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Abstract: This paper aims to innovatively generate Chinese rap lyrics using advanced machine learning technologies, 

specifically Markov Chains and Long Short-Term Memory (LSTM) models. The project begins with the 

comprehensive collection and cleaning of Chinese rap lyrics data, covering key steps in data preprocessing, 

including word segmentation and tagging using Jieba. In the development phase of the two models, I first 

constructed a Markov Chain model based on enhanced tag analysis for basic lyric generation. Subsequently, 

I built an LSTM model that predicts the next word in a sequence by learning from sequences of lyrics. For 

this, I prepared the data by converting lyrics into sequences of tokens and creating corresponding labels for 

LSTM training. The architecture of the LSTM model was carefully designed to suit the needs of text 

generation, including embedding and LSTM layers. Additionally, I trained this model, adjusting 

hyperparameters to achieve optimal performance. In the testing and evaluation phase, I assessed the 

uniqueness and coherence of the Markov Chain model. For the LSTM model, I used quantitative metrics such 

as Perplexity or BLEU scores to evaluate the linguistic quality of the generated lyrics, assessing the creativity, 

thematic consistency, and overall appeal of the LSTM generated lyrics.  

1 INTRODUCTION 

Language models play a crucial role in the fields of 

artificial intelligence and natural language 

processing, particularly in the prediction and 

generation of text. Traditional language models rely 

on statistical methods to predict the probability 

distribution of word sequences, while modern models 

increasingly utilize deep learning techniques to 

process and generate language in more complex and 

efficient ways. Against this backdrop, lyric 

generation, as a special form of text generation, holds 

significant importance not only for technological 

development but also for cultural and artistic 

expression.  

The Markov Chain model, a probabilistic model, 

typically relies on analyzing and predicting the 

probability of word sequences for lyric generation. 

While effective for simple text generation tasks, it 

may lack in logical coherence and thematic 

consistency. In contrast, the Long Short-Term 

Memory (LSTM) model, a type of advanced 

Recurrent Neural Network (RNN), can learn and 

process complex language structures and long-term 

dependencies through its unique gating mechanism, 

making it more effective in generating deep and 

creative lyrics. The significance of lyric generation 

lies not just in technological innovation but also in 

cultural and artistic aspects. Lyrics generated through 

machine learning can provide new sources of 

inspiration for music composition, especially in 

exploring new themes and styles. This technology can 

help artists overcome creative barriers and stimulate 

innovative thinking, thus promoting the development 

of music and culture. It also provides researchers with 

a unique perspective to understand and analyze 

language and its application in music, further 

fostering interdisciplinary research and collaboration 

(Whittaker and Thomason 1994, Privato et al 2022 & 

Ye 2000).  

In summary, the application of Markov Chains 

and LSTM models in lyric generation not only 

demonstrates the power of deep learning technology 

in handling complex language tasks but also opens 

new possibilities for music creation and cultural 

expression. The development and application of these 

technologies indicate the future direction of natural 

language processing and artificial intelligence, while 

also carving out new realms for artistic creation and 
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cultural research (Nazarko 2021). The main work of 

this project can be summarized as follows. 

(1) Data Collection and Preprocessing: The 

project team will comprehensively collect data on 

Chinese rap lyrics and perform necessary cleaning 

and preprocessing. This includes removing noise 

data, standardizing text formats, and using tools like 

Jieba for word segmentation and tagging, ensuring 

the quality and applicability of the data. 

(2) Development and Implementation of Two 

Models: The core part of the project is the 

development of two different language models - the 

Markov Chain model and the Long Short-Term 

Memory (LSTM) model. For the Markov Chain 

model, the focus will be on basic lyric generation 

based on tag analysis; while the LSTM model will 

concentrate on using deep learning technology to 

learn and predict complex lyric sequences, generating 

richer and more coherent lyrics. 

(3) Testing, Evaluation, and Iterative 

Improvement: After the development of the models, 

comprehensive testing and evaluation of both the 

Markov Chain model and the LSTM model will be 

conducted. This includes using quantitative metrics 

(such as Perplexity or BLEU scores) and qualitative 

analysis (such as expert reviews) to assess the 

language quality, creativity, thematic consistency, 

and overall appeal of the generated lyrics. Based on 

these evaluation results, further iterative 

improvements of the models will be made to optimize 

performance and output quality. Additionally, the 

integration of the strengths of both models will be 

explored to achieve more efficient and innovative 

lyric generation. 

2 METHODS 

2.1 Markov Chains 

Markov Chains are mathematical models used to 

predict the probability of a system transitioning from 

one state to another (Ma et al 2021). These models are 

based on a key assumption known as the 

"memoryless" property or "Markov property," which 

posits that the future state of a system depends only 

on its current state and not on its previous history. In 

Markov Chains, each possible state has a certain 

probability of transitioning to another state within the 

system. These transition probabilities are typically 

represented using a matrix, known as the transition 

matrix. 

Suppose I have a set of states 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}, 

where each 𝑠𝑖  represents a possible state. The 

transition matrix 𝑃  of a Markov Chain is an 𝑛 × 𝑛 

matrix, where 𝑃𝑖𝑗  represents the probability of 

transitioning from state 𝑠𝑖  to state 𝑠𝑗 . Hence, the 

transition matrix can be represented as:  

 

𝑃 =  [
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

] (1) 

 

For any 𝑖, the transition probabilities satisfy the 

following condition: 

 

∑ 𝑃𝑖𝑗

𝑛

𝑗=1

= 1 (2) 

 

This means that the total probability of 

transitioning from any state to any other state in the 

system must equal 1. 

When applying Markov Chains to lyric 

generation, each state can represent a word or phrase. 

The transition matrix then defines the probability of 

moving from one word to another. In this way, the 

next word can be predicted based on the current word, 

thereby gradually building the lyrics of a song. The 

advantage of Markov Chains in this process lies in 

their simplicity and ability to capture short-term 

dependencies in a sequence. However, they typically 

cannot handle long-term dependencies, which can be 

a limiting factor in complex lyric structures. 

2.2 Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a special type 

of Recurrent Neural Network (RNN) designed to 

address the difficulties standard RNNs have in 

handling long-term dependencies (Ma et al 2021). 

LSTMs introduce unique "gate" structures (including 

input gates, forget gates, and output gates) that 

effectively maintain information over sequences, 

allowing them to capture dependencies over extended 

periods. Each gate within an LSTM unit has a specific 

computation method. Here are the fundamental 

formulas for these gates and the cell state updates. 

Forget Gate 𝑓𝑡 : Determines what information to 

discard. It computes this based on a combination of 

the input 𝑥𝑡(current input) and ℎ𝑡−1(previous hidden 

state): 

𝑓𝑡 =  𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

 

Input Gate 𝑖𝑡  and Candidate Values 𝐶�̃� : Decide 

what new information to store in the cell state. The 

input gate decides which values will be updated, and 
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the candidate values are the new information that 

might be added to the cell state. 

𝑖𝑡 =  𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 

 

𝐶�̃� = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (5) 

 

Cell State Update 𝐶𝑡: The old information 𝐶𝑡−1 is 

partly forgotten through the forget gate, and new 

candidate values are added. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� (6) 

 

Output Gate 𝑜𝑡 and the Final Hidden State ℎ𝑡: The 

output gate decides what part of the content to output, 

and the hidden state is based on the updated cell state. 

𝑜𝑡 =  𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (8) 

 

In these formulas, 𝜎  represents the Sigmoid 

activation function, 𝑡𝑎𝑛ℎ  is the hyperbolic tangent 

activation function, 𝑊  and 𝑏  are the weights and 

biases learned during training, and ∗  indicates 

elementwise multiplication. 

The application of LSTM in lyric generation 

effectively handles long-term dependencies, 

something traditional Markov Chain models cannot 

achieve. By learning the sequence patterns of lyrics, 

LSTM can predict the next word or phrase, generating 

lyrics coherent in theme, style, and emotion. This 

capability makes LSTM particularly suited for 

complex and creative text generation tasks, such as 

lyric writing, where long-term memory of past 

information is crucial. 

3 DATASETS 

I will delve into the steps of data preprocessing, a 

crucial prerequisite for building machine learning 

models. My first task was data collection, 

accomplished by cloning a dataset containing 

Chinese hip-hop lyrics from a GitHub repository 

(Djwackey 2021). This dataset is organized in JSON 

files, with each file containing several songs. Then, I 

preprocess the data using Jieba to tokenize the words 

and eliminate the punctuation. The purpose of this 

step was to facilitate the clear identification of song 

boundaries in subsequent processes. All the formatted 

lyrics were appended to a text file, thereby creating a 

large lyric text corpus for model training, with each 

song’s lyrics separated by a ‘EOS‘ marker. These 

preprocessing steps ensured that the data was clean 

and structured, providing a well organized foundation 

for the model to learn from. Subsequent data 

processing might also include segmentation of 

vocabulary, removal of stopwords, and normalization 

to lowercase to further enhance the quality of the 

dataset. 

4 EXPERIMENT 

4.1 Markov Chain 

In the process of constructing a Markov Chain based 

model, I begin by reading text data stored in a file: 

accepting the file, reading the content, and returning 

it. Subsequently, I utilizes the ‘jieba‘ library for 

Chinese word segmentation, effectively breaking 

down continuous Chinese text into individual words. 

This step is crucial for Chinese data as Chinese text 

typically lacks the clear word delimiters, such as 

spaces, found in English. Next, I create a Markov 

Chain by traversing the list of words generated after 

segmentation, mapping each word to a list that 

contains the potential subsequent words. The 

dictionary thus constructed forms a Markov Chain, 

defining a series of potential successors for each 

word, thereby reflecting the probabilistic transitions 

between words. Then, I can generate new text with 

the constructed Markov Chain. This function 

randomly selects a starting word from the chain, then 

randomly chooses the next word based on the current 

one, repeating this process until a text of the specified 

length is produced. This method allows the generated 

text to appear coherent and logical. Lastly, the code 

sets a file path and sequentially calls the above-

defined functions, starting with reading the text 

content, proceeding through segmentation and 

Markov Chain construction, and ultimately 

generating a text sequence of 50 words in length. 

4.2 LSTM 

Initially, the script prepares the data by reading a text 

file and segmenting it into words using ‘jieba‘, a 

Chinese word segmentation tool. Word segmentation 

is a crucial step in processing Chinese text data, as, 

unlike English, which is delimited by spaces, Chinese 

requires specialized handling to delineate words. 

After segmentation, a sequence of words from the text 

data is obtained. Subsequently, a vocabulary is built 

by aggregating all unique words and creating 

mappings from words to indices and indices to words, 

laying the groundwork for the digital encoding of text 

data. These indices will later be used in an embedding 

layer, which serves to convert words into a 
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continuous vector format that the model can process. 

The words in the text are then converted to 

corresponding index sequences. On this basis, input 

sequences and labels required to train the model are 

generated. Each input sequence consists of a series of 

consecutive word indices, while the label is the index 

of the next word in the sequence. These sequences are 

then converted into PyTorch tensors for model 

processing.  

Once the data is prepared, the script splits the 

dataset into training and testing sets according to a 

specified ratio and creates a mechanism for batch 

processing the data. In the model construction part, 

the core of the LSTM network includes an embedding 

layer, an LSTM layer, and a fully connected layer. 

The embedding layer transforms word indices into 

dense vector representations, the LSTM layer is 

responsible for processing sequence data and learning 

long-term dependencies, and the fully connected 

layer converts the LSTM layer’s output into the final 

predictive output.  

After the model is constructed, hyperparameters 

are set, as they significantly impact the model’s 

performance. The embedding dimension is set to 128; 

the number of hidden units in the LSTM layer is set 

to 256; and the output dimension is set to 10000. The 

model is then instantiated, using cross entropy loss 

function and optimizer where learning rate is set to 

0.001, and it is ready to be trained. For data loader, 

the batch size is set to 64. 

The training process encompasses several epochs, 

each involving iterative optimization of the data in the 

training set. During this process, the model’s weights 

are updated by computing the loss and performing 

backpropagation. Additionally, the script periodically 

outputs the loss and perplexity to monitor the model’s 

training progress. After completing an epoch of 

training, the model is switched to evaluation mode to 

verify its performance on the test set, with accuracy 

reported. All code used in Python 3.8 and Pytorch 2.0 

(Imambi et al 2021). 

4.3 Experiment 

4.3.1 Embedding Dimension 

This is the dimension of the embedding layer in the 

model, which determines the size of word vectors. In 

this experiment, the embedding dimension is set to 

128. This means that each vocabulary word is 

transformed into a 128-dimensional vector. However, 

I also tried dimensions such as 512, 348, 748, and so 

on.  

4.3.2 Hidden Units in LSTM Layer  

This represents the dimension of the hidden states in 

the LSTM layer. In the code, this value is set to 256. 

It signifies the number of memory units in the 

network, and at each time step, the LSTM outputs a 

256-dimensional hidden state vector.  

4.3.3 Vocabulary Size  

The size of the vocabulary, where each dimension 

corresponds to a specific word. In this project, the 

output dimension equals vocab_size, which is the 

total number of words in the vocabulary, and its 

specific value depends on the size of the vocabulary 

constructed during the data preprocessing steps (Liu 

et al 2019). The results of different stages in the 

training process are shown in Table 1. 

Table 1: Perplexity at Different Epochs. 

Epoch Perplexity 

1 107.4 

2 64.2 

3 17.2 

4 10.2 

5 5.1 

6 2.2 

4.4 Result 

The evaluation of the LSTM model’s performance 

over various training epochs is depicted through the 

generated text samples and a Table 1 detailing the 

model’s perplexity scores. The text generated after 

training the LSTM (Sengupta et al 2023 & Yu et al 

2019 model showcases a significant improvement in 

the coherence and thematic consistency of the 

content. Initially, the sentences might have appeared 

somewhat disjointed and lacked logical progression. 

However, as the model progressed through the 

epochs, there’s a discernible enhancement in the 

structure and flow of the generated text. This 

indicates that the LSTM model has learned to predict 

more accurate word sequences after being trained on 

the dataset. The perplexity scores, which measure 

how well a probability model predicts a sample, also 

reflect the model’s increasing proficiency. A high 

perplexity score indicates poorer predictive power, 
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whereas a lower score signals better predictive 

capability. From the Table 1, I observe a steep decline 

in perplexity from 107.4 in the first epoch to 2.2 by 

the sixth epoch. This dramatic decrease signifies that 

the model has become significantly better at 

predicting the next word in a sequence, representing 

a substantial leap in learning from the data. This 

improvement in perplexity scores correlates with the 

qualitative improvements seen in the generated text 

samples. Initially, the model may produce text with 

less relevance and randomness, as evidenced by 

higher perplexity. But as the model trains and the 

perplexity decreases, the output becomes more 

coherent and contextually appropriate. This is a 

typical observation in LSTM models, as they are 

well-suited to capture and utilize the long-term 

dependencies within the text data, which is crucial for 

generating meaningful language sequences. The blue 

scores of both LAST models and Markov chain 

models are relatively low, since the models at the 

stage of generating consecutive words instead of 

sentences. However, the words in a sentence 

generated by the LSTM model can be easily put into 

the same context while the relationship of each word 

generated by Markov chain model is relatively weak. 

In summary, the LSTM model has demonstrated 

a promising ability to learn from the corpus of 

Chinese rap lyrics. The generated text samples, 

although limited, suggest that the model is capturing 

the nuances of the language and the style of the genre. 

Meanwhile, the quantitative reduction in perplexity 

offers a concrete measure of the model’s evolving 

competence. Together, these outcomes underscore 

the LSTM’s potential in natural language generation 

tasks and its effectiveness in modeling complex 

language patterns. 

5 CONCLUSION 

In this paper, I have successfully developed and 

trained a Long Short-Term Memory (LSTM) 

network-based language model for generating 

Chinese rap lyrics that exhibit thematic coherence and 

logical structure. Evaluating the model’s performance 

across various training epochs, I observed a 

significant enhancement in its predictive capabilities, 

evidenced by both the improved quality of generated 

text samples and a marked reduction in perplexity. 

The initial generated text may have lacked coherence 

and logic, but with continued training, the quality of 

the text substantially improved. Perplexity dropped 

from 107.4 in the first training epoch to 2.2 by the 

sixth epoch, indicating a substantial increase in the 

model’s effectiveness in learning from the data. The 

conclusion drawn is that LSTM models are highly 

suitable for processing and generating complex 

language patterns, especially in natural language 

generation tasks that require an understanding of 

long-term dependencies. My model demonstrated the 

potential to capture the unique rhythm and style of 

Chinese rap lyrics and progressively learned to 

generate new, creative lyrical content throughout the 

training process. For future work, I plan to extend and 

deepen my efforts in several areas: 

(1) Model Structure Optimization. Although the 

current LSTM model has shown promising 

performance, I believe that deeper neural network 

architectures or the introduction of more advanced 

models, such as Transformers or BERT, could further 

improve the quality of text generation. 

(2) Hyperparameter Tuning. I will explore a 

broader hyperparameter space to find a more 

optimized model configuration. Additionally, 

considering the significant impact of different 

embedding dimensions on model performance, I aim 

to employ automated hyperparameter search 

methods, like Bayesian optimization, to determine the 

optimal settings. 

(3) Dataset Expansion. To enhance the model’s 

robustness and generalization ability, I plan to collect 

and integrate a more diverse set of Chinese rap lyrics 

data. Moreover, incorporating other forms of Chinese 

textual data may help the model learn richer language 

patterns. 

(4) Creativity Assessment. I will develop new 

metrics to quantify the creativity and diversity of the 

lyrics generated by the model. While current 

perplexity metrics focus on prediction accuracy, I 

hope to more comprehensively assess the quality of 

generated text in the future. 

(5) Interactive Generation Tools. Ultimately, I 

aim to develop an interactive platform that allows 

users to input specific themes or keywords and have 

the model generate corresponding lyrics. This will 

make the model more engaging and practical for real-

world applications. By continuing to research and 

improve, I believe that LSTM models and other deep 

learning technologies will bring revolutionary 

progress to the field of natural language processing, 

particularly in natural language generation, in the 

future. 
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