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Abstract: Conventional machine learning (ML) methods for load forecasting rely on a central server for ML training. 
However, this approach has drawbacks as it necessitates transmitting all data collected by diverse devices to 
the central server. This process poses risks to privacy and security, strains the communication network, and 
demands significant centralized computing resources. In contrast, federated learning (FL) allows multiple 
parties to collaboratively train ML models without sharing their local data. An inherent challenge in FL is 
addressing the diversity in the distribution of local data across participating parties. Despite numerous studies 
aimed at overcoming this challenge, existing approaches often fall short in achieving satisfactory 
performance, particularly when dealing with image datasets and deep learning models. Model-contrastive 
Federated Learning (MOON) presents a straightforward and effective FL framework. MOON's core concept 
involves leveraging the similarity between model representations to refine individual local training, 
essentially conducting comparative learning at the model level. Extensive experiments demonstrate that 
MOON outperforms the most advanced FL algorithms across various image classification tasks. 

1 INTRODUCTION 

With the popularization of the Internet of Things 
(IoT), edge computing, and mobile devices, the 
demand for privacy protection and joint learning of 
distributed data is increasing. However, the problems 
of unstable communication and non-independent 
distributed data make federated learning (FL) face 
challenges in practical application. 

Addressing issues related to unstable 
communication and non-independent distributed data 
is crucial for enhancing the efficiency and 
performance of FL and rendering it more applicable 
to real-world scenarios, including medical health, 
finance, and industry. Research topics include but are 
not limited to FL optimization algorithms under 
unstable communication, model aggregation methods 
under dependent and identically distributed data, 
communication compression and optimization, FL of 
heterogeneous devices and non-standardized data, 
etc. Research methods can include theoretical 
analysis, mathematical modeling, algorithm design, 
simulation experiments, and actual system 
construction. At the same time, it can learn from the 
methods of distributed optimization, communication 

network optimization, data mining, and privacy 
protection. 

The research goal is to propose effective 
algorithms and methods to solve the problems of 
unstable communication and non-independent 
distributed data, improve the convergence speed, 
model performance, and data privacy protection level 
of FL, and promote the wide application of FL in 
practical applications. By studying the problem of 
unstable communication and non-independent 
distributed data, the theoretical basis and practical 
application technology of FL can be further 
improved, and the wide application and 
popularization of FL in various fields can be 
promoted. 

2 OVERVIEW OF THE 
RESEARCH 

2.1 FL Emerged 

FL, a distributed machine learning (ML) technology, 
has emerged recently due to challenges in centrally 
managing data, privacy security issues, and ML 
algorithm limitations. The vast data needed for 
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training Artificial Intelligence (AI) models presents 
practical challenges, leading to a feasible approach: 
organizations with data sources train models and 
communicate on them, ultimately aggregating a 
global model. 

The origin of FL can be traced to the need for 
analyzing distributed data, spurred by the adoption of 
technologies like Mobile Internet (MI), IoT, and edge 
computing. With data increasingly distributed across 
organizations or devices, traditional centralized 
processing faces hurdles (Laroui et al. 2021). FL 
addresses this by enabling local model training and 
transmitting only encrypted average model 
parameters to a central server, reducing 
communication traffic and enhancing efficiency. 

Key FL concepts include local model updates, 
parameter aggregation, and privacy protection. Each 
participant trains a model locally and shares 
encrypted average parameters, safeguarding data 
privacy while enabling collaborative training. FL 
finds applications in healthcare, finance, IoT, and 
edge computing. 

In summary, FL, as an emerging distributed ML 
technology, holds significant theoretical significance 
and practical application value. It offers new 
approaches and methods for addressing distributed 
data management and privacy security issues. 

2.2 Expect to Solve 

FL also entails the following issues and challenges: 
• Privacy protection: Since participants only 

share model parameters rather than raw data, 
it is essential to ensure the protection of users' 
privacy data during communication and 
aggregation processes, to avoid the risks of 
data leakage and privacy infringement. 

• Data imbalance: Different participants may 
possess varying types or quantities of data, 
resulting in data imbalance issues. This could 
potentially affect the training effectiveness 
and generalization ability of federated 
learning models. 

• Model security: In FL, the central server may 
become a target for attackers, especially when 
participants share model parameters. 
Therefore, measures need to be taken to 
ensure the security and integrity of models 
during communication and aggregation 
processes. 

• Computational resource constraints: 
Participants' local devices may be limited by 
computational resources, such as memory 
and processor speed, which could affect the 

complexity and scale of model training tasks 
they can perform. 

3 RELATED WORK 

Jakub Koneˇcný proposed a method to reduce the 
uplink communication cost in FL called "Client-to-
Server FL Communication". This approach involves 
transmitting only locally calculated model updates 
from the client to the central server, rather than 
sending the complete local model. While effective in 
reducing communication costs, this method may not 
fully address the requirements of complex business 
applications (Konečný et al. 2016). 

To tackle the dual challenge of minimizing both 
uplink and downlink communication expenses while 
seamlessly integrating with existing methods, a new 
approach is proposed. It involves implementing lossy 
compression on the global model transmitted from the 
server to the client, along with utilizing Federated 
Dropout (FD) techniques. FD allows users to 
efficiently perform local training on a smaller subset 
of the global model, thereby reducing both 
communication costs from the client to the server and 
local computation requirements (Caldas et al. 2018). 

In traditional machine learning setups, data is 
typically stored centrally, allowing ML models to 
access all data. However, in Federated Learning, data 
is distributed across local devices, resulting in 
inconsistent data distributions (Li et al. 2022). 

In summary, these three related works offer 
innovative solutions to the challenges of 
communication cost reduction and data distribution 
inconsistency in Federated Learning. Jakub 
Koneˇcný's method focuses on reducing uplink 
communication costs, while the proposed approach 
incorporates lossy compression and FD techniques to 
address both uplink and downlink communication 
costs. These methods represent significant 
advancements in the field and provide valuable 
insights for future research in Federated Learning. 

4 SOLUTION 

4.1 Reduce Communication Cost 

Federated Semi-supervised Hierarchical Learning via 
Proxy Global Model (FetchSGD) utilizes Count 
Sketch for compressing model updates and leverages 
the mergeability of Sketches to combine model 
updates from different clients. A key challenge in 
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FetchSGD's design stems from the linearity of Count 
Sketch, allowing for momentum and error 
accumulation within it. This characteristic enables the 
method to transfer momentum and error accumulation 
from clients to the central server, ensuring high 
compression rates and good convergence despite 
sparse client participation. The complete FetchSGD 
method, illustrated in Figure 1, involves local gradient 
calculation at the client: (1), sending gradient 
sketches to the central server; (2), central server 
gradient aggregation; (3), momentum and error 
accumulation; (4, 5), approximate top-k value 
extraction; (6), and central server sparse value update 
to participating client devices for the next round of 
training (7) (Fekri et al. 2022). 

 
Figure 1. FetchSGD Complete Method (Konečný et al. 
2016). 

4.2 Solve the Non-Independent and 
Identically Distributed (Non-IID) 
Problem 

During local training, Model-contrastive Federated 
Learning (MOON) corrects the update direction by 
introducing model-contrastive loss. Since the global 
model from the server typically produces superior 
features compared to the locally updated model, the 
model contrast loss aims to minimize the discrepancy 
between the features generated by the current updated 
model and those produced by the global model, while 
maximizing the gap between the features generated 
by the current model and those generated by the 
previous model. 

Similar to the contrast loss, the model contrast loss 
is defined as follows. 
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Where, z  is the feature representation generated 

by the current updated model on the local device; 
globz   is the feature representation of the globally 

generated model by the server; prevz   is the feature 

representation of the model before the current update; 
s ( )im   represents the similarity function between 
two feature representations, such as cosine similarity 
or dot product; T  is a temperature parameter used 
to control the scale of the logits, typically scaling the 
similarities before applying the softmax function. 

And the model contrastive loss conl  corrects the 
update direction by introducing the model-contrastive 
loss. 

Three models are considered in Moon. The first 
one is the received global model, which is given by 
the server. The second is the local model uploaded in 
the last round. The third is after this round of training. 
With the above formula of comparative learning, 
moon's purpose is to maximize the model after this 
round of training. And the distance between the 
feature vectors and the global model received from 
the server. At the same time, a parameter μ will be 
used to determine the proportional relationship 
between the two loss functions. The first one is 
normal, when there is supervised learning. The loss 
function that will be used, the second is a loss function 
brought by comparative learning (Li et al. 2021). 

5 SUGGESTION 

5.1 Communication Instability 
Problem 

• Communication optimization: By 
compressing traffic, reducing communication 
frequency, and adopting incremental 
updating, the influence of communication 
instability can be reduced. In addition, 
asynchronous FL can be used to allow 
devices to update models and transmit 
parameters at different times, to reduce 
communication competition and conflict (Li 
et al. 2019). 

• Anomaly detection: An anomaly detection 
mechanism is introduced to monitor and deal 
with the anomalies in the communication 
process, to reduce the impact of 
communication instability (Zhu et al. 2021). 

5.2 Dependent Identically Distributed 
Data Problem 

To address the issue of dependent identically 
distributed data, several solutions can be 
implemented: 
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• Data resampling: Non-independent and non-
identically distributed data can be resampled 
to enhance uniformity and independence, 
thereby mitigating their impact (Li et al. 202). 

• Clustering and hierarchical aggregation: 
Devices exhibiting similar data distributions 
can be grouped into clusters, allowing for 
local training and subsequent global 
aggregation within each cluster. This 
approach helps alleviate the effects of 
dependent and identically distributed data 
(Bendiab et al. 2019). 

• Meta-learning and transfer learning: Utilizing 
meta-learning and transfer learning 
techniques enables the acquisition of an 
improved global model in FL, better suited to 
handle situations involving dependent and 
identically distributed data. 

In the local training process, the introduction of 
model-contrastive loss aids in resolving issues 
associated with dependent identically distributed 
data. 

6 CONCLUSION 

Through the investigation, it is found that Federated 
Averaging (FedAvg) outperforms Federated 
Stochastic Gradient Descent (FedSGD) in terms of 
accuracy while requiring fewer communication 
rounds. Both FedAvg and FedSGD update local 
models on respective devices and then transmit the 
average values of model parameters to the central 
server to enhance communication efficiency and 
reduce traffic. This communication strategy 
effectively mitigates communication costs and 
enhances model performance in federated learning 
tasks. To ensure privacy, mechanisms like differential 
privacy are integrated into the communication 
process, safeguarding users' private data. This lays a 
foundation for the widespread adoption of FL in 
practical applications and enhances its scalability 
across large-scale heterogeneous devices. 

In various image classification tasks, MOON 
demonstrates superiority over other advanced FL 
methods. The MOON algorithm has yielded 
promising results in handling non-IID, thereby 
enhancing the applicability of FL in real-world 
scenarios. By dynamically weighting and rescaling 
dependent identically distributed data, the MOON 
algorithm contributes to improving the performance 
of the FL model in such cases. 

Further efforts are directed towards enhancing the 
algorithm to bolster the protection of user privacy 

data, including the application of technologies like 
differential privacy and homomorphic encryption. 
This paper explores methods to better adapt to 
heterogeneous devices and non-standardized data, 
thereby enhancing the practical applicability of FL in 
real-world scenarios.  

Encouraging interdisciplinary collaboration and 
integrating methodologies from various fields such as 
distributed optimization, communication network 
optimization, data mining, and privacy protection will 
further promote the role of federated learning in a 
broader range of application scenarios. 
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