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Abstract: This article describes an open-source quantum-resistant network traffic encryptor for the Linux platform. Our
encryptor uses a combination of quantum and post-quantum key establishment methods to achieve quantum re-
sistance combined with a fast encryption speed of AES to make quantum-resistant encryption readily available
to the public. The packet-by-packet encryption architecture ensures that every bit of information is properly
authenticated and encrypted. The combination of multiple key sources further increases the encryptor’s secu-
rity – be it elliptic curve-based (Elliptic Curve Diffie Hellman, ECDH), quantum (Quantum Key Distribution,
QKD) or post-quantum (CRYSTALS-Kyber). Without knowing all the keys obtained from different types of
key sources, the final hybrid encryption key can only be obtained by brute-force means. Our contribution is
very practical as the encryptor has reasonable performance, despite not being part of the Linux kernel.

1 INTRODUCTION

There are two ways to achieve quantum-safe key es-
tablishment to build a secure communication chan-
nel. The first approach is using Quantum Key Dis-
tribution (QKD) that requires usually expensive end
devices and provides only key establishment between
two end points. The second approach is deploying
more flexible post-quantum cryptography (PQC) that
enables a quantum-resistant key establishment, offers
algorithms for digital signatures, and is simple to de-
ploy on general computing platforms.

The aim of this work is to support the expansion
of the usage of quantum-resistant cryptography by a
wider public and small and medium-sized companies.
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2 STATE OF THE ART

Commonly used security protocols for traffic encryp-
tion nowadays use either integer factorization or dis-
crete logarithm problems to establish encryption keys
for fast symmetric ciphers. For example, a secure
connection to a web page uses the SSL/TLS protocol,
which usually utilizes RSA for authentication, Diffie-
Helmann key exchange, and AES for the actual pay-
load encryption. The mentioned algorithms have sev-
eral variants, and the resulting cipher suites are agreed
upon between the communicating end nodes in the
handshake stage of the protocol.

Similar methods are also used for other secure
channel establishment protocols, including Virtual
Private Networks (VPN), such as IPSec (Frankel and
Krishnan, 2011), OpenVPN1 or WireGuard2.

2.1 Quantum-Resistant Encryption
Solutions

There have already been a few quantum-resistant
encryptors released on the market, including varia-

1https://openvpn.net/
2https://www.wireguard.com/
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tions of OpenVPN and WireGuard. The OpenVPN
variant uses Frodo or SIKE algorithms for key ex-
change. Both of these algorithms were submitted to
the NIST’s Post-Quantum Cryptography Standardiza-
tion project, but none of them were chosen for stan-
dardization, and SIKE was even found to be inse-
cure. PQ-WireGuard uses a combination of two Key
Encapsulation Mechanisms (KEM), namely Classic
McEliece and a passively secure variant of Saber.

Generally, post-quantum VPN software and hard-
ware solutions are also offered by security ven-
dors, e.g., QuantumNova’s QS-P Network3, or Ex-
pressVPN‘s Lightway4. The system called FSP3000
ConnectGuard 5 claims to be the first in the world (as
of July 2021) to provide the Layer 1 encryption for
high-speed optical networks (up to 400 Gbit/s) with
post-quantum cryptography support. Further, the Rib-
bon’s Apollo solution6 also provides the layer 1 op-
tical encryption with AES-256-GCM and the paral-
lel operation of a post-quantum cryptography key ex-
change mechanism similar to the Diffie-Hellman pro-
tocol. Nevertheless, closer specifications of those en-
cryptors are usually not public.

2.2 Related Work

Currently, several research works deal with PQC de-
ployment in VPN and security protocols. For exam-
ple, in 2019 van Heesch et al. (van Heesch et al.,
2019) described how OpenVPN and OpenSSL can
be configured to establish quantum-safe connections,
and provided the performance analysis of PQC KEMs
and signatures on OpenVPN in TLS 1.2 and TLS
1.3. In 2022, Bae et al. (Bae et al., 2022) deliv-
ered state-of-the-art performance evaluation results of
PQC algorithms in the IPsec protocol, namely, in the
strongswan library implementation. They showed the
trade-offs between the security level and performance
of PQC algorithms in the IPsec protocol. In 2022,
Marrok et al. (Marrok et al., 2022) presented a hybrid
cryptography approach to integrate post-quantum se-
curity into VPN protocols. Their approach utilizes the
Kyber KEM in combination with the WireGuard VPN
protocol.

Recently, Cano Aguilera et al. (Aguilera et al.,
2023) introduced a quantum resilient secure end-to-
end communication solution based on PQC algo-
rithms between two data-processing units (DPU) em-
ploying on-board ARM processors in 2023. They
used CRYSTALS-Kyber (Avanzi et al., 2019) for

3https://quantumnova.xyz/itsolutions/offer/pqvpn
4https://www.expressvpn.com/lightway
5https://www.adva.com/
6https://ribboncommunications.com/

KEM, CRYSTALS-Dilithium (Ducas et al., 2018) for
signing, and AES-256 for encryption. While they
used DPUs on servers for the acceleration of PQC
schemes, they did not investigate a hybrid approach.

Another relevant work published by Schatz et al.
(Schatz et al., 2023) in 2023 dealt with combin-
ing orthogonal methods for quantum-resistant key ex-
changes, i.e., PQC, quantum key distribution (QKD)
and multipath key reinforcement (MKR) in IKE pro-
tocols. They presented mainly the design of the
IKE proxy concept for virtual private networks in the
quantum era and concrete steps for key combining.
However practical implementation and performance
results were not provided.

2.3 Contribution

In this article, we describe our open-source imple-
mentation of a site-to-site quantum-resistant network
traffic encryption system for Linux platforms. Our
system uses both quantum and post-quantum cryp-
tography algorithms, which are currently chosen for
standardization by NIST 7, as a quantum-resistant key
establishment. Established keys are combined into
a hybrid key, which provides another layer of secu-
rity: Without the knowledge of each component, the
attacker is unable to calculate the hybrid key. The
payload itself is encrypted with the AES symmetric
algorithm for faster encryption speed. The main con-
tribution of the paper is the fast open-source imple-
mentation of the encryptor including the PQC and
QKD methods, and practical evaluation of the result-
ing software in real networks. Our implementation is
very simple to deploy and freely accessible at (Tuma
and Havlin, 2024). By sharing our implementation
and this paper, we follow the main objective, which
is the support of PQC deployment and integration in
practice.

3 PROPOSED ARCHITECTURE

In this section, we present the cryptographic architec-
ture of our site-to-site encryption system, that is de-
picted in Fig. 1 as Encryption Gateways. We also de-
scribe our design goals and selection of cryptographic
primitives.

3.1 Design Goals

During the creation of the cryptographic architecture,
we considered the following main design goals:

7https://csrc.nist.gov/projects/post-quantum-cryptogr
aphy/post-quantum-cryptography-standardization
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Figure 1: General Architecture.

• Post-Quantum Security: Our approach com-
bines quantum-resistant schemes mitigating the
risk of quantum attacks. Moreover, we deployed
only cryptographic primitives that have no known
vulnerabilities and are considered secure for the
medium-term future. Our encryptor achieves
IND-CCA security against quantum adversaries.

• Compliance: Only primitives that comply with
the recommendations of renowned authorities are
used in our implementation.

• Cryptographic Flexibility: Cryptographic flexi-
bility means easy and fast replacement of crypto-
graphic components in case any weaknesses arise.
Should an algorithm become vulnerable, it must
be easy to replace without affecting the remaining
components in the resulting system.

3.2 Selected Primitives

We list all the necessary components of the hybrid key
establishment system. Our system is composed of:

• Quantum Key Distribution (QKD) Key
Source: Our system is compatible with any QKD
system that can provide keys in JSON format
through its API using the ETSI GS QKD 014
standard (ETSI, 2019).

• Classical Cryptography Key Source: Key
source can be used along with other key sources or
used instead of a QKD key source to remove the
dependency on expensive hardware – this makes
the encryptor a more viable solution from a mar-
ket point of view. Elliptic-Curve Diffie Hellman
was selected as it represents the current standard
for key establishment. Our encryptor uses a 512-
bit implementation of the sect571k1 curve.

• PQC Key Source: CRYSTALS-Kyber (Avanzi
et al., 2019) was selected as the post-quantum
source of keys. CRYSTALS-Kyber is currently
the only key establishment mechanism approved
for standardization by the NIST PQC competi-
tion. The system uses the Kyber-768 implemen-

tation, which aims to be as secure as AES-192.
Key sizes are 1184 bytes for the public key and
2400 bytes for the secret key. Our system estab-
lishes two shared secrets via CRYSTALS-Kyber,
which are then used in encryption and decryption
key derivation. Encryptor currently lacks a quan-
tum resistant authentication mechanism as public
keys are not backed by certification authorities or
chain of trust. One way to mitigate the possibility
of man-in-the-middle attacks is to use long-term
pre-shared public keys.

• Symmetric Block Cipher: We use the Ad-
vanced Encryption Standard (AES) algorithm in
the Galois-Counter Mode (GCM) which provides
both confidentiality and integrity of transferred
data. The 256-bit variant is considered quantum
safe (Bonnetain et al., 2019).

• Key Management System: the Key Management
System (KMS) provides the logic for the deriva-
tion and updating of encryption and decryption
keys. Data encrypted with AES-GCM-256 should
be encrypted using a unique combination of the
{nonce, key} pair. This property is achieved with
periodic key updates.

3.3 Practical Implementation

The implementation of our system is divided into
server and client sides of communication. The im-
plementation can be divided into four components.

• Key Establishment: The system establishes
three keys – one with QKD, one with ECDH,
and one with PQC. The QKD key is obtained
through REST APIs from QKD servers. Every
key from the QKD source comes with an ID to
ensure that both sides receive the same key. The
client sends GET request to QKD-Alice to ob-
tain the key and key ID, which is transferred to
the server. The server sends POST request with
the key ID to QKD-Bob, and receives the same
key as the client. The classical asymmetric key
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is obtained by ECDH-512 key exchange on the
sect571k1 curve. The PQC key is obtained with
CRYSTALS Kyber-768 key encapsulation mech-
anism. The client generates public and private
keys. The public key is sent to the server. The
server generates a 256-bit secret, encrypts it with
the client’s public key, and sends the encrypted se-
cret to the client. The client decrypts the message
with the private key, resulting in both parties ob-
taining the same key. The library used for CRYS-
TALS Kyber can be found at (Roy, 2023).

• Key Combining: The established keys are com-
bined into one hybrid key. The key combina-
tion ensures that even with the compromised in-
put key, an attacker is still unable to decrypt the
communication between the endpoints. The com-
biner uses the 512-bit version of SHA3 as the
hash function (SHA3) and as the basic compo-
nent in the HMAC function. The combiner takes
the established keys from the partial key establish-
ment methods (K1 from Kyber, K2 from ECDH,
K3 from QKD) and publicly known values trans-
ferred during these methods as inputs. The chosen
3-key combiner method is described in Ricci et
al. (Ricci et al., 2024) that compared the benefits
and drawbacks of eleven combiner methods from
simple XOR and PRF approaches to more robust
nested PRF approaches. The brief comparison of
various key combiners and their security robust-
ness can be also found in (Rossi, 2023). The com-
biner is based on the extension of the dual-PRF
combiner to work with three keys as inputs. This
is the simplest known construction to work with
three keys as inputs that is secure in the quan-
tum standard model and is indistinguishable under
Chosen-Ciphertext Attack (IND-CCA). The full
description, comparison, and security analysis of
the 3-key combiner method can be found in (Ricci
et al., 2024).

• Packet Encryption: Our system utilizes virtual
interfaces to intercept packets for secure trans-
fer. Packets are encrypted with the AES-GCM-
256 algorithm utilizing the hybrid key described
above. AES-GCM-256 uses 16-byte long nonce
value and 16-byte long message authentication.
Every packet is encrypted individually and trans-
ferred through a public network in a tunneling
fashion. Encrypted packets are transferred using
the UDP protocol between the gateways. The en-
crypted packet structure is depicted in Figure 2.
AES-GCM was implemented with the Crypto++
library found at (Wei, 2023).

• KMS – Rekey: Due to the properties of AES-
GCM, the same combination of key and nonce

Figure 2: Encrypted packet structure.

cannot be used for encryption indefinitely. Be-
cause of this, our system implements a rekeying
mechanism. Rekeying obtains a new key from the
QKD system and combines it with the PQC key,
which results in a new hybrid key to be used for
encryption. AES-GCM can encrypt a maximum
of 232 messages before rekeying. Considering the
packet size of 1500 bytes and encryption speed
of 1 Gbps, the encryptor needs to change the key
at least once approximately every 14 hours8. The
rekeying mechanism is by default triggered every
hour.

3.4 System Architecture

Our system architecture deploys software implemen-
tations of a client and a server (labeled as trust zones).
Encryptor implementation uses two network inter-
faces. The first interface is used for communication
between encryptor parts and encrypted data trans-
fer. The second interface provides a connection to
the internal network and source of quantum-generated
keys. The connection between the QKD points uses
its own optical connection. Key-generation blocks
(Kyber and QKD) generate independent 256-bit keys,
which are then forwarded to the key combiner. The
key combiner combines the keys and outputs the 256-
bit hybrid encryption and decryption keys. Keys are
used by AES for data encryption.

4 PERFORMANCE

This section presents the measured performance re-
sults such as throughput, delay, and the influence of
rekeying.

• Throughput is one of the main properties of ev-
ery encryption system. Our system was tested in
a virtualized environment to eliminate transfer de-
lays between the communicating parties as much
as possible. The whole architecture was virtual-
ized using VirtualBox9 and Intel Core i7 1065G7
Ice Lake processor. The testing scenario was site-

81500 ·8 ·232/109/3600≈ 14.31h
9https://www.virtualbox.org/

Open-Source Post-Quantum Encryptor: Design, Implementation and Deployment

829



to-site with 2 gateways and 2 clients. The gate-
ways were given 2 threads each, and the clients
were given 1 thread each. Throughput was mea-
sured with iperf310 over the course of 30 minutes,
and compared with other popular encryption solu-
tions. The results can be seen in Figure 3. The en-
cryptor performed better than OpenVPN, which is
limited to running on one thread only, but still was
no match for Wireguard and its low-level compo-
nent implementation within the Linux kernel.

Figure 3: Throughput measurement.

• Round-Trip Time (RTT) is the time from signal
transmission until receiving the response. Figure
4 displays a comparison between the solutions;
the presented values are averages of 15 consec-
utive pings.

Figure 4: Round-trip time measurement.

Our encryptor has a significantly greater RTT
compared to other solutions. This is caused by
the encryptor scalability logic – the main program
thread creates encryption threads upon data re-
ceipt, which is a source of increased RTT.

• Rekeying: The encryptor changes encryption
keys regularly, which causes packets sent during
this process to fail the integrity check due to a key
mismatch.

5 CZECH-ESTONIAN PILOT

To evaluate the software in a real deployment, we se-
lected geographically distant areas (Czech Republic
and Estonia) and established a quantum-safe commu-

10https://iperf.fr/

nication channel between them. The challenges of
selecting distant locations are a higher delay and a
much higher probability of packet reordering, which
both may cause significant problems in data transmis-
sion, in particular of voice and live video. We selected
Nextcloud Talk, an open-source live collaboration so-
lution, as the application to test a high-volume trans-
mission.

5.1 Architecture and Setup

We began with configuring virtual machines (4 virtual
CPU, 4 GB of RAM and 40 GB of disk space) on both
sides with connectivity to target pilot participants. Af-
terwards, the Post-Quantum Encryptor repository was
cloned on both virtual machines and the software was
installed using available scripts setting the other net-
work’s address spaces as an argument. Then, we have
established an additional networking route rule at the
Nextcloud Server as well as the participants’ comput-
ers. Without it, the devices would try to send packets
(targeted to the other network) to the default gateways
which would not know what to do with them. Next,
we have lowered the Maximum Transmission Unit
(MTU) value on the Nextcloud Server, participant’s
computers, and the TUNTAP interfaces on both vir-
tual machines to ensure the transfer of the encrypted
packets (with additional header) over the internet.

5.2 Demonstration and Performance

In order to demonstrate the functionality of the en-
cryptor, we have conducted both a voice call and
a video call between two participants using the
NextCloud Talk feature. Both test instances were sta-
ble and without any voice or video stutters.

The key establishment described in section 3.3
(excluding QKD keys) took on average 213.1 ms with
a standard deviation of 5.4 ms on one machine, and
163.2 ms with a standard deviation of 2.1 ms on the
other machine. Differences between machines are
most probably caused by having access to different
CPU models.

Round Trip Time between two machines (using
an ICMP echo and reply) averaged at 48.3 ms with a
standard deviation of 0.6 ms.

6 FUTURE EXTENSIONS

In this section, we list potential future extensions:

• Kernel Module: The system could be imple-
mented as a kernel module to eliminate switching
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between the user and kernel spaces, thus increas-
ing the throughput of the file transfer.

• Authentication Improvement: Authentication of
the encryptor sides is not currently quantum re-
sistant if pre-shared PQC keys are not used. This
extension would add a certification authority and
certificates with PQC elements for authentication
to mitigate the potential man-in-the-middle at-
tacks by a quantum adversary.

• Hardware Acceleration: The software may
be adapted to be compatible with hardware-
accelerated solution described in (Ricci et al.,
2024).

7 CONCLUSION

In this article, we introduced an open-source
quantum-resistant encryption system for real-time
data transfer that can be used in site-to-site settings.
The system utilizes a combination of several differ-
ent quantum-resistant key-establishment methods to
add extra layers of security. The software can be used
as a low-cost demonstrator and experimental tool for
testing PQC. This could also be used for system
demonstration to companies seeking high throughput
before purchasing high-speed solutions like FPGA-
accelerated solutions. Therefore, it serves as a tool to
raise awareness and support of post-quantum cryptog-
raphy deployment and integration to existing systems.
The implementation of the proposed system is freely
accessible at (Tuma and Havlin, 2024).
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