
Advanced Chinese Rap Lyric Generation with Integrated Markov

Chain and LSTM Models

Songwei Li
 Computer Science, New York University, New York, U.S.A.

Keywords: Chinese Rap Generator, Markov Chain, Long Short-Term Memory, Jieba.

Abstract: This paper aims to innovatively generate Chinese rap lyrics using advanced machine learning technologies,

specifically Markov Chains and Long Short-Term Memory (LSTM) models. The project begins with the

comprehensive collection and cleaning of Chinese rap lyrics data, covering key steps in data preprocessing,

including word segmentation and tagging using Jieba. In the development phase of the two models, I first

constructed a Markov Chain model based on enhanced tag analysis for basic lyric generation. Subsequently,

I built an LSTM model that predicts the next word in a sequence by learning from sequences of lyrics. For

this, I prepared the data by converting lyrics into sequences of tokens and creating corresponding labels for

LSTM training. The architecture of the LSTM model was carefully designed to suit the needs of text

generation, including embedding and LSTM layers. Additionally, I trained this model, adjusting

hyperparameters to achieve optimal performance. In the testing and evaluation phase, I assessed the

uniqueness and coherence of the Markov Chain model. For the LSTM model, I used quantitative metrics such

as Perplexity or BLEU scores to evaluate the linguistic quality of the generated lyrics, assessing the creativity,

thematic consistency, and overall appeal of the LSTM generated lyrics.

1 INTRODUCTION

Language models play a crucial role in the fields of

artificial intelligence and natural language

processing, particularly in the prediction and

generation of text. Traditional language models rely

on statistical methods to predict the probability

distribution of word sequences, while modern models

increasingly utilize deep learning techniques to

process and generate language in more complex and

efficient ways. Against this backdrop, lyric

generation, as a special form of text generation, holds

significant importance not only for technological

development but also for cultural and artistic

expression.

The Markov Chain model, a probabilistic model,

typically relies on analyzing and predicting the

probability of word sequences for lyric generation.

While effective for simple text generation tasks, it

may lack in logical coherence and thematic

consistency. In contrast, the Long Short-Term

Memory (LSTM) model, a type of advanced

Recurrent Neural Network (RNN), can learn and

process complex language structures and long-term

dependencies through its unique gating mechanism,

making it more effective in generating deep and

creative lyrics. The significance of lyric generation

lies not just in technological innovation but also in

cultural and artistic aspects. Lyrics generated through

machine learning can provide new sources of

inspiration for music composition, especially in

exploring new themes and styles. This technology can

help artists overcome creative barriers and stimulate

innovative thinking, thus promoting the development

of music and culture. It also provides researchers with

a unique perspective to understand and analyze

language and its application in music, further

fostering interdisciplinary research and collaboration

(Whittaker and Thomason 1994, Privato et al 2022 &

Ye 2000).

In summary, the application of Markov Chains

and LSTM models in lyric generation not only

demonstrates the power of deep learning technology

in handling complex language tasks but also opens

new possibilities for music creation and cultural

expression. The development and application of these

technologies indicate the future direction of natural

language processing and artificial intelligence, while

also carving out new realms for artistic creation and

Li, S.
Advanced Chinese Rap Lyric Generation with Integrated Markov Chain and LSTM Models.
DOI: 10.5220/0012842800004547
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Data Science and Engineering (ICDSE 2024), pages 371-376
ISBN: 978-989-758-690-3
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

371

cultural research (Nazarko 2021). The main work of

this project can be summarized as follows.

(1) Data Collection and Preprocessing: The

project team will comprehensively collect data on

Chinese rap lyrics and perform necessary cleaning

and preprocessing. This includes removing noise

data, standardizing text formats, and using tools like

Jieba for word segmentation and tagging, ensuring

the quality and applicability of the data.

(2) Development and Implementation of Two

Models: The core part of the project is the

development of two different language models - the

Markov Chain model and the Long Short-Term

Memory (LSTM) model. For the Markov Chain

model, the focus will be on basic lyric generation

based on tag analysis; while the LSTM model will

concentrate on using deep learning technology to

learn and predict complex lyric sequences, generating

richer and more coherent lyrics.

(3) Testing, Evaluation, and Iterative

Improvement: After the development of the models,

comprehensive testing and evaluation of both the

Markov Chain model and the LSTM model will be

conducted. This includes using quantitative metrics

(such as Perplexity or BLEU scores) and qualitative

analysis (such as expert reviews) to assess the

language quality, creativity, thematic consistency,

and overall appeal of the generated lyrics. Based on

these evaluation results, further iterative

improvements of the models will be made to optimize

performance and output quality. Additionally, the

integration of the strengths of both models will be

explored to achieve more efficient and innovative

lyric generation.

2 METHODS

2.1 Markov Chains

Markov Chains are mathematical models used to

predict the probability of a system transitioning from

one state to another (Ma et al 2021). These models are

based on a key assumption known as the

"memoryless" property or "Markov property," which

posits that the future state of a system depends only

on its current state and not on its previous history. In

Markov Chains, each possible state has a certain

probability of transitioning to another state within the

system. These transition probabilities are typically

represented using a matrix, known as the transition

matrix.

Suppose I have a set of states 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛},

where each 𝑠𝑖 represents a possible state. The

transition matrix 𝑃 of a Markov Chain is an 𝑛 × 𝑛

matrix, where 𝑃𝑖𝑗 represents the probability of

transitioning from state 𝑠𝑖 to state 𝑠𝑗 . Hence, the

transition matrix can be represented as:

𝑃 = [
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

] (1)

For any 𝑖, the transition probabilities satisfy the

following condition:

∑ 𝑃𝑖𝑗

𝑛

𝑗=1

= 1 (2)

This means that the total probability of

transitioning from any state to any other state in the

system must equal 1.

When applying Markov Chains to lyric

generation, each state can represent a word or phrase.

The transition matrix then defines the probability of

moving from one word to another. In this way, the

next word can be predicted based on the current word,

thereby gradually building the lyrics of a song. The

advantage of Markov Chains in this process lies in

their simplicity and ability to capture short-term

dependencies in a sequence. However, they typically

cannot handle long-term dependencies, which can be

a limiting factor in complex lyric structures.

2.2 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a special type

of Recurrent Neural Network (RNN) designed to

address the difficulties standard RNNs have in

handling long-term dependencies (Ma et al 2021).

LSTMs introduce unique "gate" structures (including

input gates, forget gates, and output gates) that

effectively maintain information over sequences,

allowing them to capture dependencies over extended

periods. Each gate within an LSTM unit has a specific

computation method. Here are the fundamental

formulas for these gates and the cell state updates.

Forget Gate 𝑓𝑡 : Determines what information to

discard. It computes this based on a combination of

the input 𝑥𝑡(current input) and ℎ𝑡−1(previous hidden

state):

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3)

Input Gate 𝑖𝑡 and Candidate Values 𝐶�̃� : Decide

what new information to store in the cell state. The

input gate decides which values will be updated, and

ICDSE 2024 - International Conference on Data Science and Engineering

372

the candidate values are the new information that

might be added to the cell state.

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4)

𝐶�̃� = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (5)

Cell State Update 𝐶𝑡: The old information 𝐶𝑡−1 is

partly forgotten through the forget gate, and new

candidate values are added.

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� (6)

Output Gate 𝑜𝑡 and the Final Hidden State ℎ𝑡: The

output gate decides what part of the content to output,

and the hidden state is based on the updated cell state.

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (8)

In these formulas, 𝜎 represents the Sigmoid

activation function, 𝑡𝑎𝑛ℎ is the hyperbolic tangent

activation function, 𝑊 and 𝑏 are the weights and

biases learned during training, and ∗ indicates

elementwise multiplication.

The application of LSTM in lyric generation

effectively handles long-term dependencies,

something traditional Markov Chain models cannot

achieve. By learning the sequence patterns of lyrics,

LSTM can predict the next word or phrase, generating

lyrics coherent in theme, style, and emotion. This

capability makes LSTM particularly suited for

complex and creative text generation tasks, such as

lyric writing, where long-term memory of past

information is crucial.

3 DATASETS

I will delve into the steps of data preprocessing, a

crucial prerequisite for building machine learning

models. My first task was data collection,

accomplished by cloning a dataset containing

Chinese hip-hop lyrics from a GitHub repository

(Djwackey 2021). This dataset is organized in JSON

files, with each file containing several songs. Then, I

preprocess the data using Jieba to tokenize the words

and eliminate the punctuation. The purpose of this

step was to facilitate the clear identification of song

boundaries in subsequent processes. All the formatted

lyrics were appended to a text file, thereby creating a

large lyric text corpus for model training, with each

song’s lyrics separated by a ‘EOS‘ marker. These

preprocessing steps ensured that the data was clean

and structured, providing a well organized foundation

for the model to learn from. Subsequent data

processing might also include segmentation of

vocabulary, removal of stopwords, and normalization

to lowercase to further enhance the quality of the

dataset.

4 EXPERIMENT

4.1 Markov Chain

In the process of constructing a Markov Chain based

model, I begin by reading text data stored in a file:

accepting the file, reading the content, and returning

it. Subsequently, I utilizes the ‘jieba‘ library for

Chinese word segmentation, effectively breaking

down continuous Chinese text into individual words.

This step is crucial for Chinese data as Chinese text

typically lacks the clear word delimiters, such as

spaces, found in English. Next, I create a Markov

Chain by traversing the list of words generated after

segmentation, mapping each word to a list that

contains the potential subsequent words. The

dictionary thus constructed forms a Markov Chain,

defining a series of potential successors for each

word, thereby reflecting the probabilistic transitions

between words. Then, I can generate new text with

the constructed Markov Chain. This function

randomly selects a starting word from the chain, then

randomly chooses the next word based on the current

one, repeating this process until a text of the specified

length is produced. This method allows the generated

text to appear coherent and logical. Lastly, the code

sets a file path and sequentially calls the above-

defined functions, starting with reading the text

content, proceeding through segmentation and

Markov Chain construction, and ultimately

generating a text sequence of 50 words in length.

4.2 LSTM

Initially, the script prepares the data by reading a text

file and segmenting it into words using ‘jieba‘, a

Chinese word segmentation tool. Word segmentation

is a crucial step in processing Chinese text data, as,

unlike English, which is delimited by spaces, Chinese

requires specialized handling to delineate words.

After segmentation, a sequence of words from the text

data is obtained. Subsequently, a vocabulary is built

by aggregating all unique words and creating

mappings from words to indices and indices to words,

laying the groundwork for the digital encoding of text

data. These indices will later be used in an embedding

layer, which serves to convert words into a

Advanced Chinese Rap Lyric Generation with Integrated Markov Chain and LSTM Models

373

continuous vector format that the model can process.

The words in the text are then converted to

corresponding index sequences. On this basis, input

sequences and labels required to train the model are

generated. Each input sequence consists of a series of

consecutive word indices, while the label is the index

of the next word in the sequence. These sequences are

then converted into PyTorch tensors for model

processing.

Once the data is prepared, the script splits the

dataset into training and testing sets according to a

specified ratio and creates a mechanism for batch

processing the data. In the model construction part,

the core of the LSTM network includes an embedding

layer, an LSTM layer, and a fully connected layer.

The embedding layer transforms word indices into

dense vector representations, the LSTM layer is

responsible for processing sequence data and learning

long-term dependencies, and the fully connected

layer converts the LSTM layer’s output into the final

predictive output.

After the model is constructed, hyperparameters

are set, as they significantly impact the model’s

performance. The embedding dimension is set to 128;

the number of hidden units in the LSTM layer is set

to 256; and the output dimension is set to 10000. The

model is then instantiated, using cross entropy loss

function and optimizer where learning rate is set to

0.001, and it is ready to be trained. For data loader,

the batch size is set to 64.

The training process encompasses several epochs,

each involving iterative optimization of the data in the

training set. During this process, the model’s weights

are updated by computing the loss and performing

backpropagation. Additionally, the script periodically

outputs the loss and perplexity to monitor the model’s

training progress. After completing an epoch of

training, the model is switched to evaluation mode to

verify its performance on the test set, with accuracy

reported. All code used in Python 3.8 and Pytorch 2.0

(Imambi et al 2021).

4.3 Experiment

4.3.1 Embedding Dimension

This is the dimension of the embedding layer in the

model, which determines the size of word vectors. In

this experiment, the embedding dimension is set to

128. This means that each vocabulary word is

transformed into a 128-dimensional vector. However,

I also tried dimensions such as 512, 348, 748, and so

on.

4.3.2 Hidden Units in LSTM Layer

This represents the dimension of the hidden states in

the LSTM layer. In the code, this value is set to 256.

It signifies the number of memory units in the

network, and at each time step, the LSTM outputs a

256-dimensional hidden state vector.

4.3.3 Vocabulary Size

The size of the vocabulary, where each dimension

corresponds to a specific word. In this project, the

output dimension equals vocab_size, which is the

total number of words in the vocabulary, and its

specific value depends on the size of the vocabulary

constructed during the data preprocessing steps (Liu

et al 2019). The results of different stages in the

training process are shown in Table 1.

Table 1: Perplexity at Different Epochs.

Epoch Perplexity

1 107.4

2 64.2

3 17.2

4 10.2

5 5.1

6 2.2

4.4 Result

The evaluation of the LSTM model’s performance

over various training epochs is depicted through the

generated text samples and a Table 1 detailing the

model’s perplexity scores. The text generated after

training the LSTM (Sengupta et al 2023 & Yu et al

2019 model showcases a significant improvement in

the coherence and thematic consistency of the

content. Initially, the sentences might have appeared

somewhat disjointed and lacked logical progression.

However, as the model progressed through the

epochs, there’s a discernible enhancement in the

structure and flow of the generated text. This

indicates that the LSTM model has learned to predict

more accurate word sequences after being trained on

the dataset. The perplexity scores, which measure

how well a probability model predicts a sample, also

reflect the model’s increasing proficiency. A high

perplexity score indicates poorer predictive power,

ICDSE 2024 - International Conference on Data Science and Engineering

374

whereas a lower score signals better predictive

capability. From the Table 1, I observe a steep decline

in perplexity from 107.4 in the first epoch to 2.2 by

the sixth epoch. This dramatic decrease signifies that

the model has become significantly better at

predicting the next word in a sequence, representing

a substantial leap in learning from the data. This

improvement in perplexity scores correlates with the

qualitative improvements seen in the generated text

samples. Initially, the model may produce text with

less relevance and randomness, as evidenced by

higher perplexity. But as the model trains and the

perplexity decreases, the output becomes more

coherent and contextually appropriate. This is a

typical observation in LSTM models, as they are

well-suited to capture and utilize the long-term

dependencies within the text data, which is crucial for

generating meaningful language sequences. The blue

scores of both LAST models and Markov chain

models are relatively low, since the models at the

stage of generating consecutive words instead of

sentences. However, the words in a sentence

generated by the LSTM model can be easily put into

the same context while the relationship of each word

generated by Markov chain model is relatively weak.

In summary, the LSTM model has demonstrated

a promising ability to learn from the corpus of

Chinese rap lyrics. The generated text samples,

although limited, suggest that the model is capturing

the nuances of the language and the style of the genre.

Meanwhile, the quantitative reduction in perplexity

offers a concrete measure of the model’s evolving

competence. Together, these outcomes underscore

the LSTM’s potential in natural language generation

tasks and its effectiveness in modeling complex

language patterns.

5 CONCLUSION

In this paper, I have successfully developed and

trained a Long Short-Term Memory (LSTM)

network-based language model for generating

Chinese rap lyrics that exhibit thematic coherence and

logical structure. Evaluating the model’s performance

across various training epochs, I observed a

significant enhancement in its predictive capabilities,

evidenced by both the improved quality of generated

text samples and a marked reduction in perplexity.

The initial generated text may have lacked coherence

and logic, but with continued training, the quality of

the text substantially improved. Perplexity dropped

from 107.4 in the first training epoch to 2.2 by the

sixth epoch, indicating a substantial increase in the

model’s effectiveness in learning from the data. The

conclusion drawn is that LSTM models are highly

suitable for processing and generating complex

language patterns, especially in natural language

generation tasks that require an understanding of

long-term dependencies. My model demonstrated the

potential to capture the unique rhythm and style of

Chinese rap lyrics and progressively learned to

generate new, creative lyrical content throughout the

training process. For future work, I plan to extend and

deepen my efforts in several areas:

(1) Model Structure Optimization. Although the

current LSTM model has shown promising

performance, I believe that deeper neural network

architectures or the introduction of more advanced

models, such as Transformers or BERT, could further

improve the quality of text generation.

(2) Hyperparameter Tuning. I will explore a

broader hyperparameter space to find a more

optimized model configuration. Additionally,

considering the significant impact of different

embedding dimensions on model performance, I aim

to employ automated hyperparameter search

methods, like Bayesian optimization, to determine the

optimal settings.

(3) Dataset Expansion. To enhance the model’s

robustness and generalization ability, I plan to collect

and integrate a more diverse set of Chinese rap lyrics

data. Moreover, incorporating other forms of Chinese

textual data may help the model learn richer language

patterns.

(4) Creativity Assessment. I will develop new

metrics to quantify the creativity and diversity of the

lyrics generated by the model. While current

perplexity metrics focus on prediction accuracy, I

hope to more comprehensively assess the quality of

generated text in the future.

(5) Interactive Generation Tools. Ultimately, I

aim to develop an interactive platform that allows

users to input specific themes or keywords and have

the model generate corresponding lyrics. This will

make the model more engaging and practical for real-

world applications. By continuing to research and

improve, I believe that LSTM models and other deep

learning technologies will bring revolutionary

progress to the field of natural language processing,

particularly in natural language generation, in the

future.

REFERENCES

J. Whittaker, M Thomason, A Markov chain model for

statistical software testing, IEEE Transactions on

Advanced Chinese Rap Lyric Generation with Integrated Markov Chain and LSTM Models

375

Software Engineering, (IEEE Press, NY, 1994), pp.

812-824.

N. Privato, O. Rampado and A. Novello, “A Creative Tool

for the Musician Combining LSTM and Markov Chains

in Max/MSP”, in International Conference on

Computational Intelligence in Music, Sound, Art and

Design, (Stringer-Verlag, Berlin, 2022), pp. 228-242.

N. Ye, “A markov chain model of temporal behavior for

anomaly detection”, in Proceedings of the 2000 IEEE

Systems, Man, and Cybernetics Information Assurance

and Security Workshop, (United States Military

Academy, West Point, NY, 2000), 166, pp. 171-174.

K. Nazarko, Practical text generation using GPT-2, LSTM

and Markov Chain, Toward data science, (2021).

R. Ma, X. Zheng, P. Wang, The prediction and analysis of

COVID-19 epidemic trend by combining LSTM and

Markov method, Sci Rep 11, (2021).

Djwackey, Chinese-hiphop-lyrics,

https://github.com/djwackey/chinese-hiphop-lyrics.git,

(2021).

S. Imambi, K. B. Prakash, and G. R. Kanagachidambaresan,

Pytorch, Programming with TensorFlow: Solution for

Edge Computing Applications, (Springer Nature

Switzerland AG, Cham, 2021), pp. 87–104.

L. Liu, Y, Lin and J. Reid, Improving the Performance of

the LSTM and HMM Models via Hybridization, arXiv,

(2019).

A. Sengupta, A. Das and S. I. Guler, Hybrid hidden Markov

LSTM for short-term traffic flow prediction, arXiv,

(2023).

Y. Yu, X. Si, C. Hu and J. Zhang, "A Review of Recurrent

Neural Networks: LSTM Cells and Network

Architectures," in Neural Computation, (MIT Press,

Cambridge, 2019), 31(7), pp. 1235-1270.

ICDSE 2024 - International Conference on Data Science and Engineering

376

