required for pretraining. 

For decoder-only LMs, the autoregressive 
pretraining task, where each token prediction depends 
on the previously predicted tokens, can limit parallel 
processing, potentially making pretraining more 
time-consuming than encoder-only models. While the 
sequential learning process is thorough, it might 
require more time to achieve similar levels of 
understanding and generation capabilities due to its 
inherent sequential processing constraints. 

Encoder-decoder models are often pre-trained on 
a variety of complex tasks that require both 
understanding and generating text. While this makes 
them highly versatile, it also means that their 
pretraining can be the most time-consuming due to 
the complexity of the tasks and the need to learn both 
encoding and decoding capabilities. The use of 
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diverse pretraining tasks, including sequence-to-
sequence transformations, can require extensive time 
to cover the breadth of capabilities these models are 
expected to learn. 

3.2 Computational Resource 
Consumption  

Mentioned in the previous part, MLM tasks 
parallelism in BERT like model pretraining can lead 
to efficient use of computational resources. However, 
the inability to fully parallelize the pretraining 
process means that decoder-only models might not 
utilize computational resources as efficiently as 
encoder-only models, potentially leading to longer 
pretraining times. Encoder-decoder LMs tend to 
require more memory and computational resources 
since they incorporate both encoder and decoder 
structures. Especially when employing complex 
attention mechanisms and a large number of 
parameters, they may have the highest resource 
consumption. 

3.3 Parameter Efficiency 

Encoder-only LMs generally achieve good 
performance on less data due to their deep text 
understanding capabilities, especially when fine-
tuning task-specific objectives. We can get this 
conclusion from Table 1 and the analysis in 5.3. 

Decoder-only LMs generally need a large volume 
of training data to generate high-quality text. They 
may not be as efficient as encoder-only models in 
learning from each sample, as generative tasks are 
inherently more complex than understanding tasks. 

Encoder-decoder LMs may show certain 
advantages in data efficiency, particularly when tasks 
require both understanding and generative 
capabilities. They can improve sample efficiency 
through complex representations learned from large 
datasets, though this still depends on the nature of the 
task and the quality of the training data. 

4 NATURAL LANGUAGE 
UNDERSTANDING ABILITY 

Natural Language Understanding (NLU) refers to the 
ability of a LM to understand human language, which 
is a very important aspect to evaluate the overall 
ability of a LM. In this part, this paper will compare 
NLU ability of encoder-only LMs, decoder-only 
LMs, and encoder-decoder LMs based on 

SuperGLUE benchmark (Smith & Johnson 2020, 
SuperGLUE 2023).  

4.1 Evaluation Metrics Used 

4.1.1 Accuracy 

Accuracy is a straightforward measure that quantifies 
the ratio of a model's correct predictions to its total 
predictions. It's commonly used in classification 
tasks, where the goal is to correctly identify the 
category to which a piece of data belongs. The 
formula for accuracy is given by: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ே௨௠௕௘௥ ௢௙ ஼௢௥௥௘௖௧ ௉௥௘ௗ௜௖௧௜௢௡௦ ்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ௉௥௘ௗ௜௖௧௜௢௡௦            (4) 

4.1.2 F1-Score 

The F1 score represents the harmonic mean of 
precision and recall, thereby striking a balance 
between the two metrics. It is used a lot in situations 
where there is an uneven class distribution or when 
false positives and false negatives carry different 
costs. The F1 score, which varies from 0 to 1, with 1 
signifying ideal precision and recall, and 0 represents 
that the model did not correctly predict any positive 
cases. 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ⋅ ௉௥௘௖௜௦௜௢௡∙ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟              (5) 

4.1.3 Exact Match (EM) 

It measures how often the system's answer is exactly 
the same as one of the correct answers. 
Mathematically, it can be expressed as a ratio or 
percentage 𝐸𝑀 =  ே௨௠௕௘௥ ௢௙ ா௫௔௖௧௟௬ ஼௢௥௥௘௖௧்௢௧௔௟ ே௨௠௕௘௥ ௢௙ ொ௨௘௦௧௜௢௡௦ × 100%          (6) 

4.2 Super GLUE 

The SuperGLUE benchmark is a collection of natural 
language understanding tasks designed to evaluate 
and compare the performance of LMs (SuperGLUE 
2023). 

SuperGLUE consists of a suite of eight diverse 
tasks that cover a wide range of NLP abilities, 
including question answering, entailment, co-
reference resolution, and more. These tasks are: 
1) BoolQ: A question-answering task requiring the 

model to provide a boolean (yes/no) answer to a 
question based on a short passage. This task is 
evaluated with accuracy. 

2) CommitmentBank (CB): A textual entailment 
task that involves determining if a text entails, 
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contradicts, or is neutral to a given hypothesis. 
This task is evaluated using accuracy and F1. 

3) Choice of Plausible Alternatives (COPA): A 
causal reasoning task where the model must 
select the most plausible cause or effect from 
two given options for a given premise. This task 
is evaluated using accuracy. 

4) Multi-Sentence Reading Comprehension 
(MultiRC): A question-answering task where 
questions may have multiple correct answers 
which must be identified from a list of possible 
options. This task is evaluated using F1 and EM. 

5) Reading Comprehension with Commonsense 
Reasoning Dataset (ReCoRD): A task where 
the model fills in the blank in a sentence using a 
list of provided entities, requiring commonsense 
reasoning. The evaluation metrics used are F1 
and EM. 

6) Recognizing Textual Entailment (RTE): 
Similar to CB, this task involves determining 
whether one sentence logically follows from 
another. 

7) Words in Context (WiC): A word sense 
disambiguation task that requires the model to 
determine whether a word is used in the same 
way in two different sentences. The evaluation 
metric used is accuracy in this task. 

8) Winograd Schema Challenge (WSC): A co-
reference resolution task where the model must 
determine which noun a given pronoun refers to 
in a sentence, often requiring complex 
commonsense reasoning. The evaluation metric 
used is accuracy in this task. 

4.3 Analysis of SuperGLUE 
Benchmark  

Table 1 listed the top 10 LMs based on SuperGLUE 
scores, of which 5 are encoder-only LMs, 4 are 
encoder-decoder, and only one, PaLM, is decoder-
only. Among the top-10 models in the SuperGLUE 
leaderboard, encoder-only LMs and encoder-decoder 
LMs outnumber decoder-only LMs by a ratio of 5 to 
1 respectively. Also, in the top 30 rankings, the 
number of encoder-only models far exceeds the 
number of decoder-only models. This result indicates 
that encoder-only LMs and encoder-decoder LMs 
have generally stronger NLU capability than decoder-
only LMs.  

Notably, OpenAI's GPT-3 ranks 25th, just 0.3 
points higher than the SuperGLUE Baseline, 
BERT++. However, GPT-3 has 174 billion 
parameters, which is 62 times more than BERT++'s 
2.8 billion. Moreover, the sole decoder-only model in 
the top ten, PaLM, has 90 times more parameters than 
Vega v2, the highest-scoring model. Also, the second 
highest LM ST-MoE-32B has approximately 5 times 
the parameters as Vega v2. Thus, to achieve 
comparable NLU abilities, encoder-decoder LMs 
require significantly more parameters than encoder-
only LMs, and decoder-only LMs even require a 
much greater number of parameters than encode-
decoder LMs. 

 

Table 1: Top 10 LMs from SuperGLUE leaderboard (Zhong et al. 2022). 

Model Name Super GLUE ScoreArchitecture TypeNumber of Parameters 

Vega v2 91.3 Encoder-only 6 billion 

ST-MoE-32B 91.2 Encoder-Decoder 32 billion 

METRO-LM 90.9 Encoder-only 5.4 billion 

ERNIE 3.0 90.6 Encoder-only 10 billion 

PaLM 540B 90.4 Decoder-only 540 billion 

T5 + UDG, Single Model (Google Brain) 90.4 Encoder-Decoder 11 billion 

DeBERTa / TuringNLRv4 90.3 Encoder-only 3.2 billion 

SuperGLUE Human Baseline 89.8 N/A N/A 

T5 89.3 Encoder-Decoder 11 billion 

Fronzen T5 1.1 + SPoT 89.2 Encoder-Decoder 11 billion 

NEZHA-Plus 86.7 Encoder-only 2.8 billion 
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5 ZERO-SHOT/FEW-SHOT 
GENERALIZATION 
CAPABILITIES 

Zero-shot generalization refers to a model's ability to 
apply learned knowledge to tasks without any task-
specific training; Few-shot learning indicates that a 
machine learning model can learn a new task from a 
very small amount of training data. These 
generalization capabilities are crucial measures of a 
model's ability to comprehend and utilize its pre-
trained knowledge in novel contexts. 

5.1 Related Experiment  

The research made by Wang, T. et al. studied how 
different pre-training objectives and architectural 
choices affect the zero-shot generalization abilities of 
language models (MMLU 5-Shot Leaderboard, 
2024). Limited to BERT-like LMs’ generative 
capability, they cannot conduct a study in its zero-
shot setting, so encoder-only LMs are ignored from 
the study. The study finds that: A causal decoder-only 
model pre-trained with full language modeling 
(predicting the next word in a sequence) performs 
best in zero-shot tasks where no additional fine-
tuning is done on specific tasks, and an encoder-
decoder model pre-trained with masked language 
modeling (predicting masked words) outperforms 
others when fine-tuning is done on multiple tasks 
(MMLU 5-Shot Leaderboard, 2024). Therefore, the 
decoder-only Model performs the best in zero-shot 
generalization capability.  

5.2 Massive Multitask Language 
Understanding (MMLU) 
Benchmark Analysis 

The MMLU benchmark is a comprehensive test 
designed to evaluate the generalization abilities of 
language models across a wide range of subjects. It 
consists of multiple-choice questions derived from 
exams in various disciplines, from humanities to 
STEM fields, challenging the models to apply their 
knowledge to unfamiliar problems (Wang et al. 2023, 
Shazeer et al. 2017, Bahdanau et al. 2014). The 
benchmark assesses not just the depth of a model's 
training but also its capacity to transfer learning to 
new contexts without additional fine-tuning (zero-
shot). In the following test, this paper will compare 
each model’s MMLU Score with 5-shot fine-tuning 
(few-shot) (Table 2). 

Table 2: Top 10 LMs from MMLU 5-shots leaderboard 
(Wang et al. 2023). 

Model MMLU ScoreArchitectural Type

GPT-4 86.4 Decoder-only 

Gemini Ultra 83.7 Decoder-only 

PaLM 2 78.3 Decoder-only 

PaLM 75.2 Decoder-only 

Gemini Pro 71.8 Decoder-only 

Mistral 8x7b 71.3 Decoder-only 

GPT-3.5 70 Decoder-only 

Zephyr 7b 66.08 Decoder-only 

Llama 2 65b 63.4 Decoder-only 

Mistral 7b 60.1 Decoder-only 
 
This paper obtains Top 10 LMs in MMLU score, 

where all the top models on the MMLU leaderboard 
are decoder-only. Based on the data from the MMLU 
leaderboard, it appears that decoder-only language 
models exhibit dominantly strong few-shot 
generalization capabilities.  

In contrast, from the benchmark the encoder-
decoder LMs is not showing comparable few-shot 
generalization capability. And due to the weakness of 
generative ability, encoder-only LMs are meaningless 
to compare.  

6 CONCLUSION 

In conclusion, comparative analysis of encoder-only, 
decoder-only, and encoder-decoder language models 
in this paper reveals distinct trade-offs in terms of 
training efficiency, NLU, and zero-shot/few-shot 
generalization capabilities. Encoder-only models 
stand out for their training efficiency, requiring less 
time and fewer computational resources to train while 
demonstrating strong NLU capabilities with the 
smallest parameter count. This makes them 
particularly suitable for tasks that prioritize language 
understanding over generation. On the other hand, 
decoder-only models, despite their need for 
significantly more computational resources and a 
more significant number of parameters to match the 
NLU capabilities of their counterparts, excel in 
generative tasks. Their superior zero-shot 
generalization ability further underscores their utility 
in scenarios where generative capacity and 
adaptability to new tasks without explicit training are 
crucial. Encoder-decoder models, requiring the most 
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computational resources, offer a balanced approach. 
They need fewer parameters than decoder-only 
models to achieve comparable NLU performance and 
more parameters than encoder-only models to reach 
the same level of understanding. This hybrid 
approach, however, enables them to effectively 
handle a broader range of tasks, leveraging both 
strong understanding and generation capabilities. 

Looking forward, the evolving landscape of NLP 
presents numerous opportunities for further research 
and development. The quest for models that combine 
the efficiency and understanding capabilities of 
encoder-only models with the generative prowess and 
adaptability of decoder-only models continues. 
Future research could explore more efficient training 
algorithms, novel architectural innovations, or even 
entirely new paradigms of model design to reduce 
computational demands while boosting the models' 
efficacy over a wider array of tasks. 
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