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Abstract: Federated learning has been widely used as a way to protect data privacy. However, the existing federated 
learning algorithms have the problems of large differences in data distribution and low efficiency of model 
updating. Therefore, the FedDyn algorithm was born to solve the above problems. This paper uses Python 
programming software and FedDyn algorithm to build a simple federated learning framework composed of 
five major parts: a fully connected neural network model, client model training function, global model 
aggregation function, global model test function, and main function and carries out model training and 
performance improvement optimization of the framework, as well as code efficiency and performance. 
Three aspects of system stability and reliability were optimized, and two different data sets, Modified 
National Institute of Standards and Technology (MNIST) and Fashion-MNIST (F-MNIST), were used to 
test whether the algorithm optimization strategy proposed in this paper improved the algorithm performance. 
Finally, it is concluded that the algorithm can be optimized effectively by adjusting multiple parameters of 
the experimental model simultaneously. 

1 INTRODUCTION 

In the era of big data, with the improvement of 
privacy protection awareness, federated learning that 
can protect data privacy has attracted wide attention 
to (Zhao et al. 2023). As a distributed learning 
paradigm, federated learning allows multiple devices 
or servers to jointly train models while maintaining 
data localization, to help preserve data privacy 
(Mónica & Haris 2024). However, when the client 
data is not independent and identically distributed 
(non-IID), that is, the data is not evenly distributed 
on each client, traditional federated learning 
algorithms (such as FedAvg) may encounter the 
problem of the performance performance. This is 
because the update of the model on different clients 
may move in different directions, causing the global 
model to converge to the optimal state (Li et al. 
2019). 

The study of the FedDyn algorithm is of great 
significance to the field of federated learning 
because it directly solves a key challenge in the 
federated learning system: client data heterogeneity 
(Yiyang 2022). In practice, there are often 
significant differences in the distribution of the data 
held by different clients, which will lead to the 
deviation of the model locally trained by each client, 

and affect the performance and generalization ability 
of the global model. FedDyn By introducing 
dynamic regularization terms, it effectively reduces 
the difference in model parameters between clients, 
thus helping to improve the accuracy of the global 
model (Wenbo 2023). 

The proposal of the FedDyn algorithm is of great 
research significance for realizing a more efficient 
and fair federated learning model. First, it addresses 
the impact of data heterogeneity on model training 
through dynamic regularization techniques, which is 
crucial to improving the model performance on 
real-world diverse datasets. Second, FedDyn helps 
to improve the global convergence rate of the model, 
enabling the federated learning system to achieve 
better learning results in a shorter time. Finally, the 
design concept of the algorithm has also inspired 
other studies in the field of federated learning, 
providing new ideas on how to design more robust 
distributed learning algorithms. 

Although the FedDyn algorithm has achieved 
significant theoretical progress, and partly achieves 
the goal of model consistency. However, in practice, 
especially in large-scale deployment, the algorithm 
still faces some unresolved problems and challenges 
to (Acar et al. 2021). For example, the 
computational efficiency of algorithms, adaptability 
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to different types of data sets, and performance in 
environments with limited practical communication 
still need to be further studied. Moreover, how to 
reduce the computational and communication 
burden of clients while maintaining the effect of the 
algorithm is also an important direction for future 
research. Finally, it is also a research gap worth 
exploring in choosing and adjusting the dynamic 
regularization terms in the FedDyn algorithm to 
accommodate different learning tasks and network 
conditions. 

This paper uses Python programming software, 
using the FedDyn algorithm to build a simple 
federated learning framework, and proposes the 
framework into three categories, a total of 13 
optimization methods. This paper aims to test 
whether the proposed algorithm optimization 
strategy indeed improves the algorithm performance 
with two different datasets. The final study shows 
that simultaneously adjusting multiple parameters of 
the experimental model can effectively optimize the 
experimental conclusion of the algorithm. 

2 CODE REPETITION OF FedDyn 
ALGORITHM 

The code for reproducing the FedDyn algorithm 
implements a simple federated learning scenario, 
which includes the following main parts: 

1. Fully connected neural network model (class 
SimpleModel):  

This is a simple neural network with a fully 
connected layer used to flatten 28x28 images into a 
vector and output to a layer with 10 output nodes 
(corresponding to 10 categories in the Fashion- 
Modified National Institute of Standards and 
Technology (F-MNIST) dataset). 

2. Client model training function 
(train_client_model):  

This function is responsible for training the 
model for the individual clients. It receives the 
client's model, optimizer, data loader, regularization 
strength alpha, global model weights, and device 
information (Central Processing Unit (CPU) or 

Graphic Processing Units (GPU)). The training 
process includes forward propagation, loss 
calculation (including the dynamic regularization 
term in the FedDyn algorithm), backpropagation, 
and parameter update. 

3. Global model aggregation function 
(aggregate_global_model):  

After all clients complete the training, this 
function is responsible for aggregating the model 
updates for all clients into a global model. The 
aggregation is done by calculating the average of all 
client updates. 

4. Global model test function (test_model):  
This function is used to evaluate the performance 

of the global model on the test set. It calculates the 
test loss and accuracy. 

5. Main function (main):  
This is the entry point of the program, it sets the 

training parameters (such as equipment information, 
regularization strength alpha, client number, 
communication rounds, batch size, learning rate, 
etc.), load and preprocess data set, divides data set to 
different clients, initialize the global model, and 
cycle the client model training and global model 
aggregation, finally test the performance of the 
global model. 

The entire process simulates the process of 
federated learning, where multiple clients train the 
model locally and then send the model updates to a 
central server for aggregation. This process is 
repeated until the predetermined number of 
communication rounds is reached. The goal of 
federated learning is to protect data privacy in this 
way because the raw data does not need to leave the 
local client. 

Results were obtained by training the fully 
connected neural network on the MNIST dataset and 
the FMNIST dataset as shown in Table 1. 

The mean values of the initial model loss values 
were 0.0107 and 0.0183 on the MNIST and 
FMNIST datasets. 

On the MNIST and FMNIST data sets, the 
proportion of the correct samples with the initial 
model predictions was (90.49%) and (79.70%). 

Table 1: Experimental results of FedDyn algorithm. 

Data set MNIST FMNIST 
Experimental result  Average loss: 0.0107, Accuracy: 9049/10000 

(90.49%) 
Average loss: 0.0183, Accuracy: 

7970/10000 (79.70%) 
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3 THE SHORTCOMINGS AND 
IMPROVEMENT SCHEME OF 
THE REPEATED FedDyn 
ALGORITHM 

There are three main disadvantages of code: 
Model training and performance improvement:  
Ⅰ. Single-round training: adjust the number of 

rounds that each client trains locally. 1. Fixed 
regularization strength: adjust the regularization 
strength parameter alpha, which may affect the 
generalization ability of the model. 2. Model 
initialization: Using different initialization strategies, 
may affect the model convergence rate and 
performance. 3. Client selection: Choosing different 
clients or different data distributions may affect the 
accuracy and generalization ability of the model. 

Ⅱ. Code Efficiency and Performance 
Optimization: Data loader performance: optimize the 
performance of the data loader, such as through 
prefetching, multithreaded loading, etc.  

III. System Stability and Reliability: 1. Exception 
handling: Add the exception handling mechanism to 
ensure the stable operation of the system. 2. Random 
seeds: Random seeds were set to ensure reproducible 
experiments. 3. Model complexity: Adjusting model 
complexity may affect training time and model 
performance.  

In these optimization scenarios, the following 
scenarios may directly improve the model accuracy: 
1. Single-round training: Increasing the number of 
local training rounds may improve the performance 
of each client model, thus improving the accuracy of 
the global model. 2. Fixed regularization strength: 

finding a suitable regularization strength can help 
the model to generalize better, which may improve 
the accuracy. 3. Client selection: If the selected 
client has more representative data or a more 
balanced data distribution, the accuracy of the model 
may be improved (Bo 2020).  

Other optimization schemes may indirectly affect 
the accuracy of the model, such as making more 
training rounds possible by improving the training 
efficiency or accelerating the model convergence by 
improving the model initialization strategy. 
However, most optimization schemes focus on 
improving code efficiency, reducing resource 
consumption, and increasing the stability of the 
system (Wirth et al. 2023). 

4 OPTIMIZATION RESULTS OF 
THE REPRODUCED FedDyn 
ALGORITHM 

4.1 Fully Connected Neural Network 
Model (Class SimpleModel) 

1. Increase the number of training rounds from 2 to 
5,7,10 rounds: The fully connected neural network 
was trained on the MNIST dataset. The results are 
shown in Table 2 when the number of training 
rounds is 5, 7, and 10 rounds. On the MNIST 
dataset, the new model loss values averaged 
0.0095,0.0092 and 0.0090. On the MNIST dataset, 
the number of samples predicted by the new model 
was (91.44%), (91.60%) and (91.87%). 

Table 2. Experimental results of the optimized algorithm. 

Number of training 
rounds 

5 7 10 

Training results Average loss: 0.0095 
Accuracy: 9144/10000 

(91.44%) 

Average loss: 0.0092  
Accuracy: 9160/10000 

(91.60%) 

Average loss: 0.0090  
Accuracy: 9187/10000 

(91.87%) 
 

Loading part of the data set: replace datasets. 
MNIST with datasets. Fashion MNIST updates the 
mean and standard deviation of the data conversion 
and completes the data set change. Replace the 
MNIST with the FMNIST dataset. The experimental 
results are shown in Table 3 when the number of 
training rounds was 5,7, and 10 rounds. On the 
FMNIST dataset, the mean values of the new model 
loss values were 0.0163,0.0158 and 0.0153. On the 
FMNIST dataset, the number of samples predicted 

by the new model was (81.76%), (82.52%) and 
(82.59%). 
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Table 3: Experimental results of the optimized algorithm. 

Number of training rounds 5 7 10 
Training results Average loss: 0.0163 

Accuracy: 
8176/10000 (81.76%)

Average loss: 0.0158 
Accuracy: 

8252/10000 (82.52%)

Average loss: 0.0153 
Accuracy: 8259/10000 

(82.59%) 
 

Experimental findings suggest that increasing the 
number of training rounds may improve the 
performance of the model. If the number of training 
rounds is continuously increased, the model may 
eventually be overfitting. 

2. Adjust the regularization intensity [0.0001, 
0.001, 0.01, 0.1, 1]: 

The experimental results of the FMNIST dataset 
are shown in Table 4 [0.0001, 0.001, 0.01, 0.1, 1]. 
On the FMNIST dataset, the mean values of the new 
model loss values were 0.0182, 0.0182, 0.0182, 
0.0189, and 0.0245. On the FMNIST dataset, the 
proportion of the total sample number that the new 
model predicted correctly was (79.87%), (79.83%), 
(80.01%), (79.53%), and (75.46%). 

Table 4: Experimental results of the optimized algorithm. 

Alpha price 0.0001 0.001 0.01 0.1 1 
Experimental 

result 
Average loss:  

0.0182 
Accuracy: 

7987/10000 
(79.87%) 

Average loss: 
0.0182, 

Accuracy: 
7983/10000 

(79.83%)

Average loss: 
0.0182, 

Accuracy: 
8001/10000 

(80.01%)

Average loss: 
0.0189, 

Accuracy: 
7953/10000 

(79.53%) 

Average loss: 
0.0245, 

Accuracy: 
7546/10000 

(75.46%)
 

Furthermore, an alpha_values list can be set to 
try different alpha values and evaluate model 
performance using each validation set after training 
rounds, selecting the best alpha value. In federated 
learning, the regularization strength alpha is an 
important hyperparameter that controls the degree to 
which the local model weights are close to the global 
model weights (Tivnan et al. 2023). Experiments 
find that alpha is set too high, so the local model 
may overfit the weight of the global model, which 
may ignore the specificity of the local data; Set too 
low, the local model may overfit the local data, not 
enough to the global model, which may reduce the 
generalization performance of the global model. 

3. Model initialization: 
In the train_client_model function, can directly 

use global_weights instead of extracting them from 
global_model every time. In the 
aggregate_global_model function, can use methods 
outside of torch. stack to aggregate model updates, 
such as directly calculating the average, instead of 
stacking first before averaging. In the test_model 
function, one can avoid using the division by 
directly accumulating the losses and the number of 
correct predictions. These optimizations may have 
some minor impact on performance but may be 
more pronounced when training large models or 
processing large amounts of data. New code is 
compared to the source code. 

When calculating the dynamic regularization 
term in the train_client_model function, it treats the 
global_weights [param _ key] differently: 

In the new code, global_weights [param _ key] 
was transferred to the corresponding device. In the 
source code, global_weights [param _ key] is used 
directly without device transfer. This change is made 
to ensure that the model parameters and the global 
weights are on the same device (CPU or GPU) to 
avoid operational errors. The calculation of test loss 
in the test_model function. In the new code, the loss 
is calculated and multiplied by data. size (0) to get 
the average loss for the entire data set. In the source 
code, the loss value is not multiplied by the size of 
the batch. This change is made to correct the 
calculation method of the test loss, ensuring that the 
average loss of the entire test set is obtained. 

The variable name in the 
aggregate_global_model function: 

In the new code, the update is used as the 
temporary variable name in the loop. In the source 
code, client_update is used as the temporary variable 
name in the loop: This change is just a different 
choice of variable names and has no impact on the 
code logic. The variable name of the client data 
loader is different. In the new code, the dataset is 
used as the temporary variable name in the loop. In 
the source code, client_dataset is used as the 
temporary variable name in the loop: 
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This change is also just a different choice of 
variable names and has no impact on the code logic. 
In conclusion, the main changes are the calculation 
method of device transfer of the global weights in 
the train_client_model function and correcting the 
test loss in the test_model function. Other changes 
involve only different choices of variable names.  

The experimental results are shown in Table 5. 
On the MNIST data set, 0.3437 was the mean of the 

new model loss value on the dataset. On the MNIST 
dataset, the total number of samples as predicted 
correctly by the new model was (90.45%). On the 
FMNIST dataset, the average of the new model loss 
value was 0.5820. On the FMNIST data set, the 
proportion of the correct samples predicted by the 
new model was (80.15%).

Table 5: Experimental results of the optimized algorithm. 

Data set MNIST FMNIST 
Experimental result Average loss: 0.3437, Accuracy: 

9045/10000 (90.45%)
Average loss: 0.5820, Accuracy: 

8015/10000 (80.15%) 
 

4. Client selection: 
A new mechanism is introduced to select a 

portion of the clients for training instead of training 
all clients for each round. This approach is often 
called client sampling in federated learning 
(Chenyang 2022). Differences between the old and 
new codes. A new variable client_fraction was 
added to the main function to specify the proportion 
of clients selected in each round of training. In each 
round, a portion of clients were randomly selected 
by the random. Sample method instead of training 

all clients. Only the model updates for the selected 
client are aggregated into the global model. This 
approach can reduce computational resource 
consumption and is shown in practice to be able to 
improve the efficiency of federated learning without 
significantly reducing model performance. 

The experimental results on the FMNIST dataset 
are shown in Table 11. On the FMNIST data set, the 
mean value of the new model loss value was 0.0182. 
On the FMNIST data set, the proportion of correct 
sample numbers by the new model is (80.08%).

Table 6: Experimental results of the optimized algorithm. 

Data set FMNIST
Experimental result Average loss: 0.0203, Accuracy: 7799/10000 (77.99%) 

Average loss: 0.0182, Accuracy: 8008/10000 (80.08%) 
 
4.2 Code Efficiency and Performance 

Optimization 

1. Performance of the data loader: 
The old and new codes are the same for most of 

the content, which all define a simple fully 
connected neural network model, training and 
aggregation of client models, and testing the 
performance of the global model. However, there are 
some differences, mainly focusing on the creation 
and configuration of the data loader (DataLoader). 
The specific differences are shown as follows: 

Use of the num_workers parameter: In the new 
code, num _ workers, the parameter, was not used 
when creating DataLoader in the old code. The 
num_workers parameter determines the number of 
child processes used during the data loading process. 
If set to 0 (or not set, such as old code), all data 
loading is completed in the main process. If set to a 
positive integer, the data loading operation is 

performed in parallel in a specified number of child 
processes. 

Value of the 3num_workers parameter: In the 
new code, num_workers is set to 4, which means 
that the data loading process will try to load in 
parallel the data. 

These two differences may have an impact on the 
speed and efficiency of data loading. Using multiple 
work processes can speed up data loading, especially 
when processing large datasets and/or running on a 
multi-core CPU. However, in some cases, increasing 
the number of working processes does not always 
result in a performance improvement, as it may 
cause overhead in inter-process communication, 
especially when the number of working processes 
exceeds the number of CPU cores. 

The experimental results on the FMNIST dataset 
are shown in Table 9. On the FMNIST dataset, the 
mean of the new model loss value was 0.0183. On 
the FMNIST data set, the proportion of correct 
sample numbers by the new model is (80.10%). 
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Table 7: Experimental results of the optimized algorithm. 

Data set FMNIST
Experimental result  Average loss: 0.0183, Accuracy: 8010/10000 (80.10%) 

 
Device allocation optimization typically involves 

ensuring that all models and data are on the right 
device (e.g., GPU or CPU) and reducing 
unnecessary data transfers when global model 
weights are shared between multiple clients. 

Compared to the source code, the optimization 
points in the new code include: 

1. The weights of the global model 
(global_weights) are now extracted from the global 
model at the beginning of each round and used in the 
whole round, which avoids re-extracting the weights 
from the global model at each client training, 
reducing the transmission of data between devices. 

2. After the aggregation update, now only update 
the weight dictionary (global_weights) of the global 
model, rather than reloading the state of the global 
model after each client update. This reduces 
unnecessary state-loading operations. 

3. Finally, after all training rounds, only need to 
load the final global weight into the global model 
once to test the model performance. 

These optimizations reduce memory operations 
and data transfer, especially on GPU devices, which 
may lead to performance improvements. In the new 
code, controling the proportion of clients 
participating in each round by the client_fraction 
parameter, rather than having all clients trained. This 
can reduce the consumption of computational 
resources and may improve the generality of the 
model. The experimental results on the FMNIST 
dataset are shown in Table 7. On the FMNIST data 
set, the mean value of the new model loss value was 
0.0133. On the FMNIST data set, the proportion of 
the correct samples predicted by the new model is 
(73.25%). 

Table 8: Experimental results of the optimized algorithm. 

Data set FMNIST
Experimental result Average loss: 0.0133, Accuracy: 7325/10000 (73.25%) 

 
4.3 System Stability and Reliability 

1. Exception handling: 
To optimize the code and add exception 

handling, make changes to ensure that the code can 
handle exceptions when it encounters problems and 
provide useful feedback. Capture exceptions that can 
occur when the data loads, such as network 
problems that can occur when downloading the 
MNIST dataset. Capture errors that may occur 
during model training, such as gradient explosion or 
gradient vanishing. Ensure that device-related 
abnormalities are captured when using devices (e.g., 
Compute Unified Device Architecture (CUDA)). 
When the aggregate model updates, ensure that the 
update is valid and that there are no numerical 
issues. When testing the model, ensure the data 
loads correctly and the evaluation process is not an 
error. 

In the modified code, several tries...except blocks 
were added to capture and process exceptions that 
may occur. This way if the code encounters any 
problems during execution it will print out an error 
message and terminate or skip the error part instead 
of causing the entire program to crash. In addition, 

KeyboardInterrupt abnormalities were captured so 
that the training process could be interrupted by 
pressing Ctrl + C. 

2. Random seeds: 
The new code adds the following parts to set the 

random seed rather than the code without the 
random seed: A function to set random seeds is 
defined, set _ random _ places, which accepts a 
parameter seed_value with a default value of 42. The 
function of this function is to ensure that the random 
number generators of NumPy and PyTorch use the 
same seeds such that the same is generated for each 
run of the code, guaranteeing the reproducibility of 
the experiment. If using CUDA, it also sets random 
seeds for all CUDA devices. In the main function, 
the set_random_seeds function is called. 

In this way, the random seed is set up before the 
model is trained. 

Except for the above, the rest of the code should 
be the same as the code without a random seed. The 
random seed is mainly set to ensure that each time, 
the initialized weight, the segmentation of the data 
set, and other operations relying on the random 
number generator can get the same results, thus 
making the experimental results reproducible. The 
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experimental results on the FMNIST dataset are 
shown in Table 8. On the FMNIST data set, the 
mean value of the new model loss value was 0.0183. 

On the FMNIST data set, the number of samples 
predicted by the new model was (79.74%). 

Table 9: Experimental results of the optimized algorithm. 

Data set FMNIST
Experimental result Average loss: 0.0183, Accuracy: 7974/10000 (79.74%) 

 
3. Model complexity: 
Two hidden layers and the ReLU activation 

functions were added. The first hidden layer has 512 
neurons, and the second hidden layer has 256 
neurons. Use the ReLU as the activation function. 
The last layer is a linear layer, used for 
classification. The main difference between the old 
and new codes lies in the complexity of the neural 
network model used. In the new code, a more 
complex fully connected neural network model, 
ComplexModel, includes three fully connected 
layers and the ReLU activation function. While in 
the old code, a simple fully connected neural 
network model, SimpleModel, is used, which only 
contains a fully connected layer with no activation 
function. 

Here are the specific differences: 
1. Different class definitions of the neural 

network model. 

ComplexModel Contains three fully connected 
layers (fc 1, fc 2, fc 3) and the ReLU activation 
function.SimpleModel It contains only one fully 
connected layer (fc). 

2. In the main function main (), the classes of 
initialized global and local models are different: 

In the new code, use the ComplexModel.In the 
old code, use the SimpleModel. 

Other parts of the code, including data loading, 
client-side model training, model aggregation, and 
testing, remain unchanged. This means that the two 
codes implement the same federated learning 
framework, but the complexity of the neural network 
model trained on the client side varies. 

The experimental results are shown in Table 10. 
On the FMNIST data set, the mean value of the new 
model loss value was 0.0182. On the FMNIST data 
set, the proportion of correct sample numbers by the 
new model is (80.04%). 

Table 10: Experimental results of the optimized algorithm. 

Data set FMNIST
Experimental result Test set: Average loss: 0.0202, Accuracy: 7806/10000 (78.06%) 

Test set: Average loss: 0.0182, Accuracy: 8004/10000 (80.04%) 

 
Through experiments, after optimizing the code, 

it is sometimes found that theoretically, the accuracy 
of the code will increase, but in fact, the accuracy 
does not change significantly, even decreasing rather 
than rising. The following is the reason analysis: 

1. Learning rate: If the learning rate is not set 
appropriately, the model may fail to converge to the 
best solution. Too high a learning rate may cause the 
model to oscillate near the optimal solution, while 
too low a learning rate may lead to too slow 
convergence. 

2. Regularized Strength: In the code, the alpha 
parameter controls the intensity of the regularization 
term. If this parameter is set too high, it may lead to 
over-penalizing the model weights, thus hindering 
the learning process. If too low, it may not 
adequately prevent overfitting. 

3. Client data distribution: If the data distribution 
between clients is uneven (i.e., there is a Non-IID), 

the model may perform better on some clients and 
perform poorly on other clients, which will affect the 
accuracy of the global model. 

4. Model update aggregation: Aggregation 
methods may affect the performance of the global 
model. For example, simple averaging may not be 
the optimal aggregation method, especially in cases 
where the client data is evenly distributed. 

5. Number of training rounds: If the number of 
training rounds is too small, the model may not have 
enough time to learn the characteristics of the data. 

6. Batch size: Batch size affects the accuracy of 
gradient estimation and the stability of the training 
process. Batch processing too small can cause too 
much noise, while batch processing too large can 
cause memory problems or slow training. 

7. Code change: Any code change can cause 
unexpected side effects. For example, if data loading 
or preprocessing steps are optimized, data leakage 
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may have been accidentally introduced or data 
distribution changed. 

8. Randchasticity (Randomness): Due to the 
randomness of initialization weights, data shuffling 
and other factors, multiple runs may get different 
results even under the same setting. 

Therefore, in practical application, the 
optimization of one model should take into account 
the influence of one parameter on another parameter. 
When optimizing the model, it is best to adjust 
multiple parameters at the same time, and the 
experimental effect will be better than adjusting only 
a single parameter. 

5 CONCLUSION 

It is worth noting that this study has some limitations. 
This experiment only constructed a simple algorithm 
model, which is only used as a code repetition of 
FedDyn algorithm theory. However, in practice, the 
FedDyn algorithm model is much more complex, 
and more factors and challenges need to be 
considered. For example, issues such as data 
distribution, communication delays between clients, 
privacy protection, and security all need to be fully 
considered. Moreover, to improve the performance 
and generalization capabilities of the models, more 
complex neural network structures, optimization 
algorithms, and regularization techniques may be 
required to be used. Alternatively, the datasets in 
practical application may be larger and more 
complex than the datasets are used in this study. This 
requires more computational resources and more 
efficient algorithm design to handle large-scale 
datasets. In addition, the FedDyn algorithm may also 
need to be integrated with other techniques and 
methods in practical applications. For example, 
problems such as model aggregation, client selection, 
and task scheduling in federated learning all need to 
be considered comprehensively. 

Future studies could further explore the 
following aspects:  

1. Algorithm optimization: In practical 
application, the performance and efficiency of the 
FedDyn algorithm can be further optimized. For 
example, researchers can explore more efficient 
model aggregation methods, client-side selection 
strategies, and task scheduling algorithms to 
improve the convergence speed and accuracy of the 
model. 

2. Privacy protection: Privacy protection in 
federal learning is an important issue. Future studies 
could explore how to train and update models while 

protecting user privacy effectively. This may involve 
further research in areas such as differential privacy 
technology, encryption computing, and secure 
multi-party computing. 

In conclusion, future studies can further explore 
and improve various aspects of the FedDyn 
algorithm to improve its performance, privacy 
protection, and scalability and apply it to a wider 
range of practical scenarios. This will bring greater 
development and innovation to the field of federated 
learning and distributed machine learning. 
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