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Abstract: The recent advancements in watermarking have indicated the capacity of deep learning for video copyright 
protection. We introduce a novel deep neural network architecture that uses QR-coded-based messages for 
video watermarking. Our framework encompasses an encoder-decoder structure, integrating two noiser 
components, to adeptly increase the robustness against attacks, including MPEG compression. Our solution 
is aimed at real-life applications; hence we focus on high-resolution videos and intend the encoded image to 
be indistinguishable from the cover image. To that end, we perform a subjective evaluation on a group of 72 
volunteers as well as calculate objective quality metrics obtaining 0.000241 LPIPS, 1.000 SSIM, and 63.8dB 
PSNR for the best scenario. The obtained results improve PSNR reported by REVMark (Y. Zhang et al., 
2023) by around 30dB and LPIPS by a factor of 100. Furthermore, extensive evaluation on both standard 
COCO dataset and high-resolution videos underlines the method's high robustness against image distortion 
attacks, achieving over 0.9 bit accuracy for JPEG (𝑞=90), Dropout (𝑝=0.85) and chroma subsampling (4:2:0). 

1 INTRODUCTION 

In the last few years, there has been growing interest 
in copyright protection techniques, including 
watermarking, within the multimedia industry. At the 
same time, the need to effectively protect intellectual 
property through widespread copyright marking has 
become more pressing due to the rising incidence of 
piracy. Online content distribution platforms present 
a significant challenge in protecting intellectual 
property rights due to the ease with which content can 
be intercepted and redistributed without proper 
authorization. To address this issue (Giladi, 2017; 
Hietbrink, 2018), digital watermarking has emerged 
as a powerful tool for content owners to safeguard 
their rights. Digital watermarking involves 
embedding a hidden message within an image or 
video that can be used to identify the content owner 
in the event of unauthorized distribution. 

One of the primary goals of digital watermarking 
is to create a robust and transparent marker that can 
withstand various distortions. At the same time, the 
watermark must not compromise the quality of the 
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original content or cause noticeable artifacts for the 
end-user. To achieve efficient identification of 
unauthorized distributors, the watermark must 
contain enough information to uniquely identify each 
user who accesses the content. However, storing a 
payload large enough to identify each user while 
maintaining transparency and minimizing quality loss 
requires a trade-off. One approach to address these 
contradictory demands is to use the temporal domain 
to reduce the payload required in a single frame 
(Błaśkiewicz et al., 2020; Plata & Syga, 2020b). In 
this paper, we assume that the whole payload has to 
be stored in each frame, so that the violator may be 
identified by a single frame. 

Another critical factor in digital watermarking is 
the impact of compression algorithms on watermark 
effectiveness. To optimize transmission, the images 
and videos are compressed to remove redundant 
information that humans cannot perceive, e.g. in 
JPEG compression, resulting in a loss of detail in the 
chroma components (Cr and Cb) of the color space. 
As these components are significantly reduced during 
compression, watermarks must be embedded into the 
more visible parts of the image or video, like the 
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luminance (Y channel). Video watermarking can be 
seen as an extension of image watermarking, as 
MJPEG compression saves a video as a sequence of 
JPEG frames. However, other standards like MPEG 
compression (e.g., HEVC) encode full information 
using JPEG frames at intervals, while relying on 
motion vectors to reference previous frames. When 
evaluating watermarking methods, factors such as 
transparency, capacity, robustness, and real-time 
embedding capabilities for video applications are 
crucial, especially in commercial settings with high-
resolution videos. 

Related Work. The problem of watermarking has 
been tackled from various angles, including the 
spatial, temporal, and frequency domains. To enhance 
robustness, researchers have frequently employed the 
Discrete Cosine Transform (DCT), which is already 
used in JPEG compression, wavelets or redundancy. 
Examples of such approaches can be found in (Hsu & 
Tu, 2020; Kumar et al., 2020). 

Recently, deep learning techniques have gained 
popularity in watermarking. In this paper (Zhu et al., 
2018) authors proposed an end-to-end encoder-
noiser-decoder framework, which spreads message 
embeddings across all pixels. A similar approach 
using QR codes was evaluated in (P. Zhang et al., 
2021), though it pertains to image steganography, 
which focuses on hiding the message. Note that 
HiDDeN was not the first watermarking system using 
machine learning, as extreme machine learning has 
been used in (Mishra et al., 2012). 

A paper (Wen & Aydore, 2019) introduced 
adversarial training, improving robustness at the cost 
of transparency. Since the resulting image no longer 
meets conventional standards of PSNR, it holds 
significantly limited commercial value and is a purely 
academic idea. Another research area involves spread 
spectrum watermarking with adaptive strength and 
differential quantization, as demonstrated by (Huang 
et al., 2019) to improve PSNR guarantees. In this 
paper (Luo et al., 2020) authors studied algorithm 
robustness by using an additional neural network to 
generate diverse distortions during training, 
enhancing accuracy. The authors of (Plata & Syga, 
2020a) proposed a method to increase local capacity 
and robustness against attacks, a topic also explored 
by (Ahmadi et al., 2018). Mitigating the influence of 
image compression was the key concern in 
(Hamamoto & Kawamura, 2020). An important step 
was made also in (K. A. Zhang et al., 2019), where 
authors used an attention mechanism. More examples 
of using machine learning in watermarking can be 

found in (Ernawan & Ariatmanto, 2023; Singh & 
Singh, 2024). 

The closest approaches to ours, including the 
examination of high-resolution videos, were 
conducted by Chen et al. (Chen et al., 2023), where 
Zernike moments were utilized. The authors report 
47.6dB PSNR, and 0.999 SSIM. However, 
embedding a watermark in FHD video took almost 
0.9s per frame and extraction took 0.3s per frame, 
making it impractical for real-time use, even for such 
low resolution. The authors investigate the robustness 
against various attacks, unfortunately, they use 
normalized cross-correlation in their estimation 
instead of the metrics traditionally used (Zhu et al., 
2018), hence the results are not directly comparable. 

DVMark (Luo et al., 2023) followed by 
REVMark (Y. Zhang et al., 2023) focuses on MPEG 
compression, which is of particular importance in 
real-life scenarios. The latter reports PSNR of 37.5dB 
and LPIPS of 0.0296 with accuracy reaching 0.967 
for the best possible scenario, with a watermark 
payload equal to 64bits. 

Contribution. (1) We propose a new deep neural 
network for embedding QR code-based video 
watermarks. (2) We analyze the robustness against 
typical attacks, achieving up to 0.962 accuracy. (3) 
We evaluate the quality of the embedded videos 
objectively and using subjective human evaluation, 
demonstrating that the watermark is imperceptible 
with 0.000241 LPIPS, 1.000 SSIM, and 63.8dB 
PSNR. (4) We evaluate the watermark on a COCO 
and high-resolution movies, showing that the method 
is suitable for real-world usage. The watermark may 
be used to identify copyright violators after just a 
single frame or, alternatively, used to identify if the 
required video has been played (using the watermark 
as a control mechanism for proof of work). 

2 METHOD 

2.1 Model Architecture 

The goal of the model is to encode an invisible 
message into an image that can be later recovered 
with high accuracy. Our watermarking algorithm 
encodes binary message 𝑚 ∈ ሼ0,1ሽ௅  into a cover 
image 𝐼௖  with dimensions (𝑊, 𝐻, 𝐶) . The binary 
message is transformed into a QR code using an 
expanded message generator and then this expanded 
message 𝑚௘  with shape (𝑊, 𝐻, 1) is encoded into a 
cover image 𝐼௖ (Figure 1).  
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Figure 1: Given a cover image 𝐼௖  and expanded message 𝑚௘  in the form of a QR code, the model generates an 
encoded image 𝐼௘ with an invisible message; the encoded 
message can be recovered with high accuracy. 

During the recovery process of the message, our 
model takes an image with an encoded message and 
returns the recovered binary message 𝑚௥ ∈ ሼ0,1ሽ௅.   

The proposed architecture consists of five 
components: watermark generator 𝐺 , encoder 𝐸ఏ , 
decoder 𝐷థ , adversarial discriminator 𝐴ఊ , and a 
noiser 𝑁, where 𝜃, 𝜙, 𝛾 are trainable parameters. The 
architecture is presented in Figure 2.  

The watermark generator 𝐺  at first generates a 
binary message 𝑚  and then converts it into an 
expanded message 𝑚௘  in the form of a QR code. 
Expanded message 𝑚௘ and a cover image 𝐼௖ is used 
by the encoder 𝐸ఏ to generate an encoded image 𝐼௘: 𝐼௘ = 𝐸ఏ(𝐼௖, 𝑚௘) (1)

Then the encoded image 𝐼௘ is distorted by the noiser 𝑁 which applies selected attacks to hinder message 

recovery from the encoded image 𝐼௘. Note that some 
attacks require a cover image 𝐼௖. The output from the 
noiser 𝑁 is the following:  𝐼௡ = 𝑁(𝐼௘, 𝐼௖) (2)

The decoder 𝐷థ  recovers the binary message 𝑚௥ 
from the noised image 𝐼௡: 𝑚௥ = 𝐷థ(𝐼௡) ∈ ሼ0,1ሽ௅ (3)

There are two goals of the encoder-decoder 
architecture: to generate the encoded image 𝐼௘, which 
is indistinguishable from the cover image 𝐼௖, so that 
the perceptual difference |𝐼௖ െ 𝐼௘|௉  is close to zero, 
and to extract a message 𝑚௥ , so that the difference |𝑚 െ 𝑚௥| is zero. 

The discriminator 𝐴ఊ  was used for adversarial 
training to improve visual similarity between encoded 
and cover images. The adversarial discriminator 𝐴ఊ 
distinguishes between fake (encoded) and real (cover) 
images and outputs the probability 𝑝௪ of whether an 
image is watermarked or not:  𝑝௪ = 𝐴ఊ(𝐼 ∈ ሼ𝐼௖, 𝐼௘ሽ) ∈ ሾ0, 1ሿ (4)

During training, we employed the following 
attacks, which are image processing operations: 
gaussian blur, gaussian noise, JPEG compression 
with a quality factor 𝑞, subsampling 4:2:0, dropout, 
cropping, and cropout. We adopted a double noiser 
 

 
Figure 2: The architecture of the proposed watermarking training pipeline. The watermark generator 𝐺 produces an expanded 
message 𝑚௘ which is then embedded into a cover image 𝐼௖ by the encoder 𝐸ఏ. The encoded image 𝐼௘ is subjected to distortion 
by the noiser 𝑁 to simulate various; the decoder 𝐷థ aims to recover the original image 𝑚௥. 
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Figure 3: The architecture of the encoder 𝐸ఏ network. The encoder 𝐸ఏ converts the input image 𝐼௖ to YCbCr color space. The 
trainable layers of the encoder marked with the dotted line are fed only by the Y channel of the input image and generate the 
Y channel for an encoded image. This generated Y channel is then concatenated with Cb and Cr channels from an original 
input image. At the end encoder 𝐸ఏ converts the encoded YCbCr image to the encoded image 𝐼௘ in RGB color space. 

approach, where an image was subjected to one of the 
random attacks mentioned above, and additionally 
with JPEG compression using a random quality 
factor, thus input image was always exposed to two 
different attack types.  

The Gaussian blur applies a kernel with a specific 
size and standard deviation and blurs the image by 
averaging the color values of neighboring pixels, 
which reduces sharpness and detail. Gaussian noise 
adds random noise to the image operating on the pixel 
level of the image. JPEG compression reduces the file 
size of an image by discarding some of the image’s 
data.  The quality factor 𝑞 determines the amount of 
compression applied, with lower values resulting in 
more lossy compression and potentially visible 
artifacts. We used an approximation of the JPEG 
proposed in (Ahmadi et al., 2018; Plata & Syga, 
2020a). Subsampling reduces the resolution of color 
information in the image, by averaging color values 
of neighboring pixels. It retains full resolution for the 
luminance channel but reduces resolution for the 
chrominance channels. The crop attack returns a 
cropped square of the encoded image and is 
parametrized by 𝑝, which specifies the ratio of the 
squared image to the input image. The cropout attack 
crops the square of the encoded image and replaces it 
with the cover image instead of discarding the rest of 
the image. The cropout attack is also parameterized 
by 𝑝  equal to a ratio of the cropped area over the 

entire input image. The dropout attack retains a 
percentage 𝑝  of the pixels in the encoded image, 
replacing the remaining pixels with their 
corresponding pixels from the cover image.  

2.2 Loss Functions 

We formulated several loss functions for training our 
approach 𝐿ெ, 𝐿ூ, 𝐿஺ா, 𝐿஺ . Each loss function was 
assigned a weight denoted by 𝜆. The decoder 𝐷థ was 
trained using the message loss function 𝐿ெ 
formulated as:  𝐿ெ = 𝜆ெ𝐵𝐶𝐸(𝑚௥, 𝑚)= 1𝐿 ෍ሾ𝑚log(𝑚௥)௅൅ (1 െ 𝑚)log (1 െ 𝑚௥)ሿ (5)

thus, decoder loss 𝐿஽ was equal to 𝐿ெ.  
For the encoder 𝐸ఏ, we proposed two combined 

loss functions. The first one aimed to keep the cover 
image 𝐼௖ and encoded image 𝐼௘ as similar as possible, 
and was defined using the following equation:  𝐿ூ = 𝜆ூ𝑀𝑆𝐸(𝐼௖, 𝐼௘) ൅ 𝜆ௌ𝐿ௌௌூெ(𝐼௖, 𝐼௘)൅ 𝜆௉𝐿𝑃𝐼𝑃𝑆(𝐼௖ ൅ 𝐼௘) (6)

where 𝑀𝑆𝐸(𝐼௖, 𝐼௘) = ଵௐ∙ு∙஼ ‖𝐼௖ െ 𝐼௘‖ଶଶ. We used three 
components in the loss function 𝐿ூ, the first one is a 
Mean Squared Error function between images 𝐼௖ and  
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Figure 4: Overview of generating the watermark expanded message. (1) – generating an 𝐿-length binary message using the 
binary function 𝑏𝑖𝑛(𝐿); (2) – encoding a binary message into a QR code; (3) – removing artifacts from the QR code matrix 
(4) – resizing the QR code matrix to desired size (𝑊, 𝐻) using the nearest method, resulting in the expanded message 𝑚௘. 𝐼௘ , the second one is loss based on Structural 
Similarity Index Measure (SSIM), and the last one is 
Learned Perceptual Image Patch Similarity (LPIPS) 
(R. Zhang et al., 2018). LPIPS computes the 
similarity between two image patches using a 
predetermined neural network, which has been 
demonstrated to align closely with human perception. 
In our LPIPS loss function, we used a VGG network 
with mean reduction.  Additional tests using Focal 
MSE loss did not improve the outcome. 

Encoder 𝐸ఏ  and discriminator 𝐴ఊ  improved of 
visual similarity of cover 𝐼௖  and encoded 𝐼௘  images 
using adversarial training. The goal of the encoder 𝐸ఏ 
is to generate an image recognized as the cover image 
by the discriminator 𝐴ఊ , thus we defined the 
following loss function:  𝐿஺ா = 𝜆஺ா𝐵𝐶𝐸 ቀ𝐴ఊ(𝐼௘)ቁ = log൫1 െ 𝐴ఊ(𝐼௘)൯ (7)

Finally, the loss function 𝐿ா for the encoder 𝐸ఏ was 
calculated using the formula:  𝐿ா = 𝐿ூ ൅ 𝐿஺ா (8)

The goal of the discriminator 𝐴ఊ was to recognize 
which image is a cover image 𝐼௖ and which one is the 
encoded image 𝐼௘, thus we formulated the following 
loss function for the discriminator 𝐴ఊ:  𝐿஺ = 𝜆஺𝐵𝐶𝐸൫𝐴ఊ(𝐼௘), 𝐴ఊ(𝐼௖)൯= log ቀ1 െ 𝐴ఊ(𝐼௖)ቁ൅ log ൫𝐴ఊ(𝐼௘)൯ 

(9)

In order to optimize the parameters 𝜃 and 𝜙 for 
the encoder 𝐸ఏ  and decoder 𝐷థ  we performed an 
optimization algorithm to minimize the following 
loss function over the distribution of input images and 
messages:  𝔼ூ೎,௠ሾ𝐿ெ(𝑚, 𝑚௥) ൅ 𝐿ூ(𝐼௖, 𝐼௘) ൅ 𝐿஺ா(𝐼௘)ሿ (10)

Simultaneously the discriminator 𝐴ఊ  was trained to 
minimize the following objective over the 
distribution of images:  𝔼ூ೎ሾ𝐿஺(𝐼௖, 𝐼௘)ሿ (11)

Note that each loss function 𝐿ெ , 𝐿ூ , 𝐿஺ா , 𝐿஺  and its 
components have separate weights 𝜆.  

2.3 The Architecture of the Networks 

The encoder 𝐸ఏ model consists of sequential blocks 
of conv layers with 64 channels, kernel size equal to (3, 3) , stride, padding equal to (1, 1) , batch 
normalization and ReLu activation. Detailed model 
architecture is presented in Figure 3. The encoder 𝐸ఏ 
converts the RGB input image 𝐼௖  to YCbCr color 
space. The first three layers of the encoder 𝐸ఏ  are 
standard Conv-Bn-ReLu blocks and are fed only by 
the Y channel of the input image, thus the encoder 𝐸ఏ 
has only access to this channel of the image. These 
three layers generate a feature representation of the 
input image Y channel. The next two layers, which 
are also Conv-Bn-ReLu are fed by concatenated 
expanded message 𝑚௘, feature representation of the 
input image Y channel and original Y channel of the 
input image. Note that the expanded message 𝑚௘ is 
used three times in the concatenation list. The final 
layer is fed by the output from the previous layer 
concatenated once again with the original Y channel 
of the input image, this final layer generates a Y 
channel which is concatenated with channels Cb and 
Cr from the original image creating an encoded image 
in the YCbCr color space. At the very end, encoder 𝐸ఏ converts the encoded YCbCr image to the encoded 
image 𝐼௘ in RGB color space. The encoder 𝐸ఏ has a 
fairly simple architecture with a small number of 
parameters. It is crucial in the context of the time 
efficiency of the model because the encoder needs to 
process data in real-time.  
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The decoder 𝐷థ takes the noised image 𝐼௡ as an 
input and converts it to the YCbCr color space. The 
converted image is fed into the ResNet18 backbone. 
The next layer in the decoder model is adaptive 
averaging pooling. Then there were two linear layers 
with 64 neurons separated with batch normalization 
and finalized with sigmoid activation. 

The adversarial discriminator 𝐴ఊ  consists of 
three sequential blocks of conv layers with 64 
channels, kernels equal to (3, 3), stride and padding 
equal to (1, 1) , batch normalization and ReLu 
activation. These three blocks are followed by an 
adaptive averaging pooling, one linear layer with 64 
neurons and sigmoid activation. The discriminator 𝐴ఊ 
returns the probability of whether the input image is 
a fake (encoded) or real (cover) image.  

2.4 Watermark Generator 

Generating the expanded message 𝑚, which served as 
the input to the encoder 𝐸ఏ, involved several steps. 
The individual steps of generating the message 𝑚௘ 
are presented in Figure 4. Initially, we generated a 
random binary message 𝑚 using the binary function 𝑏𝑖𝑛(𝐿), which takes the message length 𝐿 as input. In 
the subsequent step, the binary message 𝑚  was 
converted to a string and then encoded into a QR code 
matrix. We applied a high error correction level, 
which can recover 30% of the input data. The mask 
for the QR code was automatically chosen based on 
the input data. The generated QR code was (21, 21) 
pixels. 

A QR code matrix contains artifacts for 
positioning, orientation, alignment, version, format, 
etc., that are unnecessary because they do not contain 
data information. During the message creation 
process, all artifacts of the QR code matrix are 
removed. The last step in the process of message 
generation is extrapolating the QR code matrix to the 
desired size (𝑊, 𝐻)  using the nearest method, 
ensuring that we obtain an expanded message 𝑚௘ , 
that has the same width and height size as the input 
cover image 𝐼௖.  

2.5 Training Details  

We trained our model on two datasets. The first was 
a subset of the COCO dataset (Lin et al., 2015) 
consisting of 10000 images for training and 1000 for 
validation. The second dataset was proprietary, 
containing frames from diverse video content such as 
movie trailers, ads, football matches, podcasts, 
YouTube videos etc. Our custom dataset comprised 
228252 images for training and 57073 for validation. 

During the research phase, we primarily used the 
COCO subset for its size, facilitating rapid testing and 
exploration of various approaches. 

The loss weights parameters 𝜆ெ, 𝜆ூ, 𝜆ௌ, 𝜆௉, 𝜆஺ா , 
and 𝜆஺  equal to 0.5, 0.05, 0.2, 2.0, 0.1, and 1.0 
respectively.  

During training, we randomly cropped images 
from the dataset to a size of (128, 128)  pixels, 
resulting cover image 𝐼௖. The expanded message 𝑚௘ 
had the same size as the cover image 𝐼௖ (128, 128). 
This procedure simulated embedding the watermark 
on a selected area of the entire image frame. A binary 
message with a length 𝐿 = 16 was encoded. 

To achieve the appropriate balance between high 
message decoding accuracy and the minimal 
perceptual difference between the cover 𝐼௖  and the 
encoded 𝐼௘ images, we employed several tricks. The 
first involved pretraining decoder 𝐷థ  to develop a 
"general" understanding of retrieving the binary 
message 𝑚 from the expanded message 𝑚௘. During 
pretraining, we fed the decoder 𝐷థ  with mixed 
images combining cover images 𝐼௖  and expanded 
messages 𝑚௘ with random proportions ranging from 
0 to 1. This resulted in decoder 𝐷థ inputs with images 
where the expanded message 𝑚௘ could be barely or 
clearly visible. Additionally, each image during 
decoder pretraining was noised with JPEG 
compression and Gaussian blur. 

We used Stochastic Gradient Descent (SGD) with 
an initial learning rate 𝛼 = 0.001 for all three trainable 
modules: the encoder 𝐸ఏ , decoder 𝐷థ , and 
discriminator 𝐴ఊ, along with a momentum of 0.9 and 
Nesterov acceleration. During training, we employed 
schedulers for both learning rates 𝛼 and loss weights 𝜆 for the encoder 𝐸ఏ and decoder 𝐷థ. The loss weight 
scheduler was activated after 50% of training epochs, 
where the loss weights for the encoder 𝐸ఏ  were 
increased and for the decoder were decreased. 
Detailed factors for each loss weight were presented 
in equation 12 for the encoder 𝐸ఏ and in equation 13 
for the decoder 𝐷థ. The notation 𝜆௫௘ୀ଴ represents loss 
weight in the epoch 𝑒 = 0 for the loss function 𝑥. 𝜆ூ,ௌ,௉,஺ா= ൞𝜆ூ,ௌ,௉,஺ா௘ୀ଴ ∙ 1.0𝜆ூ,ௌ,௉,஺ா௘ୀ଴ ∙ 1.5𝜆ூ,ௌ,௉,஺ா௘ୀ଴ ∙ 2.0   𝑖𝑓 ≤  50% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠               𝑖𝑓 50% < 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 ≤ 80%𝑖𝑓 > 80% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠             (12)

𝜆ெ = ቐ𝜆ெ௘ୀ଴ ∙ 1.0𝜆ெ௘ୀ଴ ∙ 0.5𝜆ெ௘ୀ଴ ∙ 0.25 𝑖𝑓 ≤ 50% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠       𝑖𝑓 50% < 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 ≤ 80%𝑖𝑓 > 80% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠        (13)
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The learning rate scheduler was also activated after 
50% of the training epochs, and the learning rates 
decreased for both the encoder 𝐸ఏ  and the decoder 𝐷థ. After 50% of the epochs, the learning rates were 
0.5 times smaller, after 70% 0.1 times smaller, and 
after 90% 0.001 times smaller. 

During the training of the entire pipeline, 
including the encoder 𝐸ఏ , decoder 𝐷థ  and 
discriminator 𝐴ఊ , we observed that the encoder 𝐸ఏ 
struggled to invisibly encode watermark on dimmed 
and dark images. To address this issue, we used an 
image transformation that adjusted the brightness of 
the input images. Each input image had a 5% chance 
of undergoing brightness correction in the range from 
0 to 0.3, where 0 represents a completely dark image 
and 1 represents the original image. The model was 
trained with a batch size of 64 for 200 epochs.  

3 EXPERIMENTS 

We evaluated two models, one trained on a subset of 
the COCO dataset and the second one trained on our 
custom dataset. Both models were assessed on the 
validation COCO dataset, comprising 1000 images. 
Additionally, we evaluated the model trained on our 
custom dataset on 315 short videos that lasted from 
several seconds to several minutes. During the 
evaluation, we applied the watermark only to a fixed, 
small portion of the image, which served as the cover 
image 𝐼௖ . The high-resolution input image size was (784, 784) for evaluation on the COCO dataset and (1920, 1080) for evaluation on short videos, while 
the watermark size was (128, 128). 

To further enhance the invisibility of the 
watermark, albeit at the expense of decreasing 
message recovery accuracy, we implemented a 
technique we called Gaussian smoothing (GS). This 
technique is only applied during inference and can be 
easily disabled. This approach helped reduce the 
visibility of the watermark in an entire high-
resolution input image. GS involved generating a 
mask using Gaussian blur with kernel size and 
standard deviation equal to the watermark size, which 
was 128. This mask was used to merge the cover 𝐼௖ 
and the encoded 𝐼௘ images with the watermark, using 
the proportion of each pixel value in the mask. In the 
resulting image after applying GS, brighter areas had 
a higher proportion of pixel values from the encoded 
image 𝐼௘ , while darker areas had more pixel values 
from the cover image 𝐼௖. As a result, at the edges, the 
image with the watermark was much more similar to 
neighboring pixels from the entire image. 

Used Metrics. For evaluating message recovery, we 
used two metrics: bit accuracy (BA) and message 
accuracy (MA). The BA assesses the fidelity of 
binary message recovery by comparing recovered 
messages 𝑚௥  with the original binary messages 𝑚 , 
calculating the proportion of correctly matched bits. 
The MA evaluates the accuracy of message recovery 
by comparing recovered messages 𝑚௥  with the 
original binary messages 𝑚 , assessing whether all 
bits in each message match. To assess the visual 
similarity between cover 𝐼௖  and encoded 𝐼௘  images 
we used LPIPS, SSIM, and PSNR.  

In the following subsections, we present results in 
tables containing metric values for particular types of 
attacks. Each table header displays the name of the 
metrics with an arrow indicating whether higher or 
lower values of the metric are more desirable. Each 
column has its color scale, representing the best 
values for each attack. The color scale transitions 
smoothly between three colors: green (best), orange, 
and red (worst). 

3.1 Evaluation on the COCO Dataset 

This section presents the results of the evaluation of 
two models on the validation subset of the COCO 
dataset. Additionally, we tested how GS influences 
the robustness of our model and improves watermark 
transparency. 

During the evaluation, a different random binary 
message 𝑚 was generated for each image, and it was 
embedded only in that particular image - each image 
had a watermark embedded with a different message 𝑚. Consequently, the decoder had only one image 
(chance) to correctly decode the message. The 
fragment of the image with size (128, 128)  – the 
cover image 𝐼௖  on which the watermark was 
embedded and which served as the input to the 
encoder 𝐸ఏ, was always located in the center of the 
high-resolution input image with size (784, 784) . 
The time taken to embed the watermark in one frame 
of the image was below 5ms, while the message 
decoding time was below 3ms. 

The model trained on the COCO dataset (Table 1) 
achieved very similar visual metrics for all types of 
attacks. The average LPIPS was 0.0014, the SSIM 
was close to 1.0, and the average PSNR was 49.6dB. 
The best values for SSIM and LPIPS occurred when 
the Gaussian blur attack was applied, and for PSNR 
when no attack was applied. The worst visual metrics 
were observed for JPEG attacks, but the difference 
between the best and worst metrics was 0.22 dB for 
PSNR and below 1∙10-4 for SSIM and LPIPS.  

SECRYPT 2024 - 21st International Conference on Security and Cryptography

316



The highest accuracy in decoding a message was 
observed when no attack was applied and for JPEG 
compression with 𝑞=90. For both attacks, the BA was 
above 0.9, while the MA was approximately 0.25. 
The worst results were observed for crop attacks, 
where for cropping factors from 0.8 to 0.9, the BA  
 

was 0.5, resulting in the recovery of a completely 
random message. Only for a cropping factor of 0.95, 
the BA was 0.55, which still yielded a very poor 
result. For all crop attacks, the decoder 𝐷థ  was 
unable to correctly recover the entire message 𝑚 
from even a single image, resulting in an MA of 0.0.  

Table 1: Results of the evaluation on the COCO dataset for the model trained on the COCO dataset without GS. 

Attack name Bit accuracy↑ Message accuracy↑ LPIPS↓ SSIM↑ PSNR↑ 
Identity 0.901 0.243 0.00140 0.999  49.7 
JPEG(𝑞=30) 0.846 0.086 0.00144 0.999  49.5 
JPEG(𝑞=50) 0.884 0.169 0.00144 0.999  49.5 
JPEG(𝑞=70) 0.900 0.222 0.00144 0.999  49.5 
JPEG (𝑞=90) 0.914 0.266 0.00144 0.999  49.5 
Gaussian blur (𝜎=(0.5, 4)) 0.892 0.191 0.00138 0.999  49.6 
Gaussian noise (𝜎=0.04) 0.881 0.137 0.00139 0.999  49.6 
Dropout (𝑝=0.85) 0.864 0.099 0.00139 0.999  49.6 
Subsampling (4:2:0) 0.901 0.196 0.00139 0.999  49.6 
Crop (𝑝=0.8) 0.507 0.000 0.00140 0.999  49.7 
Crop (𝑝=0.85) 0.500 0.000 0.00139 0.999  49.7 
Crop (𝑝=0.9) 0.497 0.000 0.00139 0.999  49.7 
Crop (𝑝=0.95) 0.546 0.000 0.00139 0.999  49.7 
Cropout (𝑝=0.8) 0.713 0.024 0.00140 0.999  49.7 
Cropout (𝑝=0.85) 0.769 0.036 0.00139 0.999  49.7 
Cropout (𝑝=0.9) 0.826 0.074 0.00140 0.999  49.7 
Cropout (𝑝=0.95) 0.879 0.166 0.00139 0.999  49.7 

Table 2: Results of the evaluation on the COCO dataset for the model trained on our custom dataset without GS. 

Attack name Bit accuracy↑ Message accuracy↑ LPIPS↓ SSIM↑ PSNR↑ 
Identity 0.948 0.435 0.000997 0.999 54.3 
JPEG(𝑞=30) 0.815 0.081 0.000992 0.999 54.1 
JPEG(𝑞=50) 0.902 0.227 0.000992 0.999 54.1 
JPEG(𝑞=70) 0.934 0.360 0.000992 0.999 54.1 
JPEG (𝑞=90) 0.959 0.547 0.000992 0.999 54.1 
Gaussian blur (𝜎=(0.5, 4)) 0.930 0.326 0.000933 1.000 54.4 
Gaussian noise (𝜎=0.04) 0.856 0.094 0.001127 0.999 54.1 
Dropout (𝑝=0.85) 0.920 0.285 0.001127 0.999 54.1 
Subsampling (4:2:0) 0.947 0.438 0.001127 0.999 54.1 
Crop (𝑝=0.8) 0.505 0.000 0.000996 0.999 54.3 
Crop (𝑝=0.85) 0.501 0.000 0.001008 0.999 54.3 
Crop (𝑝=0.9) 0.506 0.000 0.000998 0.999 54.3 
Crop (𝑝=0.95) 0.568 0.000 0.000995 0.999 54.3 
Cropout (𝑝=0.8) 0.749 0.040 0.001000 0.999 54.3 
Cropout (𝑝=0.85) 0.793 0.050 0.000998 0.999 54.3 
Cropout (𝑝=0.9) 0.860 0.108 0.000997 0.999 54.3 
Cropout (𝑝=0.95) 0.902 0.210 0.000989 0.999 54.3 
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Table 3: Results of the evaluation on the COCO dataset for the model trained on our custom dataset with GS. 

Attack name Bit accuracy↑ Message accuracy↑ LPIPS↓ SSIM↑ PSNR↑ 
Identity 0.911 0.250 0.000592 1.000 55.8 
JPEG(𝑞=30) 0.753 0.023 0.000620 1.000 55.6 
JPEG(𝑞=50) 0.851 0.111 0.000620 1.000 55.6 
JPEG(𝑞=70) 0.891 0.168 0.000620 1.000 55.6 
JPEG (𝑞=90) 0.927 0.309 0.000620 1.000 55.6 
Gaussian blur (𝜎=(0.5, 4)) 0.871 0.133 0.000593 1.000 55.8 
Gaussian noise (𝜎=0.04) 0.801 0.033 0.000608 1.000 55.8 
Dropout (𝑝=0.85) 0.871 0.131 0.000608 1.000 55.8 
Subsampling (4:2:0) 0.910 0.243 0.000608 1.000 55.8 
Crop (𝑝=0.8) 0.505 0.000 0.000597 1.000 55.8 
Crop (𝑝=0.85) 0.501 0.000 0.000600 1.000 55.8 
Crop (𝑝=0.9) 0.506 0.000 0.000596 1.000 55.8 
Crop (𝑝=0.95) 0.559 0.000 0.000596 1.000 55.8 
Cropout (𝑝=0.8) 0.738 0.033 0.000600 1.000 55.8 
Cropout (𝑝=0.85) 0.781 0.036 0.000600 1.000 55.8 
Cropout (𝑝=0.9) 0.842 0.070 0.000596 1.000 55.8 
Cropout (𝑝=0.95) 0.870 0.125 0.000596 1.000 55.8 

The model trained on our custom dataset (Table 
2) achieved better visual and accuracy metrics when 
tested on the validation subset sampled from the 
COCO dataset. The average LPIPS was 0.001, the 
SSIM was close to 1.0, and the average PSNR was 
54.2dB, representing a 38% improvement for LPIPS 
and a 9% improvement for PSNR compared to the 
model trained on the COCO dataset (the improvement 
in SSIM was negligibly small). The best values again 
occurred when the Gaussian blur attack was applied, 
while the worst values were observed for Gaussian 
noise, dropout, and subsampling. The difference 
between the best and worst metric values was 0.3dB 
for PSNR and below 1∙10-4 for SSIM and LPIPS. 

Comparing the message recovery metrics between 
these two models trained on different datasets, 
improvements can also be noticed. Once again, the 
highest accuracy in decoding a message was observed 
for attacks identity and JPEG compression with a 
quality factor of 𝑞=90. For both attacks, the BA was 
close to 0.95, while the MA was approximately 0.5. 
The most significant improvement compared to the 
model trained on the COCO dataset can be noticed for 
MA, which was three times better for dropout and two 
times better for identity, JPEG( 𝑞 =90), and 
subsampling attacks. For the rest of the attacks, MA 
improved in the range between 30% and 70%. Only 
for two attacks, MA decreased, for JPEG(𝑞=30) by 

6% and for Gaussian noise by 31%. The BA showed 
an improvement in the range from 2% to 7%, except 
for attacks JPEG(𝑞=30) and Gaussian noise, where 
BA decreased by approximately 3%. The worst 
results were observed again for crop attacks.  

During the evaluation with GS, only the model 
trained on our custom dataset was tested, as it yielded 
better results during the initial evaluation stage. The 
results of tests with GS for the model trained on our 
custom dataset are presented in Table 3. For different 
types of attacks, we observed LPIPS improvement in 
the range from 57% up to 86%, and PSNR 
improvement in the range from 2.5% to 3.2% 
compared to the model without GS. The improvement 
in visual metrics came at the expense of message 
recovery metrics. The BA decreased from 1.4% to 
7.6% for particular attacks, and the MA from 18% to 
72%. The biggest drop was observed for JPEG 
compression with a quality factor 𝑞 =30. For the 
model trained on our custom dataset without GS 
applied, the BA was above 0.85 for 10 attacks, 
whereas with GS, it was above 0.85 for 8 attacks. 

We compared the images without encoded 
watermarks with those with encoded watermarks in 
the middle of the high-resolution. input image. The 
examples of the encoded images are presented in 
Figure 5.  
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Figure 5: Examples of input image from the COCO dataset without watermark (first row); images with encoded watermark 
in the middle ot the image (second row); the min-max difference between images with and without watermark (third row). 

3.2 Evaluation on Videos 

Embedding watermarks in videos simulates real-
world scenarios of applying content watermarking. 
This section presents the results of evaluating the 
model trained on our custom dataset with and without 
GS applied. The videos had a resolution of (1920, 1080), and we encoded the watermark in the 
middle of every frame of the videos. As with the tests 
on the COCO dataset, the time taken to embed the 
watermark in one frame of the image was below 5ms, 
while the message decoding time was below 3ms. The 
results from this evaluation are presented in Table 4 
and Table 5.  

For each video, a random binary message 𝑚 was 
generated, and then we encoded the watermark with 
this message in the middle of every frame of the 
video. For every video, the decoder had to decode the 
same message from each frame. We calculated BA, 
MA, LPIPS, SSIM, and PSNR for every frame in 
each video. The final metrics were averaged across all 
metrics from particular frames. We also calculated 
additional statistics for every movie. We averaged all 
recovered messages from particular frames to 
calculate the final video recovered message from all 
frames of the video. Based on that, we were able to 

calculate the number of correct and incorrect bits for 
every video and the percentage of correct bits. 

The model trained on our custom dataset without 
GS (Table 4) showed similar performance during the 
evaluation on videos compared to the evaluation on 
the COCO dataset. The LPIPS was two times better, 
and PSNR had a 14% improvement compared to the 
evaluation on the COCO dataset. When it comes to 
message recovery metrics, namely BA and MA, we 
observed the worst results only for JPEG compression 
and Gaussian noise attacks. The number of incorrect 
bits was higher than 1 bit only for JPEG compression 
with quality factors 𝑞 =50 and 𝑞 =30 and Gaussian 
noise attacks. For identity and subsampling attacks, 
our approach was able to recover all bits for 99.5% of 
the videos. For 7 out of 9 attacks, we were able to 
correctly recover all bits for 90% of the tested videos. 

The model tested with GS (Table 5) showed a 
similar performance pattern to the one without GS. 
The LPIPS was over two times better, and PSNR had 
a 14% improvement, achieving over 63dB compared 
to the evaluation on the COCO dataset. The BA and 
MA decreased only for JPEG compression and 
Gaussian noise attacks. Similar to the model tested 
without GS, the approach with GS was able to 
correctly recover all bits for over 90% of the videos 
for 7 out of 9 attacks. 
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Table 4: Results of the evaluation on videos for the model trained on our custom dataset without GS. 

Attack name Bit 
accuracy↑ 

Message 
accuracy↑ LPIPS↓ SSIM↑ PSNR↑ % correct 

bits↑ 
# correct 

bits↑ 
# incorrect 

bits↓ 
Identity 0.962 0.572 0.000560 1.000 61.8 0.995 15.9 0.1 
JPEG(𝑞=30) 0.699 0.011 0.000526 1.000 61.9 0.817 13.1 2.9 
JPEG(𝑞=50) 0.799 0.058 0.000526 1.000 61.9 0.916 14.6 1.4 
JPEG(𝑞=70) 0.875 0.156 0.000526 1.000 61.9 0.970 15.5 0.5 
JPEG (𝑞=90) 0.947 0.449 0.000526 1.000 61.9 0.994 15.9 0.1 
Gaussian blur (𝜎=(0.5, 4)) 0.938 0.392 0.000518 1.000 62.0 0.993 15.9 0.1 
Gaussian noise (𝜎=0.04) 0.733 0.008 0.000648 1.000 61.5 0.740 11.8 4.2 
Dropout (𝑝=0.85) 0.937 0.366 0.000649 1.000 61.5 0.991 15.9 0.1 
Subsampling (4:2:0) 0.962 0.555 0.000649 1.000 61.5 0.995 15.9 0.1 

Table 5: Results of the evaluation on videos for the model trained on our custom dataset with GS. 

Attack name Bit 
accuracy↑ 

Message 
accuracy↑ LPIPS↓ SSIM↑ PSNR↑ % correct 

bits↑ 
# correct 

bits↑ 
# incorrect 

bits↓ 
Identity 0.935 0.375 0.000252 1.000 63.6 0.993 15.9 0.1 
JPEG(𝑞=30) 0.665 0.005 0.000241 1.000 63.8 0.819 13.1 2.9 
JPEG(𝑞=50) 0.759 0.027 0.000241 1.000 63.8 0.924 14.8 1.2 
JPEG(𝑞=70) 0.828 0.071 0.000241 1.000 63.8 0.967 15.5 0.5 
JPEG (𝑞=90) 0.910 0.251 0.000241 1.000 63.8 0.989 15.8 0.2 
Gaussian blur (𝜎=(0.5, 4)) 0.886 0.165 0.000247 1.000 63.6 0.980 15.7 0.3 
Gaussian noise (𝜎=0.04) 0.662 0.003 0.000265 1.000 63.6 0.698 11.2 4.8 
Dropout (𝑝=0.85) 0.901 0.213 0.000265 1.000 63.6 0.982 15.7 0.3 
Subsampling (4:2:0) 0.933 0.357 0.000265 1.000 63.6 0.990 15.8 0.2 

 

Comparing our results to other approaches, we 
achieved a significant improvement in the invisibility 
of the watermark while maintaining a similar level of 
message recovery accuracy. During the evaluation of 
our model in a real-world environment, we obtained 
a BA of 0.962, LPIPS of 0.00056, SSIM of 1.0, and 
PSNR of 61.8dB for the scenario where the encoded 
image was not subjected to any image distortion. 
Furthermore, we even further improved the 
invisibility of the watermark, achieving a slightly 
lower BA of 0.935, LPIPS of 0.000252, SSIM of 1.0, 
and PSNR of 63.6dB for the scenario where the 
encoded image was not attacked. The authors of 
(Chen et al., 2023) reported a PSNR of 47.6dB and 
SSIM of 0.999, which is approximately 30% worse 
PSNR than in our approach. The authors of the 
DVMark model (Luo et al., 2023) achieved slightly 
higher accuracy in message decoding, with a reported 
accuracy of 0.967, but they reported almost two times 
worse PSNR (37.5dB) and over 100x worse LPIPS 
(0.0296). 

 

3.3 Subjective Perceptual Evaluation 

Despite using objective quality metrics like LPIPS, 
SSIM, and PSNR, evaluating the visual experience of 
end users is crucial for a transparent watermarking 
system, as individual perceptual experiences vary. To 
estimate subjective perceptual quality, we performed 
a MOS evaluation with 72 volunteers aged 23 to 55, 
watching videos on their own devices. All had a 
technical background in computer science but not 
necessarily in image processing. They were informed 
about the research purpose and performed two tasks. 
First, they rated the quality of five 5-second video 
fragments on a scale from 1 (lowest) to 5 (highest). 
The videos included unmodified, QR-watermarked, 
and QR-watermarked with GS. The average ratings 
were 3.48 (std 0.51) for unmodified, 3.39 (std 0.47) 
for QR-watermarked and 3.47 (std 0.31) for QR-
watermarked with GS. After testing with Shapiro-
Wilk and performing ANOVA we obtained f<0.013, 
hence there is no significant difference between the 
ratings of all three groups. 
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Next, the volunteers were presented with pairs of 
random frames, one unmodified and one 
watermarked (with or without GS), and asked to 
identify the modified frame. This task aimed to 
ascertain the transparency of the watermark when a 
reference frame is provided. Each user received 4 
random frame pairs. The watermark was correctly 
identified in 62.5% of cases without GS and 56.25% 
with GS. These results indicate that the distinction is 
not significantly higher than random guessing. 

4 CONCLUSIONS 

In the paper, we presented a novel QR-based 
watermarking approach suitable for real-world 
applications, allowing messages to be embedded in 
each frame. We demonstrated two modes of our 
watermark: a robust mode (without Gaussian 
smoothing) and a transparent mode (with Gaussian 
smoothing). The quality results were significantly 
improved, with LPIPS reduced by a factor of 100 and 
PSNR increased by 30dB. This method also features 
faster embedding, enabling real-time application. 
Additionally, tests with volunteers showed that the 
watermarked materials were indistinguishable from 
the originals. For future work, we aim to enhance 
watermark localization in cases of cropping and 
evaluate robustness against a broader spectrum of 
attacks while maintaining quality, capacity, and 
embedding time. 

ACKNOWLEDGEMENTS 

The research was partially supported by grant number 
POIR.01.01.01-00-0090/22. 

REFERENCES 

Ahmadi, M., Norouzi, A., Soroushmehr, S. M. R., Karimi, 
N., Najarian, K., Samavi, S., & Emami, A. (2018). 
ReDMark: Framework for Residual Diffusion 
Watermarking on Deep Networks (arXiv:1810.07248). 
arXiv. http://arxiv.org/abs/1810.07248 

Błaśkiewicz, P., Klonowski, M., & Syga, P. (2020). 
Droppix: Towards More Realistic Video Finger-
printing. Proceedings of the 17th International Joint 
Conference on E-Business and Telecommunications - 
SECRYPT, 468–476. https://doi.org/10.5220/0009876 
104680476 

Chen, S., Malik, A., Zhang, X., Feng, G., & Wu, H. (2023). 
A Fast Method for Robust Video Watermarking Based 

on Zernike Moments. IEEE Transactions on Circuits 
and Systems for Video Technology, 33(12), 7342–7353. 
https://doi.org/10.1109/TCSVT.2023.3281618 

Ernawan, F., & Ariatmanto, D. (2023). A recent survey on 
image watermarking using scaling factor techniques for 
copyright protection. Multimedia Tools and 
Applications, 82(18), 27123–27163. https://doi.org/ 
10.1007/s11042-023-14447-5 

Giladi, A. (2017, October 26). Integrating forensic 
watermarking into adaptive streaming workflow. IBC. 

Hamamoto, I., & Kawamura, M. (2020). Neural 
Watermarking Method Including an Attack Simulator 
against Rotation and Compression Attacks. IEICE 
Transactions on Information and Systems, E103.D(1), 
33–41. https://doi.org/10.1587/transinf.2019MUP0007 

Hietbrink, E. (2018). Forensic Watermarking Implementa-
tion Considerations for Streaming Media Created and 
Approved by the Streaming Video Alliance July 19 , 
2018. 

Hsu, C.-S., & Tu, S.-F. (2020). Enhancing the robustness of 
image watermarking against cropping attacks with dual 
watermarks. Multimedia Tools and Applications, 
79(17), 11297–11323. https://doi.org/10.1007/s11042-
019-08367-6 

Huang, Y., Niu, B., Guan, H., & Zhang, S. (2019). 
Enhancing Image Watermarking With Adaptive 
Embedding Parameter and PSNR Guarantee. IEEE 
Transactions on Multimedia, 21(10), 2447–2460. 
https://doi.org/10.1109/TMM.2019.2907475 

Kumar, C., Singh, A. K., & Kumar, P. (2020). Improved 
wavelet-based image watermarking through SPIHT. 
Multimedia Tools and Applications, 79(15), 11069–
11082. https://doi.org/10.1007/s11042-018-6177-0 

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, 
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., & 
Dollár, P. (2015). Microsoft COCO: Common Objects 
in Context (arXiv:1405.0312). arXiv. https://doi.org/ 
10.48550/arXiv.1405.0312 

Luo, X., Li, Y., Chang, H., Liu, C., Milanfar, P., & Yang, 
F. (2023). DVMark: A Deep Multiscale Framework for 
Video Watermarking. IEEE Transactions on Image 
Processing, 1–1. https://doi.org/10.1109/TIP.2023.32 
51737 

Luo, X., Zhan, R., Chang, H., Yang, F., & Milanfar, P. 
(2020). Distortion Agnostic Deep Watermarking. 2020 
IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), 13545–13554. 
https://doi.org/10.1109/CVPR42600.2020.01356 

Mishra, A., Goel, A., Singh, R., Chetty, G., & Singh, L. 
(2012). A novel image watermarking scheme using 
Extreme Learning Machine. The 2012 International 
Joint Conference on Neural Networks (IJCNN), 1–6. 
https://doi.org/10.1109/IJCNN.2012.6252363 

Plata, M., & Syga, P. (2020a). Robust Spatial-spread Deep 
Neural Image Watermarking. 2020 IEEE 19th 
International Conference on Trust, Security and 
Privacy in Computing and Communications 
(TrustCom), 62–70. https://doi.org/10.1109/TrustCom 
50675.2020.00022 

Imperceptible QR Watermarks in High-Resolution Videos

321



Plata, M., & Syga, P. (2020b). Robust watermarking with 
double detector-discriminator approach (arXiv:2006. 
03921). arXiv. https://doi.org/10.48550/arXiv.2006.0 
3921 

Singh, H. K., & Singh, A. K. (2024). Digital image 
watermarking using deep learning. Multimedia Tools 
and Applications, 83(1), 2979–2994. https://doi.org/ 
10.1007/s11042-023-15750-x 

Wen, B., & Aydore, S. (2019). ROMark: A Robust 
Watermarking System Using Adversarial Training 
(arXiv:1910.01221). arXiv. https://doi.org/10.48550/ 
arXiv.1910.01221 

Zhang, K. A., Xu, L., Cuesta-Infante, A., & 
Veeramachaneni, K. (2019). Robust Invisible Video 
Watermarking with Attention (arXiv:1909.01285). 
arXiv. https://doi.org/10.48550/arXiv.1909.01285 

Zhang, P., Li, C., & Wang, C. (2021). VisCode: Embedding 
Information in Visualization Images using Encoder-
Decoder Network. IEEE Transactions on Visualization 
and Computer Graphics, 27(2), 326–336. 
https://doi.org/10.1109/TVCG.2020.3030343 

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, 
O. (2018). The Unreasonable Effectiveness of Deep 
Features as a Perceptual Metric (arXiv:1801.03924). 
arXiv. https://doi.org/10.48550/arXiv.1801.03924 

Zhang, Y., Ni, J., Su, W., & Liao, X. (2023). A Novel Deep 
Video Watermarking Framework with Enhanced 
Robustness to H.264/AVC Compression. Proceedings 
of the 31st ACM International Conference on 
Multimedia, 8095–8104. https://doi.org/10.1145/35817 
83.3612270 

Zhu, J., Kaplan, R., Johnson, J., & Fei-Fei, L. (2018). 
HiDDeN: Hiding Data With Deep Networks. Computer 
Vision – ECCV 2018: 15th European Conference, 
Munich, Germany, September 8-14, 2018, Proceedings, 
Part XV, 682–697. https://doi.org/10.1007/978-3-030-
01267-0_40 

 

SECRYPT 2024 - 21st International Conference on Security and Cryptography

322


