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Abstract: In recent years, Federated Learning (FL) has gained significant attention as a crucial technology for addressing 
the issue of data silos. Despite possessing certain privacy-preserving capabilities, FL still carries the risk of 
privacy leakage, particularly in fields such as healthcare and finance, where the demand for user privacy 
protection is increasingly urgent. This review first introduces the fundamental principles and classifications 
of FL, with a focus on discussing its advantages in data privacy protection. Subsequently, it reviews the 
background of current data privacy challenges, encompassing various privacy attack methods that highlight 
the deficiencies of FL in privacy protection. Following this, various privacy protection methods are 
thoroughly discussed, analyzing the strengths of different methods in safeguarding data privacy. A 
comparative analysis of specific privacy protection algorithms is then conducted, providing a detailed 
examination of the advantages, disadvantages, protection strategies, and targeted subjects of each algorithm. 
By systematically summarizing existing research, this paper offers a comprehensive understanding of the 
application of FL in the field of data privacy, providing valuable insights for both the academic and industrial 
sectors. Furthermore, it serves as a useful guide for future research and applications in this domain. 

1 INTRODUCTION 

Federated Learning (FL) has become highly 
prominent for breaking down data silos, finding 
applications across finance, healthcare, and smart 
cities, thereby amplifying the importance of its 
privacy considerations. 

Initially proposed by Mcmahan et al. in 2016, FL 
is a technology designed for efficiently training high-
quality centralized models (Konečný et al. 2016). 
This technique allows models to be trained on 
multiple local devices and then centrally aggregated 
at a central location. Importantly, data is stored on 
users' local devices rather than being uploaded to a 
centralized data center, ensuring the privacy of users. 
Google has made notable contributions to FL, being 
the first to introduce the concept and providing open-
source ·  frameworks like TensorFlow Federated 
(TFF) (TensorFlow, 2024). 

International standardization organizations, such 
as the International Organization for Standardization 
(ISO), and other standardization bodies are actively 
working on standardizing FL to facilitate its cross-
industry applications. For instance, the Institute of 

Electrical and Electronics Engineers (IEEE) has 
approved the first standard for FL architecture (IEEE 
Computer Society 2021). Numerous researchers have 
focused on studying privacy protection, attacks, and 
security threats related to FL, proposing various 
methods to ensure the security of models and data. 
Examples include the Federated Meta-Learning 
Algorithm (FedMA), Federated Dynamics Algorithm 
(FedDyn), Multi-party Optimization with Outcomes 
Network Algorithm (MOON), and knowledge 
transfer personalized federated learning (KT-Pfl) 
algorithm, among others (Wang et al. 2020, Acar et 
al. 2021, Li et al. 2021, Zhang et al. 2021). 

In China, extensive research has been conducted 
on FL, and the technology has been applied in 
practical settings, particularly in areas such as 
agriculture and healthcare, emphasizing privacy 
protection and model training (Kang et al. 2022, Xu 
et al. 2021). 

FL has successfully addressed the traditional 
machine learning challenge where uploading all data 
to a high-performance server for centralized training 
could lead to issues such as data privacy breaches and 
uncontrollable data flow. Essentially, FL represents a 
form of distributed machine learning. 
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Despite having privacy protection mechanisms, 
FL remains vulnerable to various attack vectors that 
may result in the leakage of user data privacy. From 
the perspective of attack methods, these primarily 
include poisoning attacks and Byzantine attacks. 
Regarding the stages of attack initiation, they are 
broadly categorized into the model training phase and 
the model inference phase. 

2 FEDERATED LEARNING 

FL involves collaborative model training by clients 
under central coordination, with the central server 
(CS) aggregating locally trained models through 
weighted averaging to derive a global model (GM) in 
each iteration. After multiple rounds of iteration, the 
final result model is achieved. This approach 
effectively mitigates privacy risks associated with 
traditional machine learning. Since raw data is stored 
locally on client devices, only the analysis and 
sharing of models take place, preventing data leakage 
to the server or other locations. Additionally, the 
accuracy achieved is comparable to that of traditional 
machine learning. 

The process involves FL algorithmic principles, 
focusing on model training in a distributed 
environment without necessitating raw data transfer 
to a CS. The basic principles of typical FL algorithms 
are outlined below: 

1. Initialization: Select the architecture and 
initialize parameters for the GM. 

2. Device Registration: Devices register 
themselves with the FL system. 

3. Local Model Training: Each device utilizes 
local data for model training. Training can involve 
traditional gradient descent or other optimization 
algorithms. 

4. Model Parameter Update: After local data 
training, devices transmit only the updates (gradients 
or weights) of model parameters to the CS, without 
transferring raw data. 

5. Model Aggregation: The CS collects model 
parameter updates from all devices. Using an 
aggregation strategy, typically weighted averaging, 
the new parameters for the GM are obtained. 

6. GM Update: The CS updates the GM using the 
aggregated parameters. 

7. Communication and Iteration: Iterate through 
the process of local model training, parameter 
updates, model aggregation, and GM updates until 
convergence or a predefined number of training 
rounds are reached. 

8. Model Evaluation: Evaluate the GM to assess 
its performance in FL. 

It is evident that in FL since clients are responsible 
for training, they only upload the model without 
transferring local data. Additionally, the trained 
model uploaded to the CS can be shared among 
multiple parties without significantly affecting model 
accuracy. 

3 CLASSIFICATION OF 
FEDERATED LEARNING 

According to different data situations, FL can be 
divided into three types: Horizontal FL, Vertical FL, 
and Federated Transfer Learning (Yang et al. 2019). 
Details are presented in Table 1. 

Table 1. Three Types of FL Classification 

 User 
Overlap 

Feature Overlap 
in Data 

Horizontal FL Multiple Few 

Vertical FL Few Multiple 

Federated Transfer 
Learning Few Few 

 
Based on practical production, two scenarios for 

FL can be defined: Business-to-Business (ToB) and 
Consumer-to-Consumer (ToC). 

In the ToB scenario, the primary entities involved 
are institutions, companies, and governments. 
Typically, a third-party CS is used for model 
exchange and parameter control (Wang et al. 2021). 

In the ToC scenario, there is often a larger number 
of participants with lower computational power. This 
scenario tends to weaken the characteristics of a CS 
control node, placing model updates in the hands of 
each participant (Wang et al. 2021). 

4 FEDERATED LEARNING 
PRIVACY ISSUES 

While FL incorporates certain privacy protection 
mechanisms, it may not provide sufficient privacy 
safeguards. For instance, attacks during the process of 
model update data transmission can lead to the 
leakage of sensitive information. Different attack 
methods may also result in data leakage from the CS. 
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4.1 Byzantine Attacks 

Byzantine attacks refer to situations in distributed 
systems where a subset of nodes (called Byzantine 
nodes) intentionally provides erroneous, deceptive, or 
malicious information, attempting to disrupt the 
normal operation of the system. In FL, attackers 
control multiple Byzantine users who intentionally 
provide false or harmful parameter data to the CS, 
disrupting the training process of the GM. This type 
of attack can impact the GM and compromise its 
accuracy (Bagdasaryan et al. 2020). 

4.2 Poisoning Attacks 

A "Poisoning Attack" is where attackers deliberately 
inject malicious, disruptive, or false data into the FL 
system to influence the performance of the GM (Chen 
et al. 2020). Poisoning attacks have various methods, 
such as data poisoning and model poisoning. 

Data poisoning involves contaminating training 
sample data, such as adding erroneous data or altering 
local data labels, misleading the GM during training, 
and disrupting the model's learning of features (Jiang 
et al. 2019). 

Model poisoning disrupts the performance of the 
GM by injecting malicious local model parameters 
into the FL system (Bhagoji et al. 2019). 

4.3 Sybil Attacks 

Sybil attacks typically involve a single node in the 
network having multiple identity labels and 
weakening the effectiveness of network redundancy 
backups through control over the system. Attack 
methods include direct communication, forgery or 
theft of identity, and simultaneous and non-
simultaneous attacks. In the server-client architecture 
of FL, participants launching malicious attacks can 
control the server, forge numerous client devices, or 
control devices in a pool that have been 
compromised, enabling the execution of Sybil attacks 
(Wang et al. 2021). 

5 PRIVACY PROTECTION IN 
FEDERATED LEARNING 

Privacy protection of data is a crucial aspect of FL. 
Without adequate protection, there is a risk of leakage 
of many privacy parameters during training. Once 
leaked, both data owners and participants face 

significant losses. Therefore, it is essential to 
implement privacy protection measures in FL. 

5.1 Defense Against Data Poisoning 

Several methods exist to protect learning models from 
the impact of data poisoning attacks. Examples 
include anomaly detection, data filtering, and trust 
evaluation. Nathalie et al. use context information 
checking to detect toxic sample points. By comparing 
results from different parts of training, they evaluate 
and identify abnormal data models (Baracaldo et al. 
2017). 

5.2 Homomorphic Encryption 

Homomorphic encryption is a specialized technique 
for computational operations on encrypted data. It 
enables operations such as addition or multiplication 
on encrypted data without the need to decrypt it, 
ensuring that the original data remains confidential 
during transmission. Homomorphic encryption can 
be utilized to protect model parameters when they are 
sent from the server to the client in a FL system. This 
allows clients to update in an encrypted state without 
exposing model details. During model predictions, 
homomorphic encryption can be used to encrypt input 
data, enabling the server to make predictions in an 
encrypted state without knowing the plaintext content 
of the input data (Baracaldo et al. 2017). 

5.3 Differential Privacy 

Differential privacy provides mathematically 
rigorous protection when handling individual data, 
preventing re-identification attacks against individual 
data. It can protect local data on each device by 
introducing noise, ensuring that even locally, 
contributions of individual data are not directly 
exposed, thereby enhancing user privacy protection. 
When aggregating local model parameters into a GM, 
differential privacy can be employed to introduce 
noise on model parameters, protecting the details of 
individual models. This ensures that the GM's 
training does not overly rely on the specific data of 
any one participant. Differential privacy techniques 
can be applied to gradient computation and updates, 
introducing noise on gradients to protect individual 
data (Dwork 2011). 

5.4 Data Compression 

Compression solutions involve employing various 
techniques to reduce or compress the amount of data 
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transmitted in FL. This helps to lower communication 
overhead, improve the efficiency of model updates, 
and maintain the accuracy of model training. When 
applying differential privacy, the size of transmitted 
noisy data can be reduced by adjusting the parameters 
of the noise or using more efficient differential 
privacy algorithms. Sparse ternary compression 
(STC) can significantly reduce the model size, 
thereby lowering memory and computational costs 
when deploying on embedded or edge devices. The 
active participation of numerous clients also ensures 
the robustness of the model (Zhou et al. 2021, Sattler 
et al. 2019). 

6 PRIVACY PROTECTION 
ALGORITHM COMPARATIVE 
ANALYSIS 

6.1 Siren 

Siren, a Byzantine-robust FL system with an active 
alert mechanism, improves defense against attacks by 
employing precision checks and distributed detection. 
Each client conducts two processes: training and 
alert. In the training process, a small portion of the 
local dataset is retained as a test dataset. The alert 
process tests the global weights, and alerts are sent to 
the CS to remove malicious weights during each 
communication round (Guo et al. 2021). 

6.2 Edge Computing Privacy 
Protection 

This system utilizes blockchain for decentralization 
and auditability, bolstering resistance to tampering 
and single-point failure attacks. FL establishes a 
collaborative training platform across multiple 
devices without requiring a trusted environment or 
specialized hardware. It incorporates adaptive 
differential privacy to protect model parameter 
privacy while reducing noise's impact on model 
accuracy. This integration offers a solution with high 
accuracy and robust privacy protection for edge 
computing scenarios (Fang et al. 2021). 

6.3 FLAME 

The FLAME framework combines differential 
privacy and FL, achieving the goal of simultaneously 
protecting user privacy and improving model 
accuracy without requiring a trusted party, using the 
shuffling model in differential privacy. It balances 
model accuracy and user privacy protection, avoids 
some limitations of traditional models, and offers 
better performance for practical applications. It also 
demonstrates strong resistance against poisoning 
attacks (Liu et al. 2021). 

6.4 Summary 

Table 2 summarizes different architectures for 
protection against attacks, highlighting their methods, 
advantages, disadvantages, and defense mechanisms. 

Table 2. Privacy protection algorithm comparison 

Architecture Protection Methods Advantages Disadvantages Defense Against 
Attacks 

Siren Distributed Detection 
Suitable for a large 

number of malicious 
clients 

No Apparent 
Drawbacks Various Attacks 

Edge Computing 
Privacy 

Protection 

Adaptive Differential 
Privacy Mechanism, 

Gradient Checking, and 
Incentive Mechanism 

Suitable for scenarios 
with high security and 
accuracy requirements. 

Low efficiency Poisoning Attacks 

FLAME Privacy amplification 
benefit 

Performance 
improvement, avoiding 

limitations 

Not suitable for 
large parameter 

dimensions 

Vulnerable to 
poisoning attacks 
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7 DISCUSSION AND ANALYSIS 

By learning models in a distributed environment, 
model training can be achieved without centralizing 
data. Communication efficiency is crucial, especially 
when learning on mobile devices and reducing 
communication rounds is vital for performance 
improvement. Different technologies and methods, 
such as iterative model averaging, model accuracy 
checks, and model alert mechanisms, can be 
employed. Future research could explore the 
applicability of these methods in broader and more 
complex scenarios, as well as how to enhance model 
robustness and privacy protection performance 
further. 

In the field of FL, there is a need for more 
attention to comprehensive optimization methods that 
address communication efficiency, security, and 
model performance simultaneously. 

8 CONCLUSION 

In the field of FL, the technology to address the issue 
of data silos has garnered significant attention. 
Despite having certain privacy protection 
mechanisms, FL still poses risks of privacy leakage, 
especially in sectors such as healthcare and finance, 
where the demand for user privacy protection is 
urgent. The paper reviews the fundamental principles, 
classifications, and privacy challenges of FL, with a 
particular focus on privacy threats like Byzantine 
attacks, poisoning attacks, and Sybil attacks. 

Regarding privacy protection, researchers have 
proposed various methods, including homomorphic 
encryption, differential privacy, and data 
compression technologies. Homomorphic encryption 
enables computational operations on encrypted data, 
effectively safeguarding the privacy of model 
parameters and input data. Differential privacy 
protects data privacy on local devices by introducing 
noise and prevents overreliance on individual models 
by introducing noise on model parameters. Data 
compression technology enhances communication 
efficiency by reducing the amount of transmitted data 
while maintaining the accuracy of model training. 

In the comparative analysis of privacy protection 
algorithms, Siren employs an active alert mechanism, 
edge computing privacy protection combines 
blockchain technology, and the FLAME framework 
integrates differential privacy with FL. These 
methods not only enhance model accuracy but also 
effectively counter various types of privacy attacks. 

Overall, as a distributed machine learning 
approach, FL faces challenges in the comprehensive 
optimization of communication efficiency, security, 
and model performance. Future research should delve 
into the applicability of these methods in broader and 
more complex scenarios to further enhance the 
robustness and privacy protection performance of FL. 
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