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Abstract: This research paper presents a methodology and corresponding tool that aim to automate decision-making in 
prioritizing cybersecurity investments by identifying a minimal subset of assets based on their risk exposure, 
the protection of which would yield maximum risk reduction and cost efficiency. The presented method aims 
to assist in strategic security planning, offering significant savings while ensuring robust cyber defense mech-
anisms are in place. To achieve this, we developed an application that identifies and classifies critical assets 
within ICT networks using supervised machine learning, graph centrality measurements and cascading attack 
paths. We utilize over 100 randomly generated network models taken from existing companies to build a 
classifier able to determine ICT critical nodes. We use topological features and dependency risk graphs to 
simulate potential cyberattack paths.

1 INTRODUCTION 

Cyber threats exploit vulnerabilities across infor-
mation and communication technology (ICT) assets 
on an increased pace. To address these threats, organ-
izations follow risk management practices that pro-
vide insights and recommendations on strengthening 
organization’s cybersecurity posture. Nevertheless, 
the complexity of modern, decentralized networks 
complicates the risk assessment process, and the re-
sulting investment prioritization.  

Despite these advancements, balancing trade-offs 
during the implementation of measures is often man-
ual. Effective resource allocation is crucial to protect 
against cyber vulnerabilities and maximize invest-
ments. This research explores the feasibility of using 
a supervised machine learning model to classify ICT 
assets based on their risk and position within the in-
formation system. The model represents ICT assets as 
nodes and their dependencies as edges and uses ma-
chine learning to prioritize investment during risk 
treatment. 

1.1 Contribution 

This research paper proposes a machine-learning 
model able to identify an arbitrary group of nodes 

within a network whose security enhancement leads 
to the greatest reduction of risk across the network. 
The targeted group is comprised of nodes character-
ized by their significant cumulative attack risks and 
notable positions within the network, indicated by 
high eigenvector centrality, functioning as critical 
connectors (indicated by high betweenness central-
ity), or being centrally located (highlighted by high 
closeness centrality).  

The idea of using Centrality Measures in Depend-
ency Risk Graphs (Stergiopoulos et al., 2015) is com-
bined with the estimation of n-order dependency 
chains to be used as features and train a machine 
learning (ML) process with randomly generated net-
works that are formed over multiple bases. The model 
can identify and eliminate critical sub-net paths while 
maintaining the network’s connectivity (Kotzaniko-
laou et al., 2013). Our contribution is summarized as 
follows: 
- Model for Investment Prioritization during Risk 

Treatment: We introduce a novel approach by 
combining centrality measurements with cascading 
attack paths to train a machine learning model for 
investment prioritization during risk treatment. 

- Testing and Validation: we test and validate the 
presented method on simulated ICT systems using 
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randomized simulations of real-world ICT environ-
ments based on company networks.  

Results indicate that our approach can identify a min-
imal subset of critical assets for protection, signifi-
cantly reducing overall risk and associated costs, 
thereby improving resource allocation and decision-
making. 

2 RELATED WORK 

This work extends a previous framework (Stergio-
poulos et al. 2020) for modelling the connections of 
ICT asset interdependencies on a company's business 
processes through dependency structural risks. 
Original work aimed at prioritizing assets based on 
their influence using dependency risk graphs, graph 
minimum spanning trees, and network centrality 
metrics. Attack graphs have been used in literature 
(Ray, 2005; Dewri et al., 2007) to model network 
devices and systems repeatedly for the purpose of 
prioritizing mitigation controls.  

More recent related work from (Aksu et al., 2017) 
showcased a quantitative asset-centric risk assess-
ment method based on attack-graph analysis, 
although their work does not tackle risk mitigation 
issues and prioritization. In (Shivraj et al., 2017) 
authors presented a model-driven risk assessment 
framework that was based on graph theory to model 
the flow graph and produce relevant attack trees 
according to the underlying ICT architecture. Still, 
this work addresses attack vectors and software state 
dependencies rather than risk assessment results on 
business processes.  

Similarly, (Hermanowski, 2018) used graphs to 
assess the risk of ICT using the MulVAL attack graph 
tool which adapts for risk assessment attack paths 
calculation against crucial assets of an IT system. 
Authors (Grigoriadis et al., 2021) proposed a situation 
-driven security management system to dynamically 
implement security controls specific to different use 
cases by producing dynamic risks for various 
situations. In (Stellios et al., 2021) authors proposed 
a graph-based analysis of risk assessment results over 
ICT systems. 

In (Stergiopoulos et al., 2022), the authors pro-
posed a method to automatically create complex at-

 
1  https://www.ben-evans.com/benedictevans/2018/06/22/ 

ways-to-think-about-machine-learning-8nefy  
2  Breadth First Search 
3  Depth First Search 

tack graphs for enterprise networks, relating micro-
services, virtual system states, and cloud services as 
graph nodes using mathematical graph series and 
group clustering to prioritize vulnerabilities by ana-
lysing system states' effects on the overall network. 
This research is based on the relevant results to ana-
lyse graph paths and software state vulnerabilities but 
expands its focus, by building a machine learning 
classifier for decision support during risk manage-
ment, aiming at cost reduction in implementing safe-
guards through machine learning.  

3 BACKGROUND 

3.1 Graph Structure and Node 
Predictions 

According to Evans1, there are two major ways that 
machine learning can be of service: (a) automate the 
functions that are easily understandable by humans, 
but hard for computers to comprehend, and (b) trans-
form information on a large scale. Several methods 
have been developed to address the representation of 
graphs with complex structures in simple forms, such 
non-deterministic low-dimensional node embed-
dings.  

Techniques like BFS2 and DFS3 are instrumental 
in generating embeddings that reflect these equiva-
lences, with BFS aligning with structural equivalence 
and DFS with homophily equivalence. The effective-
ness of these methods in labelling nodes is further en-
hanced by incorporating heuristic methods that con-
sider structural characteristics and an "influence 
spread" factor (Zhang et al, 2016).  

Adding "influence spread" to centrality measure-
ments significantly improved model’s performance, 
evidenced by an increase in the F14 score from 0.65 
(not acceptable) to 0.86. Furthermore, we have iden-
tified that the applied methodology can isolate 
bridges by controlling the distance of influence and 
revealing closely interacting clusters (homophily 
equivalence). This factor, crucial for achieving accu-
rate machine learning models, considers the potential 
of a subset of nodes to propagate information or mal-
ware through the network. 

 

4  F1 score is an error metric used in classification, which 
measures per-formance by calculating the harmonic mean 
of precision and recall for the minority positive class. F1 
score can be interpreted as a measure of overall model 
performance from 0 to 1, where 1 is the best. 
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3.2 Active Learning 

Active learning (part of Machine Learning) is the pro-
cess when a learning algorithm can interactively 
query a human (or other information) source (Settles 
B, 2009). This process helps label new data points 
with the desired outputs, provided that the infor-
mation source has the required expertise and 
knowledge on the subject. The algorithm can actively 
query the information source for labels, thus minimiz-
ing the number of examples needed compared to a 
normal supervised learning model.  

In this work, we use a Feedforward Neural Net-
work (FNN) with ReLU activation functions for the 
input layers and SIGMOID activation functions for 
the output layers, maintaining a one-to-one corre-
spondence between input values and classification la-
bels. This is proven to be a promising setup for ana-
lyzing information networks of interconnected assets 
where information flow is degined by one-to-one re-
lationships of different types of objects. 

3.3 Simulating ICTs with Dependency 
Risk Graphs 

The definition of ICT encompasses the role of unified 
communications a business and marketing concept 
regarding the integration of enterprise communica-
tion with non-real-time communication services, and 
that of information technology, such as enterprise 
software, critical business applications, and essential 
business development. The visual representation of 
these interconnections can be formulated using de-
pendency graphs where the nodes represent assets and 
services of the NI, and their directed edges represent 
the potential risk that the destination node may suffer 
due to its dependency from the source node, in case 
of a failure being realized at the source node (Ster-
giopoulos, 2015) (Rinaldi et al., 2001). 

Risk management helps organizations allocate 
limited resources (manpower and budget) to mitigat-
ing the most significant threats first rather than spend-
ing funds in less critical areas. A plethora of defini-
tions on risk is available, such as the ISO Guide 
73:2009, ISO 31000 series, or the NIST SP 800 se-
ries. For the purposes of this research, we used the 
definition provided by NIST5.  

Risk is a metric defined as the sum of the Likeli-
hood (L) of a threat occurrence on a business asset 
times the Impact (I) of the threat manifestation. It 
considers the possibility of the threat event (P), the 
vulnerability level (V) of an asset or object to that 

 
5 https://csrc.nist.gov/glossary/term/risk 

threat and the impact (I) to the business concept sup-
ported by the asset. We use typical Risk scales and 
input from Risk analysis on assets and systems to  
produce Risk metrics to embed onto the graph’s edges 
and nodes. 𝑅𝑖𝑠𝑘 = 𝐿 𝑥 𝐼 = (𝑃 𝑥 𝑉)𝑥 𝐼 

For calculating the risk chain (attack path) we 
considered a path graph G’, a subgraph of a graph G 
= (V, E) and a path of G. This path forms an attack 
path, or a risk chain, comprising n nodes numbered 
from N1 to Nn, like the one depicted in the figure be-
low: 

 
Figure 1: Attack path (risk chain). 

Each node 𝑁௜, 𝑖 = 1, 2, … , 𝑛, which is mapped to 
a vertex 𝑉ே௜ of G, corresponds to a threat event that 
incurs an impact Ii with likelihood Li, and each edge 
denotes a derivation of a node state, e.g., the likeli-
hood 𝐿௝,௝ାଵ, 𝑗 = 1, 2, … , 𝑛 െ 1, to exploit node Nj+1 

from its predecessor node Nj, or the first-order de-
pendency risk 𝑹𝒋,𝒋ା𝟏 node Nj exhibits on Nj+1. 

4 APPROACH FORMULATION 

4.1 Algorithmic Process  

The whole application is executed using one to five 
stages. All stages are controlled by a configuration 
file (see snippet below). The five stages are: 

1. Random Network Creation (optional),  
2. Feature Extraction,  
3. Training 
4. Active Learning (optional) 
5. Testing and validation 

The combinations Feature Extraction  Active Lear-
ning and Feature Extraction  Testing form two or-
dered pairs that we will define as: 

[Feature Extraction][Active Learning] ≡  
(Feature Extraction, Active Learning) 

[Feature Extraction]Testing ≡  
(Feature Extraction, Testing) 
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• Random Network Creation: Several random-
generated network components (NIs) are created 
based on baseline models of real ICT company 
networks of assets. 

• [Feature Extraction]Training: Combined stage in 
which the centrality measurements and cumula-
tive risks for all nodes are calculated. Then, this 
step evaluates the criticality of nodes using active 
learning methods. Both results will be used as in-
puts to the Training stage. 

• Training Stage: Results generated at earlier 
stages are fed to the Machine Learning process, 
which is a feedforward neural network with mul-
tiple inputs and outputs. 

• [Feature Extraction]Testing: This is a combined 
stage in which one node is taken as input (the 
graph is stored in the Neo4j database), and using 
the Neo4j GDS library, we calculate centrality 
measurements and cumulative risks for all nodes. 

4.2 Synthetic Dataset for Research 

The first step in our approach is to create a random 
hierarchical network (tree network) where several 
different network components can be simulated. Ran-
dom network generator also supports static network 
as templates that can be used as a base to create more 
complex networks. To simulate potential attack paths, 
most of the random network components allow input 
connections and output connections. 

Impact values vary from 1 (low impact) to 9 (high 
impact). All components get a value based on attack 
graph participation and expert knowledge assigned to 
the node as an integer. The network components are 
connected according to possible attack paths. An at-
tack path can originate from one component and be 
directed from one or more of its neighbor components 
to other network components. The risk dependency is 
calculated as the product of the impact of the attacked 
component and the value of the likelihood of the at-
tack.  

Within the framework of this research, several 
random Network Instances have been created. These 
instances were created to train the model on identify-
ing the critical network assets, based on the estimated 
overall risk, and their interconnections,  

4.3 Feature Extraction 

Feature extraction refers to the process of transform-
ing raw data into numerical features that can be pro-
cessed while preserving the information in the origi-
nal data set.  

4.3.1 Feature Group 1: Centrality 

For the purpose of calculating the significance of each 
node the following features where calculated: 

• Degree centrality indicates a node's importance 
by counting its direct neighbours (Kumar et al., 
2020). 

• Betweenness centrality shows the criticality of 
connectedness. It is the number of the shortest 
paths between a pair of nodes. 

• Closeness centrality is the reciprocal of the 
mean distance to all other nodes from the current 
node. The greater its value, the shortest the node 
distances to the rest of the graph. 

• Eigenvector centrality measures the importance 
and the transitive influence of the node. 

4.3.2 Feature Group 2: Νode Risk Metrics 

As mentioned previously, the outcome of a risk as-
sessment of a given asset (system, data type or pro-
cess) is a risk score assigned to a particular vulnera-
bility, calculated by considering its likelihood and im-
pact. Each node has an overall node risk Nir, which 
is the sum of all cascading risks that target node Ni 
and its mapped vertex 𝑉ே௜, and a total hit count Tir 
of cascading risks that target node Ni. The average 
node risk ANir is defined as the ratio of overall node 
risk over total hit count: 𝐴𝑁௜௥ = 𝑁௜௥𝑇௜௥ , 𝑖𝑓 𝑇௜௥ > 0, 𝑒𝑙𝑠𝑒 0 (1) 

The cumulative dependency risk 𝑪𝑹𝟏…𝒏 is the over-
all risk produced by the nth-order dependency of the 
attack path: 

𝐶𝑅ଵ…௡ = ෍ 𝑅ଵ…௜௡
௜ୀଵ = ෍ ቌෑ 𝐿௝௜

௝ୀଵ ቍ 𝐼௜௡
௜ୀଵ  (2) 

The cumulative attack risk CRN for node N of 
graph G is defined as the sum of all cumulative de-
pendency risks of the attack paths that start from this 
node. (𝑁𝑖𝑟)𝑛𝑒𝑤 = (𝑁𝑖𝑟)𝑜𝑙𝑑 + 𝑅1…𝑖 (3) 

The overall attack graph risk Gr is the sum of 
the cumulative dependency risk for each nth-order de-
pendency of graph G: 𝐺𝑟 = ෍ 𝐶𝑅1…𝑛 (4) 
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4.3.3 Feature Group 3: Dependency Risk 
Chains Metrics 

With the identification of the dependency chains 
(threat vector) the following key findings are ex-
tracted: 
• Find a subset of nodes that affect many critical de-

pendency paths. Decreasing the probability of 
failure in these nodes by selectively applying se-
curity controls may have a greater overall benefit 
in risk reduction.  

• Identify nodes of high importance outside the 
most critical dependency paths that concurrently 
affect many other nodes in these paths or impact 
the overall dependency risk of the entire struc-
ture/graph. 

Using a simple SI epidemic model (Barabási et al., 
1999) and as per the VoteRank description (Zhang et 
al., 2016), a node can be in one of two statuses: Sus-
ceptible (S) or Infected (I). At the outset of the pro-
cess, all nodes are deemed susceptible except for a 
designated group of r infected nodes that serve as 
source spreaders. During each interval, an infected 
node endeavors to infect one of its neighboring nodes 
with a likelihood of μ and a consequential impact of 
I. This impact is determined by multiplying the prob-
ability of infection (μ) by the influence of the infected 
node (I), which ultimately produces the Risk value 
(Risk = μ * Ι). Once the infection has been success-
fully transmitted, the neighboring node's vote count 
will increase by one. 

Furthermore, nodes that exceed a designated risk 
level are classified as critical only under specific cir-
cumstances. These include being deemed as "signifi-
cant" (having a high Eigenvector centrality), serving 
as bridges or bridging nodes (having a high Between-
ness centrality), or functioning as central nodes (hav-
ing a high Closeness centrality). 

4.3.4 Critical Node Classification 

To programmatically determine the criticality of each 
node, we used “active learning” (Ricci et al., 2015). 
Each node determined as critical is labelled with “1”, 
while the non-critical ones with “0”. Specifically, for 
each centrality measure, the top-ranking nodes are se-
lected that have a rank greater or equal to the midpoint 
of the extrema values and are classified as possibly 
critical. Then after the calculation of attack paths: 

• the overall node risk (when attackPathStrat-
egy=TargetNode), or  

• the cumulative attack risk (when attackPath-
Strategy=SourceNode)  

are calculated and if its ratio over the maximum value 
of all nodes is greater than or equal to a threshold 
value (thresholdRiskRatio), the node is also classi-
fied as possibly critical. The final estimation of the 
criticality of the node is the combination of overall 
node risk (or cumulative attack risk) criticality and 
one or more of the Betweenness, Closeness and Ei-
genvector centralities, which provide best results in 
determining the criticality of a node.  

5 EXPERIMENTAL RESULTS 

5.1 Feature Extraction 

Using the GDS plugin we calculated several metrics 
which then were used for training the model. We 
therefore could identify “possibly critical” nodes (i.e., 
node that exceed the midpoint value of each applica-
ble metric), attacks paths and their associated risk 
based on the OWASP Severity Risk Levels. Further-
more, the same approach was used to calculate vari-
ous risk levels (e.g., the overall, and average node 
risk, etc.), which were fed to the training model. 

Using as threshold the thresholdRiskRatio 
value, all the overall node risks or cumulative attack 
risks which have values above the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑅𝑖𝑠𝑘𝑅𝑎𝑡𝑖𝑜 ∗  𝑚𝑎𝑥{ 𝑁ଵ௥, 𝑁ଶ௥, … , 𝑁௡௥}  are 
labelled as possibly critical and all the others as not 
critical. A node is classified as definitely critical if it 
is labelled possibly critical in all measurements.  

Finally, using the DFS algorithm (with limited 
depth if attackPathMaxDepth > 0, or with unlimited 
depth if attackPathMaxDepth=-1), all the attack 
paths are determined, and the overall node risk, aver-
age node risk and cumulative attack risk are calcu-
lated for each node of the projected graph. 

5.2 Training 

First, we created complex ICT networks as graphs by 
formulating an isometric topology to the ICT service 
network characteristics. These NIs were then fed to 
the classifier for training the Machine Learning algo-
rithm based on the following features, (i) the normal-
ized values of the centrality measures, (ii) the overall 
node risk, (iii) cumulative attack risk and (iv) depend-
ency path risk. To find all potential nth-order depend-
encies in G and calculate the overall node risks, all 
overall node risks are first initialized to zero.  

Next, for every node 𝑁 ∈ 𝑉, a DFS (Depth-First 
Search) algorithm is applied, limiting the maximum 
depth to n (when attackPathMaxDepth configura-
tion property has a positive integer value), or without 
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limiting the depth (when attackPathMaxDepth = -
1). Then, all attack paths that start from N are deter-
mined and the cumulative dependency risk is calcu-
lated for each attack path, along with the new values 
of the overall node risks of the nodes belonging to the 
attack path. Finally, the cumulative attack risk related 
to node N is calculated. The resulted data were fed to 
RELU-activated inputs of a Feedforward Neural Net-
work (FNN) and the classification labels to an equal 
number of SIGMOID-activated outputs with 1-1 pair-
ing to the input values. 

The resulting FNN contains two hidden layers, 
one with 64 neurons and one with 32 neurons, and has 
a retain probability of neurons of 90%. The optimiza-
tion algorithm that it uses is the Stochastic Gradient 
Descent. The following figure showcases the model 
and training information and the parameter ratios and 
standard deviations: 

 
Figure 2: Overview page with information regarding the 
training model. 

5.3 Testing 

For testing the ML algorithm, we used new ICT net-
works, transposed them as graphs and extracted the 
normalized values of the centrality measures and the 
overall node risk metrics. The model represents ICT 
assets as nodes and their dependencies as edges, using 
centrality measures and dependency chains (Ster-
giopoulos, 2015) These were fed to the previously 
trained ML algorithm to classify the criticality of each 
node based on whether the normalized value of the 
overall node risk, or cumulative attack risk, is critical 
and over the threshold value specified by: 
• thresholdRiskRatio: [Overall Node Risk or Cu-

mulative Attack Risk is critical], and 
• [Normalized Overall Node Risk or Cumulative 

Attack Risk >= thresholdRiskRatio]. 

5.3.1 Test Scenario #1 

For the purposes of the first test scenario, we used the 
network proposed by (Dedousis P., 2019), which in 

turn, is based on a real-life industry network imple-
mentation from the Greek private sector. We identi-
fied (as per the output log, see Figure 6) that Node A5 
is critical, as it is the bridging and central node with 
the most dependency chains. This means that: 
1. Threat attacks originating from node A5 quickly 

traverse the whole NI, posing a great risk for the 
assets and services. 

2. In our example, node A5 constitutes a single point 
of failure (SPOF) for the communication network 
between assets. SPOFs are undesirable in any sys-
tem with a goal of high availability or reliability, 
be it a business practice, software application, or 
other industrial system. 

3. Nodes A15 and A32 are bridging nodes serving 
information to two network subnets. A disruption 
of the connection between them affects the busi-
ness carried out by both departments. 

 
Figure 3: Extract from the output log, showcasing critical 
nodes. 

5.3.2 Test Scenario #2 

For the purposes of this test scenario, a network 
simulating a real-world scenario of a complex 
structure, was used. Three large nodes were created, 
representing the various departments of a modern-day 
organization, with the appropriate interconnections as 
necessitated by the organization’s business processes. 

 
Figure 4: Extract from the output log, showcasing critical 
nodes. 

The critical nodes reported are shown in bold and 
these are: Router_2 and Switch_5. They are bridging 
and central nodes (also, Firewall_1 is bridge, but has 
less cumulative attack risk than Switch_5 which is 
connected to it). They are central due to the maximum 
attack path limit set (attackPathMaxDepth=4). 

5.4 Validation 

To validate our approach, we created an unprotected 
network as shown in Figure 9. Our approach is based 
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on a real-world scenario, and while it lacks complex-
ity, it does represent a typical networking approach of 
an organization. The network components are de-
picted below: 

Table 1: Network Components. 

Asset 
name Asset type Likelihood Impact 

Server_1 HTTP Server 8 7 

Server_2 Database Server 7 8 

Server_3 Email Server 6 6 

Switch_1 Switch 4 3 

PC_1 PC 5 2 

PC_2 PC 5 2 

PC_3 PC 5 2 

Using results returned from the model, we can 
make a uniform decision regarding the placemenand 
type of the safeguard, and then rerun the test. The ex-
pected result should be that the model will identify no 
critical node on the protected network. We identified 
that in the unprotected network, Switch_1 is the 
critical asset due to its high cumulative attack risk 
and at least one of the Eigenvector, Betweenness and 
Closeness values. To mitigate the risk, we applied the 
following security controls, based on best practices: 

1. Insert a firewall in gateway mode, connecting all 
the servers and the switch to the firewall and all 
the rest assets (the PCs) to the switch. 

2. Lower the impact of Switch_1 by 2 units since no 
critical assets are connected to it. 

The respective results clearly show the 
improvement in the criticality of Switch_1,: 

 
Figure 5: Extract from the output log. 

The following figure shows the ex-post and ex-ante 
network configuration. The latter encompasses the 
recommendations from the AI model. 

 
Figure 6: Network configuration, prior and after the imple-
mentation of the proposed safeguards as per the AI model. 

6 CONCLUSIONS 

We have developed and propose a machine learning 
model, that can automatically identify and classify 
assets within ICT networks, irrespective of their size 
or complexity. The model utilizes centrality measu-
res, dependency chains, and machine learning to pro-
vide a predictive risk estimation that can effectively 
support the decision-making process in regards to 
allocating funds towards the implementation of the 
most effective security measures on the most critical 
network assets. 

The validation of our model confirmed its bene-
fits, demonstrating quick and efficient identification 
of optimal safeguards, without affecting network 
connectivity and performance. The model can scale 
rapidly, without any issues identified. The testing 
results highlighted the feasibility of our model, espe-
cially in cybersecurity risk management scenarios, 
which are particularly valuable for companies with 
limited resources. 

This model is a significant advancement in 
predicting and prioritizing cybersecurity investments, 
since it can optimise resource allocation, focus on 
network assets with topological significance and thus 
enhancing the cybersecurity posture of the 
organizations basing their business models on ICT 
infrastructure. 
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