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Abstract: This study presents an innovative framework that utilizes Local Differential Privacy (LDP) to address the
challenge of data privacy in practical applications of data clustering. Our framework is designed to prioritize
the protection of individual data privacy by empowering users to proactively safeguard their information before
it is shared to any third party. Through a series of experiments, we demonstrate the effectiveness of our
approach in preserving data privacy while simultaneously facilitating insightful clustering analysis.

1 INTRODUCTION

The widespread use of digital technology has led to a
massive amount of data being available, bringing with
it a significant responsibility to handle this data care-
fully. While data collection for statistical purposes
is not new, the exponential growth in data volume
coupled with the escalating threat of data breaches
has intensified concerns regarding the confidentiality
of sensitive information in recent years (Seh et al.,
2020). Data breaches have highlighted the risks asso-
ciated with unauthorized access to user data, raising
awareness about the potential consequences of such
breaches on individuals and organizations. Conse-
quently, there is a growing demand to develop ro-
bust solutions to safeguard sensitive data and protect
user privacy (Kasiviswanathan et al., 2011) (Xia et al.,
2020).

One such task in data analysis is data clustering,
which falls within the realm of unsupervised learning
methods wherein patterns are discerned from unla-
beled data points. The primary objective of data clus-
tering is to unveil underlying patterns within a dataset
by grouping data points into distinct clusters (Xu and
Tian, 2015). However, given that data clustering often
involves accessing sensitive user information, ensur-
ing the protection of users’ privacy is paramount.

Although numerous methods in the literature have
been proposed to address the challenges of privacy-
preserving clustering, these proposed solutions often
fail to meet the following conditions:

• Lack of Individual Privacy Protection: Existing
solutions often fail to protect single individual pri-

vacy locally on users’ devices, necessitating trust
in third-party entities, such as Differential Privacy
in private clustering (Li et al., 2024).

• Interactive Approach: In cases where individual
privacy is preserved, the proposed methods typi-
cally require continuous user involvement in train-
ing the clustering algorithm (Yuan et al., 2023)(He
et al., 2024).

• Narrow focus: Many solutions are tailored for
specific use cases, limiting their applicability to
specific clustering training, such as exclusively
for K-means clustering (Hamidi et al., 2018).

• Computational Overhead or Loss of Utility:
These solutions may entail computationally in-
tensive processes, such as encryption techniques
(Sheikhalishahi and Martinelli, 2017b), or lead to
a loss of utility, such as through anonymization
methods (Sheikhalishahi and Martinelli, 2017a).

To overcome the mentioned constraints, our study in-
troduces a novel framework leveraging Local Differ-
ential Privacy (LDP), wherein individual users protect
their information by perturbing their data locally on
their devices before sharing it with a third party, such
as an aggregator (Alishahi et al., 2022). The aim of
perturbation is to ensure that the estimation expecta-
tion remains unbiased and to minimize statistical vari-
ance as much as possible. Specifically, we employ
an LDP-based frequency estimation technique, a fun-
damental statistical objective under local differential
privacy protection.

To explore the effectiveness of LDP-based fre-
quency estimation for private clustering, we conduct
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a series of experiments. These experiments focus on
investigating the impact of key parameters, including
the number of cells used for discretization, the size
of the input dataset, and the privacy budget. By sys-
tematically varying these parameters, we aim to gain
insights into their influence on the LDP-based clus-
tering process and assess the performance of our ap-
proach under different settings.

2 PRELIMINARIES

This section presents clustering and local differential
privacy as preliminary concepts employed in our pro-
posed framework.
k-means Clustering: is a method for partitioning
a dataset into k clusters based on similarity. It it-
eratively assigns data points to the nearest cluster
centroid and updates centroids to minimize intra-
cluster variance. Formally, given a dataset X consist-
ing of n data points {x1,x2, . . . ,xn} and the desired
number of clusters k, the K-means clustering algo-
rithm aims to partition the data into K clusters, C =
{C1,C2, . . . ,CK}, such that it minimizes the within-
cluster sum of squares (WCSS).
Local Differential Privacy (DP): is a privacy-
preserving mechanism in which an aggregator gathers
information from users who has some level of distrust
but are still willing to engage in the aggregator’s anal-
ysis.

Formally, a randomized mechanism M adheres to
ε-LDP if and only if, for any pair of input values v,v′ ∈
D and for any possible output S ⊆ Range(M ), the
following inequality holds:

Pr[M (v) ∈ S]≤ eεPr[M (v′) ∈ S] (1)

when ε is understood from the context, we refer to
ε-LDP simply as LDP.
Randomized Aggregatable Privacy-Preserving
Ordinal Response (RAPPOR) (Erlingsson et al.,
2014): introduced by Google, is a hash-based
frequency statistical method that randomly selects
a hash function H from a hash function family
H = {H1, . . . ,Hm}, where each function outputs
an integer in [k] = {0,1, . . . ,k − 1}. RAPPOR then
encodes the hash value H (v) as a k-bit binary vector
and randomized response is performed on each bit.
Accordingly, the encoded vector vt is shaped as
follows:

vt [i] =

{
1 i f H (v) = 1
0 otherwise

(2)

Figure 1: Server side.

The encoded vector is then perturbed as:

Pr[v̂t [i] = 1] =

{
1− 1

2 f i f vt [i] = 1
1
2 f i f vt [i] = 0

(3)

where f = 2/(e
ε

2 +1). The aggregator employs Lasso
regression to improve the estimated frequency value
out of collected reports.

3 METHODOLOGY

Our approach is constituted of the following steps as
shown in Figures 1 and 2:
Discretization (Shaping the Cells): In this critical
phase, the aggregator employs domain knowledge re-
garding feature ranges to discretize the dataset, thus
delineating cells to accommodate data points falling
within these ranges. The process entails setting inter-
vals by uniformly partitioning the anticipated range
of continuous values present in the dataset. For in-
stance, in the context of adult height values expected
to range between 1.4 and 2.0 meters, the process
may involve dividing this range uniformly into three
intervals, yielding non-overlapping boundaries such
as [1.4,1.6), [1.6,1.8), and [1.8,2.0]. Each interval
demarcates a cell boundary, determining where data
points align in relation to these boundaries. Con-
sequently, data points are assigned to specific cells
based on their relative positioning within these inter-
vals. This process serves as a foundational step in
subsequent aggregation and analysis tasks, enabling
effective handling of continuous data.

The aggregator assigns integer identifiers to each
cell, and subsequently discloses both the boundaries
of these cells and their respective identifiers to users.
LDP-Based Frequency Estimation: LDP-based fre-
quency estimation offers a means for the aggregator
to approximate the count of individuals within spe-
cific cells, all while maintaining user privacy regard-
ing their cell associations. Users start by pinpoint-
ing the cell where their data resides and extracting its
corresponding integer identifier. Through the LDP-
based frequency estimation algorithm, users perturb
their answer by an alternative integer identifier (out
of the list of existing identifiers). This method ensures
that individual contributions remain confidential, yet
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Figure 2: Client-side (top) and Server-Side Architecture (bottom).

still allows for reliable estimation of aggregate fre-
quencies within cells. In this study, we utilize RAP-
POR as the chosen LDP-based frequency estimation
protocol due to its demonstrated accuracy in this con-
text. Nonetheless, our proposed framework is flexi-
ble and can accommodate any alternative LDP-based
frequency estimation technique, providing versatility
and adaptability to different privacy requirements and
data characteristics.
Generating New Dataset: The aggregator gathers
cell identifiers submitted by users and then associates
a new data point with each user based on this infor-
mation. Specifically, if a user reports that their data
point d belongs to cell c∗, the aggregator assigns a
new point, denoted as dp, randomly within this iden-
tified cell. This process ensures that each user’s re-
ported data point is mapped to a representative point
within the corresponding cell.
Clustering: Now, armed with the newly generated
dataset, the aggregator proceeds to train a cluster-
ing algorithm. This algorithm’s structure can subse-
quently be shared with any third party for their use.
Our proposed approach offers flexibility by remain-
ing agnostic to the choice of clustering algorithm. In
this particular study, we opt for the widely used k-
means clustering method. This selection, however,
does not constrain the applicability of our approach,
as it can seamlessly integrate with various cluster-
ing techniques depending on specific analysis require-
ments and preferences.

Theorem 1 As the number of cells and privacy bud-
get ε increase, the error of ε-LDP frequency esti-
mation techniques, such as RAPPOR, also increases.
Conversely, increasing the number of data points re-
duces the error rate of these techniques.

Proof: This conclusion directly stems from the error
characteristics of frequency estimation techniques.
The Mean Squared Error bound of RAPPOR is ex-

pressed as Θ

(
eεr

n
(

e
ε
2 −1

)2

)
, where r denotes the num-

ber of cells and n represents the size of the dataset
(Wang et al., 2020). From this formula, it is evi-
dent that an increase in ε and r leads to a higher error

bound, while an increase in the number of users (data
points) decreases the error bound.

It is noteworthy that while we specifically discuss
the error bound of RAPPOR here, this argument holds
true for other frequency estimation protocols, such as
Hadamard and RR techniques (Wang et al., 2020).

Proposition 1 While increasing the number of cells
negatively impacts the accuracy of frequency estima-
tion techniques, it improves the accuracy of cluster-
ing algorithms trained on published data within our
methodology.

Proof: If the frequency estimation technique ade-
quately preserves the distribution of each cell, the size
of cells still affects the accuracy of clustering. This
is because if a cluster boundary intersects the mid-
dle of a cell, a larger cell size increases the risk of a
data point falling outside the cluster boundary when
the aggregator returns a randomized point based on
the shared cell identifier. In contrast, smaller cells in-
crease the likelihood of cells aligning more closely
with cluster boundaries, thereby enhancing clustering
accuracy. This can be formulated as following:

argmin
S

k

∑
i=1

∑
x∈Si

∥x−µi∥2 ?
= argmin

S

k

∑
i=1

∑
Si

∑
x∈∆ j

∥x−µi∥2

where Si is the i’th cluster, and Si = ∑ j ∆ j, for ∆ j con-
sidered as the cells overlapping with cluster Si.

Proposition 2 Increasing the number of data points
and privacy budget improves the clustering accuracy.

Proof: The variations in the number of data points
and privacy budget do not directly influence the ac-
curacy of clustering. However, they indirectly im-
pact clustering accuracy through their effect on ac-
curate frequency estimation. Since clustering serves
as a post-processing step in our methodology, the im-
provements in frequency estimation resulting from an
increase in data points and privacy budget should also
lead to enhanced clustering accuracy.
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Figure 3: Original data points with 25 cell grid.

4 EXPERIMENTS

4.1 Experimental Set-Up

Experiment Environment: We program the code
for our experiments using the programming language
Python. We use the pure-ldp1 package’s RAPPOR
client- and server-side implementation as well as
scikit-learn2 for k-means clustering and matplotlib3

to plot the data we gathered.
Dataset: For our experiments, we utilize the “Esti-
mation of obesity levels based on eating habits and
physical condition” dataset sourced from the UCI Ma-
chine Learning Repository4. This dataset encom-
passes health information gathered from individuals
in Mexico, Peru, and Colombia, supplemented with
synthetically generated data derived from the original
dataset. Its relevance to our research lies in its in-
clusion of sensitive health-related data, presenting a
realistic scenario where data privacy is of paramount
importance. The dataset contains 2111 records, and
it is described with 17 features. Out of the 17 fea-
tures available, we specifically focus on utilizing the
two continuous features, namely ’Age’ and ’Height’,
for visualization purposes. Additionally, we set aside
20% of our original data for future evaluation, pre-
serving these data points to assess the accuracy of our
newly developed model.
Discretization: We discretize the values into uniform
cells, ranging from 1.4 to 2.0 meters for height and
10 to 70 years for age, based on the feature value
ranges. Each discretized value is then assigned an in-
teger identifier corresponding to the cell it falls into.
For example, a data point with a discretized age value
of “1” (age in the interval [22, 34)) and a discretized
height value of “2” (height in the interval [1.64, 1.76))
would be associated with the cell “12”. Figure 3
shows how the cells are shaped on our original data.

1https://pypi.org/project/pure-ldp/
2https://pypi.org/project/scikit-learn/
3https://pypi.org/project/matplotlib/
4https://doi.org/10.24432/C5H31Z

Table 1: Parameters tuning.

Parameter Range of values
Number of cells 4 - 100
Fraction of data points 0.1 - 1.0
RAPPOR Epsilon 1, 2, 4, 8

Frequency Estimation: Upon determining the cell
identifier where their data resides, each user employs
RAPPOR locally on their device to perturb the cell
number. For RAPPOR implementation, we adhere to
the defaults established by Google in their RAPPOR
demo: setting the bloom filter size to 16 and utilizing
2 hash functions.
Clustering: Initially, we randomly assign a new point
for each point that falls within a cell. Subsequently,
we train the k-means clustering algorithm on both the
original data and the data generated by RAPPOR. We
opt for k = 5, determined through the elbow technique
applied to the original dataset. It’s worth noting that
while k-means is an iterative clustering algorithm, this
iterative process occurs solely on the aggregator side,
with only interacting users once during the collection
of their perturbed data.
Evaluation Metric: To assess the efficacy of our
LDP-based clustering approach, we conduct a com-
parison of labelings between the 20% reserved orig-
inal data and the RAPPOR-generated data. Firstly,
we determine centroids for both datasets through k-
means clustering. Each data point is then assigned
to the nearest centroid, allowing us to evaluate the
consistency of labels. We measure the accuracy by
calculating the percentage of data points accurately
labeled. This is achieved by dividing the number of
data points labeled the same between the original and
RAPPOR-generated data by the total number of data
points used for prediction. The resulting percentage
represents our utility metric. A higher percentage
indicates a closer alignment between the RAPPOR-
based model and the original dataset.
Parameter Tuning: To evaluate the effects of various
parameters within our framework, we explore differ-
ent values for the number of cells, fraction of dataset
used as input source, and privacy budgets. The range
of parameters varied for our experiments is summa-
rized in Table 1. It is noteworthy that while one pa-
rameter varies, the other two parameters remain fixed.
For enhanced reliability, we repeat our experiments
50 times and report the average results.

4.2 Results

The Influence of Cell Count and privacy Budget:
Our initial experiments aims to investigate the influ-
ence of cell count and privacy budget on accuracy. We
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tested cell counts ranging from 4 to 100 cells, specif-
ically focusing on square numbers within this range.
Figure 4a shows the outcome of this experiment for
four different epsilon values 1, 2, 4, and 8. The trend
reveals that smaller cell sizes, corresponding to higher
cell counts, generally result in greater accuracy across
all epsilon values up to 81 cell counts. This observa-
tion underscores the existence of a trade-off associ-
ated with the number of cells, where simply increas-
ing cell counts does not guarantee accuracy enhance-
ment. This observation resonates with the findings of
our theoretical analysis. The variation of privacy bud-
get does not show a significant change in accuracy.
This can be resulted from the distribution of data un-
der analysis. In other words, even the higher random-
ness noise still keeps the structure of data properly
for clustering. It of course needs more investigation
in future studies for variety of datasets. This outcome
specifically suggests the use of lower epsilon values
(higher privacy gain) in our methodology. To gain a
better insight on the dispersion of accuracy on 50 runs
of experiments, we depict this variance in Figure 4b
for epsilon 1 and different cell counts. It can be seen
that the widest range of values is observed with 64
cells, where accuracy spans from a minimum of 18%
to a maximum of 90%, reflecting a variance of 72%.
While this dispersion is unavoidable due to the ran-
domness inherent property of LDP, it can be seen that
yet increasing the number of cell counts leads to the
improvement in accuracy.
The Influence of Dataset Size: Figure 6 shows the
impact of dataset size by considering fractions of data
on the accuracy of our methodology. For this dataset,
the amount of data points in the data set does not
seem to consistently influence the accuracy we can
achieve using RAPPOR. The values stay pretty con-
sistent across all data set sizes and there is no consis-
tent trend. The chosen Epsilon value does not seem to
have much influence on the accuracy either. This can
be resulted from the distribution of our dataset and the
precision of RAPPOR in preserving the distribution
of data even in smaller sizes.

Once again, Figure 6 reveals a notable disparity
among accuracy values across experiment runs. Some
runs exhibit considerably low accuracy rates, while
others nearly achieve 100%. Particularly intriguing is
the scenario involving the smallest dataset size, com-
prising only a fraction of 0.1 relative to the original
dataset size. Here, the attained accuracy spans from a
minimum of 14% to a maximum of 95%. Despite this
variance, computing the median accuracy across all
experiment runs still yields commendable results. In-
terestingly, the dataset sample size of 0.9 of the origi-
nal dataset demonstrates the least dispersion, with ac-

curacy ranging from 62% to 96%.
Discussion. We present the guidelines for using our
framework, our experimental findings, and our plan
for future directions.

• We have assumed that the features are continuous.
However, our methodology can also be applied on
discrete features. To this end, it is enough that we
use the boundary of cells as shared value and as
randomized value by the aggregator.

• We found that the number of cells has impact on
the accuracy of our methodology both in negative
and positive way. There is a trade-off in the num-
ber of cells for each dataset that the accuracy is
optimized. However, it should be noted that the
aggregator has no knowledge about the data to of-
fer the optimum number of cells in advance. To
this end, in the future directions, we plan to de-
sign a privacy-preserving mechanism to infer the
optimum number of cells without accessing the
original data.

• Although our experiments did not show a con-
siderable impact of dataset size on accuracy, we
believe that this requires more extensive exper-
iments when also the dataset distribution also
comes under consideration. Given the inherent
property of LDP mechanism, we expect that the
size of dataset single alone might night affect the
outcome if the dataset if the data is almost well
evenly distributed across all cells.

• We found the optimum number of clusters using
elbow technique on original datset. This is some-
thing that the aggregator does not know without
accessing the original data. In future direction,
we plan to investigate the impact of the number of
clusters on accuracy.

5 CONCLUSION

This study introduces a novel framework that lever-
ages Local Differential Privacy (LDP) to safeguard
individual data privacy, empowering users to take
proactive measures to protect their information be-
fore any sharing occurs with third parties in a non-
interactive engagement of users. Through a compre-
hensive series of experiments, we provide compelling
evidence of the efficacy of our approach in preserv-
ing data privacy while also enabling meaningful and
insightful clustering analysis.
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(a) Varying cell counts over 50 runs. (b) Box plot for epsilon 1.

Figure 4: The impact of cell counts and privacy budget.

Figure 5: Varying dataset size for Epsilon 1, 2, 4, 8 with
median accuracy over 50 runs.

Figure 6: Epsilon 1 box plot based on all 50 accuracy val-
ues.
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