
Reappearance and Optimization of the FedDyn Algorithm

Zhao Zhang
Sussex Institute of Artificial Intelligence, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China

Keywords: FedDyn Algorithm, MNIST, F-MNIST.

Abstract: Federated learning has been widely used as a way to protect data privacy. However, the existing federated
learning algorithms have the problems of large differences in data distribution and low efficiency of model
updating. Therefore, the FedDyn algorithm was born to solve the above problems. This paper uses Python
programming software and FedDyn algorithm to build a simple federated learning framework composed of
five major parts: a fully connected neural network model, client model training function, global model
aggregation function, global model test function, and main function and carries out model training and
performance improvement optimization of the framework, as well as code efficiency and performance.
Three aspects of system stability and reliability were optimized, and two different data sets, Modified
National Institute of Standards and Technology (MNIST) and Fashion-MNIST (F-MNIST), were used to
test whether the algorithm optimization strategy proposed in this paper improved the algorithm performance.
Finally, it is concluded that the algorithm can be optimized effectively by adjusting multiple parameters of
the experimental model simultaneously.

1 INTRODUCTION

In the era of big data, with the improvement of
privacy protection awareness, federated learning that
can protect data privacy has attracted wide attention
to (Zhao et al. 2023). As a distributed learning
paradigm, federated learning allows multiple devices
or servers to jointly train models while maintaining
data localization, to help preserve data privacy
(Mónica & Haris 2024). However, when the client
data is not independent and identically distributed
(non-IID), that is, the data is not evenly distributed
on each client, traditional federated learning
algorithms (such as FedAvg) may encounter the
problem of the performance performance. This is
because the update of the model on different clients
may move in different directions, causing the global
model to converge to the optimal state (Li et al.
2019).

The study of the FedDyn algorithm is of great
significance to the field of federated learning
because it directly solves a key challenge in the
federated learning system: client data heterogeneity
(Yiyang 2022). In practice, there are often
significant differences in the distribution of the data
held by different clients, which will lead to the
deviation of the model locally trained by each client,

and affect the performance and generalization ability
of the global model. FedDyn By introducing
dynamic regularization terms, it effectively reduces
the difference in model parameters between clients,
thus helping to improve the accuracy of the global
model (Wenbo 2023).

The proposal of the FedDyn algorithm is of great
research significance for realizing a more efficient
and fair federated learning model. First, it addresses
the impact of data heterogeneity on model training
through dynamic regularization techniques, which is
crucial to improving the model performance on
real-world diverse datasets. Second, FedDyn helps
to improve the global convergence rate of the model,
enabling the federated learning system to achieve
better learning results in a shorter time. Finally, the
design concept of the algorithm has also inspired
other studies in the field of federated learning,
providing new ideas on how to design more robust
distributed learning algorithms.

Although the FedDyn algorithm has achieved
significant theoretical progress, and partly achieves
the goal of model consistency. However, in practice,
especially in large-scale deployment, the algorithm
still faces some unresolved problems and challenges
to (Acar et al. 2021). For example, the
computational efficiency of algorithms, adaptability

Zhang, Z.
Reappearance and Optimization of the FedDyn Algorithm.
DOI: 10.5220/0012839100004547
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Data Science and Engineering (ICDSE 2024), pages 569-576
ISBN: 978-989-758-690-3
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

569

to different types of data sets, and performance in
environments with limited practical communication
still need to be further studied. Moreover, how to
reduce the computational and communication
burden of clients while maintaining the effect of the
algorithm is also an important direction for future
research. Finally, it is also a research gap worth
exploring in choosing and adjusting the dynamic
regularization terms in the FedDyn algorithm to
accommodate different learning tasks and network
conditions.

This paper uses Python programming software,
using the FedDyn algorithm to build a simple
federated learning framework, and proposes the
framework into three categories, a total of 13
optimization methods. This paper aims to test
whether the proposed algorithm optimization
strategy indeed improves the algorithm performance
with two different datasets. The final study shows
that simultaneously adjusting multiple parameters of
the experimental model can effectively optimize the
experimental conclusion of the algorithm.

2 CODE REPETITION OF FedDyn
ALGORITHM

The code for reproducing the FedDyn algorithm
implements a simple federated learning scenario,
which includes the following main parts:

1. Fully connected neural network model (class
SimpleModel):

This is a simple neural network with a fully
connected layer used to flatten 28x28 images into a
vector and output to a layer with 10 output nodes
(corresponding to 10 categories in the Fashion-
Modified National Institute of Standards and
Technology (F-MNIST) dataset).

2. Client model training function
(train_client_model):

This function is responsible for training the
model for the individual clients. It receives the
client's model, optimizer, data loader, regularization
strength alpha, global model weights, and device
information (Central Processing Unit (CPU) or

Graphic Processing Units (GPU)). The training
process includes forward propagation, loss
calculation (including the dynamic regularization
term in the FedDyn algorithm), backpropagation,
and parameter update.

3. Global model aggregation function
(aggregate_global_model):

After all clients complete the training, this
function is responsible for aggregating the model
updates for all clients into a global model. The
aggregation is done by calculating the average of all
client updates.

4. Global model test function (test_model):
This function is used to evaluate the performance

of the global model on the test set. It calculates the
test loss and accuracy.

5. Main function (main):
This is the entry point of the program, it sets the

training parameters (such as equipment information,
regularization strength alpha, client number,
communication rounds, batch size, learning rate,
etc.), load and preprocess data set, divides data set to
different clients, initialize the global model, and
cycle the client model training and global model
aggregation, finally test the performance of the
global model.

The entire process simulates the process of
federated learning, where multiple clients train the
model locally and then send the model updates to a
central server for aggregation. This process is
repeated until the predetermined number of
communication rounds is reached. The goal of
federated learning is to protect data privacy in this
way because the raw data does not need to leave the
local client.

Results were obtained by training the fully
connected neural network on the MNIST dataset and
the FMNIST dataset as shown in Table 1.

The mean values of the initial model loss values
were 0.0107 and 0.0183 on the MNIST and
FMNIST datasets.

On the MNIST and FMNIST data sets, the
proportion of the correct samples with the initial
model predictions was (90.49%) and (79.70%).

Table 1: Experimental results of FedDyn algorithm.

Data set MNIST FMNIST
Experimental result Average loss: 0.0107, Accuracy: 9049/10000

(90.49%)
Average loss: 0.0183, Accuracy:

7970/10000 (79.70%)

ICDSE 2024 - International Conference on Data Science and Engineering

570

3 THE SHORTCOMINGS AND
IMPROVEMENT SCHEME OF
THE REPEATED FedDyn
ALGORITHM

There are three main disadvantages of code:
Model training and performance improvement:
Ⅰ. Single-round training: adjust the number of

rounds that each client trains locally. 1. Fixed
regularization strength: adjust the regularization
strength parameter alpha, which may affect the
generalization ability of the model. 2. Model
initialization: Using different initialization strategies,
may affect the model convergence rate and
performance. 3. Client selection: Choosing different
clients or different data distributions may affect the
accuracy and generalization ability of the model.

Ⅱ. Code Efficiency and Performance
Optimization: Data loader performance: optimize the
performance of the data loader, such as through
prefetching, multithreaded loading, etc.

III. System Stability and Reliability: 1. Exception
handling: Add the exception handling mechanism to
ensure the stable operation of the system. 2. Random
seeds: Random seeds were set to ensure reproducible
experiments. 3. Model complexity: Adjusting model
complexity may affect training time and model
performance.

In these optimization scenarios, the following
scenarios may directly improve the model accuracy:
1. Single-round training: Increasing the number of
local training rounds may improve the performance
of each client model, thus improving the accuracy of
the global model. 2. Fixed regularization strength:

finding a suitable regularization strength can help
the model to generalize better, which may improve
the accuracy. 3. Client selection: If the selected
client has more representative data or a more
balanced data distribution, the accuracy of the model
may be improved (Bo 2020).

Other optimization schemes may indirectly affect
the accuracy of the model, such as making more
training rounds possible by improving the training
efficiency or accelerating the model convergence by
improving the model initialization strategy.
However, most optimization schemes focus on
improving code efficiency, reducing resource
consumption, and increasing the stability of the
system (Wirth et al. 2023).

4 OPTIMIZATION RESULTS OF
THE REPRODUCED FedDyn
ALGORITHM

4.1 Fully Connected Neural Network
Model (Class SimpleModel)

1. Increase the number of training rounds from 2 to
5,7,10 rounds: The fully connected neural network
was trained on the MNIST dataset. The results are
shown in Table 2 when the number of training
rounds is 5, 7, and 10 rounds. On the MNIST
dataset, the new model loss values averaged
0.0095,0.0092 and 0.0090. On the MNIST dataset,
the number of samples predicted by the new model
was (91.44%), (91.60%) and (91.87%).

Table 2. Experimental results of the optimized algorithm.

Number of training
rounds

5 7 10

Training results Average loss: 0.0095
Accuracy: 9144/10000

(91.44%)

Average loss: 0.0092
Accuracy: 9160/10000

(91.60%)

Average loss: 0.0090
Accuracy: 9187/10000

(91.87%)

Loading part of the data set: replace datasets.
MNIST with datasets. Fashion MNIST updates the
mean and standard deviation of the data conversion
and completes the data set change. Replace the
MNIST with the FMNIST dataset. The experimental
results are shown in Table 3 when the number of
training rounds was 5,7, and 10 rounds. On the
FMNIST dataset, the mean values of the new model
loss values were 0.0163,0.0158 and 0.0153. On the
FMNIST dataset, the number of samples predicted

by the new model was (81.76%), (82.52%) and
(82.59%).

Reappearance and Optimization of the FedDyn Algorithm

571

Table 3: Experimental results of the optimized algorithm.

Number of training rounds 5 7 10
Training results Average loss: 0.0163

Accuracy:
8176/10000 (81.76%)

Average loss: 0.0158
Accuracy:

8252/10000 (82.52%)

Average loss: 0.0153
Accuracy: 8259/10000

(82.59%)

Experimental findings suggest that increasing the
number of training rounds may improve the
performance of the model. If the number of training
rounds is continuously increased, the model may
eventually be overfitting.

2. Adjust the regularization intensity [0.0001,
0.001, 0.01, 0.1, 1]:

The experimental results of the FMNIST dataset
are shown in Table 4 [0.0001, 0.001, 0.01, 0.1, 1].
On the FMNIST dataset, the mean values of the new
model loss values were 0.0182, 0.0182, 0.0182,
0.0189, and 0.0245. On the FMNIST dataset, the
proportion of the total sample number that the new
model predicted correctly was (79.87%), (79.83%),
(80.01%), (79.53%), and (75.46%).

Table 4: Experimental results of the optimized algorithm.

Alpha price 0.0001 0.001 0.01 0.1 1
Experimental

result
Average loss:

0.0182
Accuracy:

7987/10000
(79.87%)

Average loss:
0.0182,

Accuracy:
7983/10000

(79.83%)

Average loss:
0.0182,

Accuracy:
8001/10000

(80.01%)

Average loss:
0.0189,

Accuracy:
7953/10000

(79.53%)

Average loss:
0.0245,

Accuracy:
7546/10000

(75.46%)

Furthermore, an alpha_values list can be set to
try different alpha values and evaluate model
performance using each validation set after training
rounds, selecting the best alpha value. In federated
learning, the regularization strength alpha is an
important hyperparameter that controls the degree to
which the local model weights are close to the global
model weights (Tivnan et al. 2023). Experiments
find that alpha is set too high, so the local model
may overfit the weight of the global model, which
may ignore the specificity of the local data; Set too
low, the local model may overfit the local data, not
enough to the global model, which may reduce the
generalization performance of the global model.

3. Model initialization:
In the train_client_model function, can directly

use global_weights instead of extracting them from
global_model every time. In the
aggregate_global_model function, can use methods
outside of torch. stack to aggregate model updates,
such as directly calculating the average, instead of
stacking first before averaging. In the test_model
function, one can avoid using the division by
directly accumulating the losses and the number of
correct predictions. These optimizations may have
some minor impact on performance but may be
more pronounced when training large models or
processing large amounts of data. New code is
compared to the source code.

When calculating the dynamic regularization
term in the train_client_model function, it treats the
global_weights [param _ key] differently:

In the new code, global_weights [param _ key]
was transferred to the corresponding device. In the
source code, global_weights [param _ key] is used
directly without device transfer. This change is made
to ensure that the model parameters and the global
weights are on the same device (CPU or GPU) to
avoid operational errors. The calculation of test loss
in the test_model function. In the new code, the loss
is calculated and multiplied by data. size (0) to get
the average loss for the entire data set. In the source
code, the loss value is not multiplied by the size of
the batch. This change is made to correct the
calculation method of the test loss, ensuring that the
average loss of the entire test set is obtained.

The variable name in the
aggregate_global_model function:

In the new code, the update is used as the
temporary variable name in the loop. In the source
code, client_update is used as the temporary variable
name in the loop: This change is just a different
choice of variable names and has no impact on the
code logic. The variable name of the client data
loader is different. In the new code, the dataset is
used as the temporary variable name in the loop. In
the source code, client_dataset is used as the
temporary variable name in the loop:

ICDSE 2024 - International Conference on Data Science and Engineering

572

This change is also just a different choice of
variable names and has no impact on the code logic.
In conclusion, the main changes are the calculation
method of device transfer of the global weights in
the train_client_model function and correcting the
test loss in the test_model function. Other changes
involve only different choices of variable names.

The experimental results are shown in Table 5.
On the MNIST data set, 0.3437 was the mean of the

new model loss value on the dataset. On the MNIST
dataset, the total number of samples as predicted
correctly by the new model was (90.45%). On the
FMNIST dataset, the average of the new model loss
value was 0.5820. On the FMNIST data set, the
proportion of the correct samples predicted by the
new model was (80.15%).

Table 5: Experimental results of the optimized algorithm.

Data set MNIST FMNIST
Experimental result Average loss: 0.3437, Accuracy:

9045/10000 (90.45%)
Average loss: 0.5820, Accuracy:

8015/10000 (80.15%)

4. Client selection:
A new mechanism is introduced to select a

portion of the clients for training instead of training
all clients for each round. This approach is often
called client sampling in federated learning
(Chenyang 2022). Differences between the old and
new codes. A new variable client_fraction was
added to the main function to specify the proportion
of clients selected in each round of training. In each
round, a portion of clients were randomly selected
by the random. Sample method instead of training

all clients. Only the model updates for the selected
client are aggregated into the global model. This
approach can reduce computational resource
consumption and is shown in practice to be able to
improve the efficiency of federated learning without
significantly reducing model performance.

The experimental results on the FMNIST dataset
are shown in Table 11. On the FMNIST data set, the
mean value of the new model loss value was 0.0182.
On the FMNIST data set, the proportion of correct
sample numbers by the new model is (80.08%).

Table 6: Experimental results of the optimized algorithm.

Data set FMNIST
Experimental result Average loss: 0.0203, Accuracy: 7799/10000 (77.99%)

Average loss: 0.0182, Accuracy: 8008/10000 (80.08%)

4.2 Code Efficiency and Performance

Optimization

1. Performance of the data loader:
The old and new codes are the same for most of

the content, which all define a simple fully
connected neural network model, training and
aggregation of client models, and testing the
performance of the global model. However, there are
some differences, mainly focusing on the creation
and configuration of the data loader (DataLoader).
The specific differences are shown as follows:

Use of the num_workers parameter: In the new
code, num _ workers, the parameter, was not used
when creating DataLoader in the old code. The
num_workers parameter determines the number of
child processes used during the data loading process.
If set to 0 (or not set, such as old code), all data
loading is completed in the main process. If set to a
positive integer, the data loading operation is

performed in parallel in a specified number of child
processes.

Value of the 3num_workers parameter: In the
new code, num_workers is set to 4, which means
that the data loading process will try to load in
parallel the data.

These two differences may have an impact on the
speed and efficiency of data loading. Using multiple
work processes can speed up data loading, especially
when processing large datasets and/or running on a
multi-core CPU. However, in some cases, increasing
the number of working processes does not always
result in a performance improvement, as it may
cause overhead in inter-process communication,
especially when the number of working processes
exceeds the number of CPU cores.

The experimental results on the FMNIST dataset
are shown in Table 9. On the FMNIST dataset, the
mean of the new model loss value was 0.0183. On
the FMNIST data set, the proportion of correct
sample numbers by the new model is (80.10%).

Reappearance and Optimization of the FedDyn Algorithm

573

Table 7: Experimental results of the optimized algorithm.

Data set FMNIST
Experimental result Average loss: 0.0183, Accuracy: 8010/10000 (80.10%)

Device allocation optimization typically involves

ensuring that all models and data are on the right
device (e.g., GPU or CPU) and reducing
unnecessary data transfers when global model
weights are shared between multiple clients.

Compared to the source code, the optimization
points in the new code include:

1. The weights of the global model
(global_weights) are now extracted from the global
model at the beginning of each round and used in the
whole round, which avoids re-extracting the weights
from the global model at each client training,
reducing the transmission of data between devices.

2. After the aggregation update, now only update
the weight dictionary (global_weights) of the global
model, rather than reloading the state of the global
model after each client update. This reduces
unnecessary state-loading operations.

3. Finally, after all training rounds, only need to
load the final global weight into the global model
once to test the model performance.

These optimizations reduce memory operations
and data transfer, especially on GPU devices, which
may lead to performance improvements. In the new
code, controling the proportion of clients
participating in each round by the client_fraction
parameter, rather than having all clients trained. This
can reduce the consumption of computational
resources and may improve the generality of the
model. The experimental results on the FMNIST
dataset are shown in Table 7. On the FMNIST data
set, the mean value of the new model loss value was
0.0133. On the FMNIST data set, the proportion of
the correct samples predicted by the new model is
(73.25%).

Table 8: Experimental results of the optimized algorithm.

Data set FMNIST
Experimental result Average loss: 0.0133, Accuracy: 7325/10000 (73.25%)

4.3 System Stability and Reliability

1. Exception handling:
To optimize the code and add exception

handling, make changes to ensure that the code can
handle exceptions when it encounters problems and
provide useful feedback. Capture exceptions that can
occur when the data loads, such as network
problems that can occur when downloading the
MNIST dataset. Capture errors that may occur
during model training, such as gradient explosion or
gradient vanishing. Ensure that device-related
abnormalities are captured when using devices (e.g.,
Compute Unified Device Architecture (CUDA)).
When the aggregate model updates, ensure that the
update is valid and that there are no numerical
issues. When testing the model, ensure the data
loads correctly and the evaluation process is not an
error.

In the modified code, several tries...except blocks
were added to capture and process exceptions that
may occur. This way if the code encounters any
problems during execution it will print out an error
message and terminate or skip the error part instead
of causing the entire program to crash. In addition,

KeyboardInterrupt abnormalities were captured so
that the training process could be interrupted by
pressing Ctrl + C.

2. Random seeds:
The new code adds the following parts to set the

random seed rather than the code without the
random seed: A function to set random seeds is
defined, set _ random _ places, which accepts a
parameter seed_value with a default value of 42. The
function of this function is to ensure that the random
number generators of NumPy and PyTorch use the
same seeds such that the same is generated for each
run of the code, guaranteeing the reproducibility of
the experiment. If using CUDA, it also sets random
seeds for all CUDA devices. In the main function,
the set_random_seeds function is called.

In this way, the random seed is set up before the
model is trained.

Except for the above, the rest of the code should
be the same as the code without a random seed. The
random seed is mainly set to ensure that each time,
the initialized weight, the segmentation of the data
set, and other operations relying on the random
number generator can get the same results, thus
making the experimental results reproducible. The

ICDSE 2024 - International Conference on Data Science and Engineering

574

experimental results on the FMNIST dataset are
shown in Table 8. On the FMNIST data set, the
mean value of the new model loss value was 0.0183.

On the FMNIST data set, the number of samples
predicted by the new model was (79.74%).

Table 9: Experimental results of the optimized algorithm.

Data set FMNIST
Experimental result Average loss: 0.0183, Accuracy: 7974/10000 (79.74%)

3. Model complexity:
Two hidden layers and the ReLU activation

functions were added. The first hidden layer has 512
neurons, and the second hidden layer has 256
neurons. Use the ReLU as the activation function.
The last layer is a linear layer, used for
classification. The main difference between the old
and new codes lies in the complexity of the neural
network model used. In the new code, a more
complex fully connected neural network model,
ComplexModel, includes three fully connected
layers and the ReLU activation function. While in
the old code, a simple fully connected neural
network model, SimpleModel, is used, which only
contains a fully connected layer with no activation
function.

Here are the specific differences:
1. Different class definitions of the neural

network model.

ComplexModel Contains three fully connected
layers (fc 1, fc 2, fc 3) and the ReLU activation
function.SimpleModel It contains only one fully
connected layer (fc).

2. In the main function main (), the classes of
initialized global and local models are different:

In the new code, use the ComplexModel.In the
old code, use the SimpleModel.

Other parts of the code, including data loading,
client-side model training, model aggregation, and
testing, remain unchanged. This means that the two
codes implement the same federated learning
framework, but the complexity of the neural network
model trained on the client side varies.

The experimental results are shown in Table 10.
On the FMNIST data set, the mean value of the new
model loss value was 0.0182. On the FMNIST data
set, the proportion of correct sample numbers by the
new model is (80.04%).

Table 10: Experimental results of the optimized algorithm.

Data set FMNIST
Experimental result Test set: Average loss: 0.0202, Accuracy: 7806/10000 (78.06%)

Test set: Average loss: 0.0182, Accuracy: 8004/10000 (80.04%)

Through experiments, after optimizing the code,

it is sometimes found that theoretically, the accuracy
of the code will increase, but in fact, the accuracy
does not change significantly, even decreasing rather
than rising. The following is the reason analysis:

1. Learning rate: If the learning rate is not set
appropriately, the model may fail to converge to the
best solution. Too high a learning rate may cause the
model to oscillate near the optimal solution, while
too low a learning rate may lead to too slow
convergence.

2. Regularized Strength: In the code, the alpha
parameter controls the intensity of the regularization
term. If this parameter is set too high, it may lead to
over-penalizing the model weights, thus hindering
the learning process. If too low, it may not
adequately prevent overfitting.

3. Client data distribution: If the data distribution
between clients is uneven (i.e., there is a Non-IID),

the model may perform better on some clients and
perform poorly on other clients, which will affect the
accuracy of the global model.

4. Model update aggregation: Aggregation
methods may affect the performance of the global
model. For example, simple averaging may not be
the optimal aggregation method, especially in cases
where the client data is evenly distributed.

5. Number of training rounds: If the number of
training rounds is too small, the model may not have
enough time to learn the characteristics of the data.

6. Batch size: Batch size affects the accuracy of
gradient estimation and the stability of the training
process. Batch processing too small can cause too
much noise, while batch processing too large can
cause memory problems or slow training.

7. Code change: Any code change can cause
unexpected side effects. For example, if data loading
or preprocessing steps are optimized, data leakage

Reappearance and Optimization of the FedDyn Algorithm

575

may have been accidentally introduced or data
distribution changed.

8. Randchasticity (Randomness): Due to the
randomness of initialization weights, data shuffling
and other factors, multiple runs may get different
results even under the same setting.

Therefore, in practical application, the
optimization of one model should take into account
the influence of one parameter on another parameter.
When optimizing the model, it is best to adjust
multiple parameters at the same time, and the
experimental effect will be better than adjusting only
a single parameter.

5 CONCLUSION

It is worth noting that this study has some limitations.
This experiment only constructed a simple algorithm
model, which is only used as a code repetition of
FedDyn algorithm theory. However, in practice, the
FedDyn algorithm model is much more complex,
and more factors and challenges need to be
considered. For example, issues such as data
distribution, communication delays between clients,
privacy protection, and security all need to be fully
considered. Moreover, to improve the performance
and generalization capabilities of the models, more
complex neural network structures, optimization
algorithms, and regularization techniques may be
required to be used. Alternatively, the datasets in
practical application may be larger and more
complex than the datasets are used in this study. This
requires more computational resources and more
efficient algorithm design to handle large-scale
datasets. In addition, the FedDyn algorithm may also
need to be integrated with other techniques and
methods in practical applications. For example,
problems such as model aggregation, client selection,
and task scheduling in federated learning all need to
be considered comprehensively.

Future studies could further explore the
following aspects:

1. Algorithm optimization: In practical
application, the performance and efficiency of the
FedDyn algorithm can be further optimized. For
example, researchers can explore more efficient
model aggregation methods, client-side selection
strategies, and task scheduling algorithms to
improve the convergence speed and accuracy of the
model.

2. Privacy protection: Privacy protection in
federal learning is an important issue. Future studies
could explore how to train and update models while

protecting user privacy effectively. This may involve
further research in areas such as differential privacy
technology, encryption computing, and secure
multi-party computing.

In conclusion, future studies can further explore
and improve various aspects of the FedDyn
algorithm to improve its performance, privacy
protection, and scalability and apply it to a wider
range of practical scenarios. This will bring greater
development and innovation to the field of federated
learning and distributed machine learning.

REFERENCES

X. Zhao, Z. Mao, H. Li, et al. (2023, March). “Big data
security risk control model based on federated learning
algorithm”. In Second International Conference on
Green Communication, Network, and Internet of
Things, Vol. 12586, (CNIoT, 2022), pp. 178-183.

R. Mónica, V. Haris. Pattern Recognition 148: 110122,
(2024).

X. Li, K. Huang, W. Yang, et al. arXiv preprint arXiv:
1907. 02189, (2019).

L. Yiyang. Donghua University, (2022).
Z. Wenbo. Applied Sciences 13.9, (2023).
D. A. E. Acar, Y. Zhao, R. M. Navarro, et al. arXiv

preprint arXiv:2111.04263, (2021).
L. Bo. Huazhong University of Science and Technology,

(2020).
G. Wirth, P. A. Alves, R. D. Silva. Fluctuation and Noise
Letters, 2350027, (2023).
M. Tivnan, G. J. Gang, W. Wang, et al. Journal of Medical

Imaging, 10(3), 033501-033501, (2023).
L. Chenyang. Computer Science, 49(09): 183-193, (2022).

ICDSE 2024 - International Conference on Data Science and Engineering

576

