
Imperceptible QR Watermarks in High-Resolution Videos

Tymoteusz Lindner1,2 a, Tomasz Hawro1 and Piotr Syga1,3 b
1Vestigit, Poland

2Poznan University of Technology, Poznan, Poland
3Wrocław University of Science and Technology, Wrocław, Poland

Keywords: Watermarking, QR Codes, Encoder-Decoder, Deep Learning.

Abstract: The recent advancements in watermarking have indicated the capacity of deep learning for video copyright
protection. We introduce a novel deep neural network architecture that uses QR-coded-based messages for
video watermarking. Our framework encompasses an encoder-decoder structure, integrating two noiser
components, to adeptly increase the robustness against attacks, including MPEG compression. Our solution
is aimed at real-life applications; hence we focus on high-resolution videos and intend the encoded image to
be indistinguishable from the cover image. To that end, we perform a subjective evaluation on a group of 72
volunteers as well as calculate objective quality metrics obtaining 0.000241 LPIPS, 1.000 SSIM, and 63.8dB
PSNR for the best scenario. The obtained results improve PSNR reported by REVMark (Y. Zhang et al.,
2023) by around 30dB and LPIPS by a factor of 100. Furthermore, extensive evaluation on both standard
COCO dataset and high-resolution videos underlines the method's high robustness against image distortion
attacks, achieving over 0.9 bit accuracy for JPEG (𝑞=90), Dropout (𝑝=0.85) and chroma subsampling (4:2:0).

1 INTRODUCTION

In the last few years, there has been growing interest
in copyright protection techniques, including
watermarking, within the multimedia industry. At the
same time, the need to effectively protect intellectual
property through widespread copyright marking has
become more pressing due to the rising incidence of
piracy. Online content distribution platforms present
a significant challenge in protecting intellectual
property rights due to the ease with which content can
be intercepted and redistributed without proper
authorization. To address this issue (Giladi, 2017;
Hietbrink, 2018), digital watermarking has emerged
as a powerful tool for content owners to safeguard
their rights. Digital watermarking involves
embedding a hidden message within an image or
video that can be used to identify the content owner
in the event of unauthorized distribution.

One of the primary goals of digital watermarking
is to create a robust and transparent marker that can
withstand various distortions. At the same time, the
watermark must not compromise the quality of the

a https://orcid.org/0000-0001-5339-8663
b https://orcid.org/0000-0002-0266-5802

original content or cause noticeable artifacts for the
end-user. To achieve efficient identification of
unauthorized distributors, the watermark must
contain enough information to uniquely identify each
user who accesses the content. However, storing a
payload large enough to identify each user while
maintaining transparency and minimizing quality loss
requires a trade-off. One approach to address these
contradictory demands is to use the temporal domain
to reduce the payload required in a single frame
(Błaśkiewicz et al., 2020; Plata & Syga, 2020b). In
this paper, we assume that the whole payload has to
be stored in each frame, so that the violator may be
identified by a single frame.

Another critical factor in digital watermarking is
the impact of compression algorithms on watermark
effectiveness. To optimize transmission, the images
and videos are compressed to remove redundant
information that humans cannot perceive, e.g. in
JPEG compression, resulting in a loss of detail in the
chroma components (Cr and Cb) of the color space.
As these components are significantly reduced during
compression, watermarks must be embedded into the
more visible parts of the image or video, like the

310
Lindner, T., Hawro, T. and Syga, P.
Imperceptible QR Watermarks in High-Resolution Videos.
DOI: 10.5220/0012849300003767
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 310-322
ISBN: 978-989-758-709-2; ISSN: 2184-7711
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

luminance (Y channel). Video watermarking can be
seen as an extension of image watermarking, as
MJPEG compression saves a video as a sequence of
JPEG frames. However, other standards like MPEG
compression (e.g., HEVC) encode full information
using JPEG frames at intervals, while relying on
motion vectors to reference previous frames. When
evaluating watermarking methods, factors such as
transparency, capacity, robustness, and real-time
embedding capabilities for video applications are
crucial, especially in commercial settings with high-
resolution videos.

Related Work. The problem of watermarking has
been tackled from various angles, including the
spatial, temporal, and frequency domains. To enhance
robustness, researchers have frequently employed the
Discrete Cosine Transform (DCT), which is already
used in JPEG compression, wavelets or redundancy.
Examples of such approaches can be found in (Hsu &
Tu, 2020; Kumar et al., 2020).

Recently, deep learning techniques have gained
popularity in watermarking. In this paper (Zhu et al.,
2018) authors proposed an end-to-end encoder-
noiser-decoder framework, which spreads message
embeddings across all pixels. A similar approach
using QR codes was evaluated in (P. Zhang et al.,
2021), though it pertains to image steganography,
which focuses on hiding the message. Note that
HiDDeN was not the first watermarking system using
machine learning, as extreme machine learning has
been used in (Mishra et al., 2012).

A paper (Wen & Aydore, 2019) introduced
adversarial training, improving robustness at the cost
of transparency. Since the resulting image no longer
meets conventional standards of PSNR, it holds
significantly limited commercial value and is a purely
academic idea. Another research area involves spread
spectrum watermarking with adaptive strength and
differential quantization, as demonstrated by (Huang
et al., 2019) to improve PSNR guarantees. In this
paper (Luo et al., 2020) authors studied algorithm
robustness by using an additional neural network to
generate diverse distortions during training,
enhancing accuracy. The authors of (Plata & Syga,
2020a) proposed a method to increase local capacity
and robustness against attacks, a topic also explored
by (Ahmadi et al., 2018). Mitigating the influence of
image compression was the key concern in
(Hamamoto & Kawamura, 2020). An important step
was made also in (K. A. Zhang et al., 2019), where
authors used an attention mechanism. More examples
of using machine learning in watermarking can be

found in (Ernawan & Ariatmanto, 2023; Singh &
Singh, 2024).

The closest approaches to ours, including the
examination of high-resolution videos, were
conducted by Chen et al. (Chen et al., 2023), where
Zernike moments were utilized. The authors report
47.6dB PSNR, and 0.999 SSIM. However,
embedding a watermark in FHD video took almost
0.9s per frame and extraction took 0.3s per frame,
making it impractical for real-time use, even for such
low resolution. The authors investigate the robustness
against various attacks, unfortunately, they use
normalized cross-correlation in their estimation
instead of the metrics traditionally used (Zhu et al.,
2018), hence the results are not directly comparable.

DVMark (Luo et al., 2023) followed by
REVMark (Y. Zhang et al., 2023) focuses on MPEG
compression, which is of particular importance in
real-life scenarios. The latter reports PSNR of 37.5dB
and LPIPS of 0.0296 with accuracy reaching 0.967
for the best possible scenario, with a watermark
payload equal to 64bits.

Contribution. (1) We propose a new deep neural
network for embedding QR code-based video
watermarks. (2) We analyze the robustness against
typical attacks, achieving up to 0.962 accuracy. (3)
We evaluate the quality of the embedded videos
objectively and using subjective human evaluation,
demonstrating that the watermark is imperceptible
with 0.000241 LPIPS, 1.000 SSIM, and 63.8dB
PSNR. (4) We evaluate the watermark on a COCO
and high-resolution movies, showing that the method
is suitable for real-world usage. The watermark may
be used to identify copyright violators after just a
single frame or, alternatively, used to identify if the
required video has been played (using the watermark
as a control mechanism for proof of work).

2 METHOD

2.1 Model Architecture

The goal of the model is to encode an invisible
message into an image that can be later recovered
with high accuracy. Our watermarking algorithm
encodes binary message 𝑚 ∈ ሼ0,1ሽ௅ into a cover
image 𝐼௖ with dimensions (𝑊, 𝐻, 𝐶) . The binary
message is transformed into a QR code using an
expanded message generator and then this expanded
message 𝑚௘ with shape (𝑊, 𝐻, 1) is encoded into a
cover image 𝐼௖ (Figure 1).

Imperceptible QR Watermarks in High-Resolution Videos

311

Figure 1: Given a cover image 𝐼௖ and expanded message 𝑚௘ in the form of a QR code, the model generates an
encoded image 𝐼௘ with an invisible message; the encoded
message can be recovered with high accuracy.

During the recovery process of the message, our
model takes an image with an encoded message and
returns the recovered binary message 𝑚௥ ∈ ሼ0,1ሽ௅.

The proposed architecture consists of five
components: watermark generator 𝐺 , encoder 𝐸ఏ ,
decoder 𝐷థ , adversarial discriminator 𝐴ఊ , and a
noiser 𝑁, where 𝜃, 𝜙, 𝛾 are trainable parameters. The
architecture is presented in Figure 2.

The watermark generator 𝐺 at first generates a
binary message 𝑚 and then converts it into an
expanded message 𝑚௘ in the form of a QR code.
Expanded message 𝑚௘ and a cover image 𝐼௖ is used
by the encoder 𝐸ఏ to generate an encoded image 𝐼௘: 𝐼௘ = 𝐸ఏ(𝐼௖, 𝑚௘) (1)

Then the encoded image 𝐼௘ is distorted by the noiser 𝑁 which applies selected attacks to hinder message

recovery from the encoded image 𝐼௘. Note that some
attacks require a cover image 𝐼௖. The output from the
noiser 𝑁 is the following: 𝐼௡ = 𝑁(𝐼௘, 𝐼௖) (2)

The decoder 𝐷థ recovers the binary message 𝑚௥
from the noised image 𝐼௡: 𝑚௥ = 𝐷థ(𝐼௡) ∈ ሼ0,1ሽ௅ (3)

There are two goals of the encoder-decoder
architecture: to generate the encoded image 𝐼௘, which
is indistinguishable from the cover image 𝐼௖, so that
the perceptual difference |𝐼௖ െ 𝐼௘|௉ is close to zero,
and to extract a message 𝑚௥ , so that the difference |𝑚 െ 𝑚௥| is zero.

The discriminator 𝐴ఊ was used for adversarial
training to improve visual similarity between encoded
and cover images. The adversarial discriminator 𝐴ఊ
distinguishes between fake (encoded) and real (cover)
images and outputs the probability 𝑝௪ of whether an
image is watermarked or not: 𝑝௪ = 𝐴ఊ(𝐼 ∈ ሼ𝐼௖, 𝐼௘ሽ) ∈ ሾ0, 1ሿ (4)

During training, we employed the following
attacks, which are image processing operations:
gaussian blur, gaussian noise, JPEG compression
with a quality factor 𝑞, subsampling 4:2:0, dropout,
cropping, and cropout. We adopted a double noiser

Figure 2: The architecture of the proposed watermarking training pipeline. The watermark generator 𝐺 produces an expanded
message 𝑚௘ which is then embedded into a cover image 𝐼௖ by the encoder 𝐸ఏ. The encoded image 𝐼௘ is subjected to distortion
by the noiser 𝑁 to simulate various; the decoder 𝐷థ aims to recover the original image 𝑚௥.

= +

cover image expanded message 𝑚௘
with encoded binary

message 𝑚

encoded image
with invisible

watermark
En

co
de

r 𝐸 ఏ input RGB
image 𝐼௖

encoded RGB
image 𝐼௘

noised RGB
image 𝐼௡

recovered binary
message 𝑚௥ D

ec
od

er
 𝐷 థ

message loss 𝐿ெ

double noiser 𝑁

encoder discriminator loss 𝐿஺ா

discriminator loss 𝐿஺

A
dv

er
sa

ria
l

di
sc

rim
in

at
or

 𝐴 ఊ

encoded

real

image loss 𝐿ூ

binary message 𝑚 expanded
watermark
message 𝑚௘

WM generator 𝐺

SECRYPT 2024 - 21st International Conference on Security and Cryptography

312

Figure 3: The architecture of the encoder 𝐸ఏ network. The encoder 𝐸ఏ converts the input image 𝐼௖ to YCbCr color space. The
trainable layers of the encoder marked with the dotted line are fed only by the Y channel of the input image and generate the
Y channel for an encoded image. This generated Y channel is then concatenated with Cb and Cr channels from an original
input image. At the end encoder 𝐸ఏ converts the encoded YCbCr image to the encoded image 𝐼௘ in RGB color space.

approach, where an image was subjected to one of the
random attacks mentioned above, and additionally
with JPEG compression using a random quality
factor, thus input image was always exposed to two
different attack types.

The Gaussian blur applies a kernel with a specific
size and standard deviation and blurs the image by
averaging the color values of neighboring pixels,
which reduces sharpness and detail. Gaussian noise
adds random noise to the image operating on the pixel
level of the image. JPEG compression reduces the file
size of an image by discarding some of the image’s
data. The quality factor 𝑞 determines the amount of
compression applied, with lower values resulting in
more lossy compression and potentially visible
artifacts. We used an approximation of the JPEG
proposed in (Ahmadi et al., 2018; Plata & Syga,
2020a). Subsampling reduces the resolution of color
information in the image, by averaging color values
of neighboring pixels. It retains full resolution for the
luminance channel but reduces resolution for the
chrominance channels. The crop attack returns a
cropped square of the encoded image and is
parametrized by 𝑝, which specifies the ratio of the
squared image to the input image. The cropout attack
crops the square of the encoded image and replaces it
with the cover image instead of discarding the rest of
the image. The cropout attack is also parameterized
by 𝑝 equal to a ratio of the cropped area over the

entire input image. The dropout attack retains a
percentage 𝑝 of the pixels in the encoded image,
replacing the remaining pixels with their
corresponding pixels from the cover image.

2.2 Loss Functions

We formulated several loss functions for training our
approach 𝐿ெ, 𝐿ூ, 𝐿஺ா, 𝐿஺ . Each loss function was
assigned a weight denoted by 𝜆. The decoder 𝐷థ was
trained using the message loss function 𝐿ெ
formulated as: 𝐿ெ = 𝜆ெ𝐵𝐶𝐸(𝑚௥, 𝑚)= 1𝐿 ෍ሾ𝑚log(𝑚௥)௅൅ (1 െ 𝑚)log (1 െ 𝑚௥)ሿ (5)

thus, decoder loss 𝐿஽ was equal to 𝐿ெ.
For the encoder 𝐸ఏ, we proposed two combined

loss functions. The first one aimed to keep the cover
image 𝐼௖ and encoded image 𝐼௘ as similar as possible,
and was defined using the following equation: 𝐿ூ = 𝜆ூ𝑀𝑆𝐸(𝐼௖, 𝐼௘) ൅ 𝜆ௌ𝐿ௌௌூெ(𝐼௖, 𝐼௘)൅ 𝜆௉𝐿𝑃𝐼𝑃𝑆(𝐼௖ ൅ 𝐼௘) (6)

where 𝑀𝑆𝐸(𝐼௖, 𝐼௘) = ଵௐ∙ு∙஼ ‖𝐼௖ െ 𝐼௘‖ଶଶ. We used three
components in the loss function 𝐿ூ, the first one is a
Mean Squared Error function between images 𝐼௖ and

binary message 𝑚 expanded
watermark
message 𝑚௘

input RGB
image 𝐼௖ YCbCr image

n times

RGB2YCbCr

encoded
Y

channel

encoded
YCbCr image

YCbCr2RGB

encoded RGB
image 𝐼௘

concat across
channels

concat across
channels

concat across
channels

Encoder 𝐸ఏ

Co
nv

 la
ye

rs

Co
nv

 la
ye

rs

Co
nv

 la
ye

rs

Y
channel

WM generator 𝐺

Imperceptible QR Watermarks in High-Resolution Videos

313

Figure 4: Overview of generating the watermark expanded message. (1) – generating an 𝐿-length binary message using the
binary function 𝑏𝑖𝑛(𝐿); (2) – encoding a binary message into a QR code; (3) – removing artifacts from the QR code matrix
(4) – resizing the QR code matrix to desired size (𝑊, 𝐻) using the nearest method, resulting in the expanded message 𝑚௘. 𝐼௘ , the second one is loss based on Structural
Similarity Index Measure (SSIM), and the last one is
Learned Perceptual Image Patch Similarity (LPIPS)
(R. Zhang et al., 2018). LPIPS computes the
similarity between two image patches using a
predetermined neural network, which has been
demonstrated to align closely with human perception.
In our LPIPS loss function, we used a VGG network
with mean reduction. Additional tests using Focal
MSE loss did not improve the outcome.

Encoder 𝐸ఏ and discriminator 𝐴ఊ improved of
visual similarity of cover 𝐼௖ and encoded 𝐼௘ images
using adversarial training. The goal of the encoder 𝐸ఏ
is to generate an image recognized as the cover image
by the discriminator 𝐴ఊ , thus we defined the
following loss function: 𝐿஺ா = 𝜆஺ா𝐵𝐶𝐸 ቀ𝐴ఊ(𝐼௘)ቁ = log൫1 െ 𝐴ఊ(𝐼௘)൯ (7)

Finally, the loss function 𝐿ா for the encoder 𝐸ఏ was
calculated using the formula: 𝐿ா = 𝐿ூ ൅ 𝐿஺ா (8)

The goal of the discriminator 𝐴ఊ was to recognize
which image is a cover image 𝐼௖ and which one is the
encoded image 𝐼௘, thus we formulated the following
loss function for the discriminator 𝐴ఊ: 𝐿஺ = 𝜆஺𝐵𝐶𝐸൫𝐴ఊ(𝐼௘), 𝐴ఊ(𝐼௖)൯= log ቀ1 െ 𝐴ఊ(𝐼௖)ቁ൅ log ൫𝐴ఊ(𝐼௘)൯

(9)

In order to optimize the parameters 𝜃 and 𝜙 for
the encoder 𝐸ఏ and decoder 𝐷థ we performed an
optimization algorithm to minimize the following
loss function over the distribution of input images and
messages: 𝔼ூ೎,௠ሾ𝐿ெ(𝑚, 𝑚௥) ൅ 𝐿ூ(𝐼௖, 𝐼௘) ൅ 𝐿஺ா(𝐼௘)ሿ (10)

Simultaneously the discriminator 𝐴ఊ was trained to
minimize the following objective over the
distribution of images: 𝔼ூ೎ሾ𝐿஺(𝐼௖, 𝐼௘)ሿ (11)

Note that each loss function 𝐿ெ , 𝐿ூ , 𝐿஺ா , 𝐿஺ and its
components have separate weights 𝜆.

2.3 The Architecture of the Networks

The encoder 𝐸ఏ model consists of sequential blocks
of conv layers with 64 channels, kernel size equal to (3, 3) , stride, padding equal to (1, 1) , batch
normalization and ReLu activation. Detailed model
architecture is presented in Figure 3. The encoder 𝐸ఏ
converts the RGB input image 𝐼௖ to YCbCr color
space. The first three layers of the encoder 𝐸ఏ are
standard Conv-Bn-ReLu blocks and are fed only by
the Y channel of the input image, thus the encoder 𝐸ఏ
has only access to this channel of the image. These
three layers generate a feature representation of the
input image Y channel. The next two layers, which
are also Conv-Bn-ReLu are fed by concatenated
expanded message 𝑚௘, feature representation of the
input image Y channel and original Y channel of the
input image. Note that the expanded message 𝑚௘ is
used three times in the concatenation list. The final
layer is fed by the output from the previous layer
concatenated once again with the original Y channel
of the input image, this final layer generates a Y
channel which is concatenated with channels Cb and
Cr from the original image creating an encoded image
in the YCbCr color space. At the very end, encoder 𝐸ఏ converts the encoded YCbCr image to the encoded
image 𝐼௘ in RGB color space. The encoder 𝐸ఏ has a
fairly simple architecture with a small number of
parameters. It is crucial in the context of the time
efficiency of the model because the encoder needs to
process data in real-time.

16
-b

it
bi

na
ry

 m
es

sa
ge

[0

, 1
, 0

, 0
, 1

, 1
, 1

, 0
, 1

, 1
, 1

, 0
, 0

, 1
, 1

, 0
]

embedding
message into QR
code

QR code matrix with
shape (21, 21)

removing
unnecessary QR
artifacts

generating
watermark with
given size (wm_h,
wm_w)

(1) (2) (3) (4)

SECRYPT 2024 - 21st International Conference on Security and Cryptography

314

The decoder 𝐷థ takes the noised image 𝐼௡ as an
input and converts it to the YCbCr color space. The
converted image is fed into the ResNet18 backbone.
The next layer in the decoder model is adaptive
averaging pooling. Then there were two linear layers
with 64 neurons separated with batch normalization
and finalized with sigmoid activation.

The adversarial discriminator 𝐴ఊ consists of
three sequential blocks of conv layers with 64
channels, kernels equal to (3, 3), stride and padding
equal to (1, 1) , batch normalization and ReLu
activation. These three blocks are followed by an
adaptive averaging pooling, one linear layer with 64
neurons and sigmoid activation. The discriminator 𝐴ఊ
returns the probability of whether the input image is
a fake (encoded) or real (cover) image.

2.4 Watermark Generator

Generating the expanded message 𝑚, which served as
the input to the encoder 𝐸ఏ, involved several steps.
The individual steps of generating the message 𝑚௘
are presented in Figure 4. Initially, we generated a
random binary message 𝑚 using the binary function 𝑏𝑖𝑛(𝐿), which takes the message length 𝐿 as input. In
the subsequent step, the binary message 𝑚 was
converted to a string and then encoded into a QR code
matrix. We applied a high error correction level,
which can recover 30% of the input data. The mask
for the QR code was automatically chosen based on
the input data. The generated QR code was (21, 21)
pixels.

A QR code matrix contains artifacts for
positioning, orientation, alignment, version, format,
etc., that are unnecessary because they do not contain
data information. During the message creation
process, all artifacts of the QR code matrix are
removed. The last step in the process of message
generation is extrapolating the QR code matrix to the
desired size (𝑊, 𝐻) using the nearest method,
ensuring that we obtain an expanded message 𝑚௘ ,
that has the same width and height size as the input
cover image 𝐼௖.

2.5 Training Details

We trained our model on two datasets. The first was
a subset of the COCO dataset (Lin et al., 2015)
consisting of 10000 images for training and 1000 for
validation. The second dataset was proprietary,
containing frames from diverse video content such as
movie trailers, ads, football matches, podcasts,
YouTube videos etc. Our custom dataset comprised
228252 images for training and 57073 for validation.

During the research phase, we primarily used the
COCO subset for its size, facilitating rapid testing and
exploration of various approaches.

The loss weights parameters 𝜆ெ, 𝜆ூ, 𝜆ௌ, 𝜆௉, 𝜆஺ா ,
and 𝜆஺ equal to 0.5, 0.05, 0.2, 2.0, 0.1, and 1.0
respectively.

During training, we randomly cropped images
from the dataset to a size of (128, 128) pixels,
resulting cover image 𝐼௖. The expanded message 𝑚௘
had the same size as the cover image 𝐼௖ (128, 128).
This procedure simulated embedding the watermark
on a selected area of the entire image frame. A binary
message with a length 𝐿 = 16 was encoded.

To achieve the appropriate balance between high
message decoding accuracy and the minimal
perceptual difference between the cover 𝐼௖ and the
encoded 𝐼௘ images, we employed several tricks. The
first involved pretraining decoder 𝐷థ to develop a
"general" understanding of retrieving the binary
message 𝑚 from the expanded message 𝑚௘. During
pretraining, we fed the decoder 𝐷థ with mixed
images combining cover images 𝐼௖ and expanded
messages 𝑚௘ with random proportions ranging from
0 to 1. This resulted in decoder 𝐷థ inputs with images
where the expanded message 𝑚௘ could be barely or
clearly visible. Additionally, each image during
decoder pretraining was noised with JPEG
compression and Gaussian blur.

We used Stochastic Gradient Descent (SGD) with
an initial learning rate 𝛼 = 0.001 for all three trainable
modules: the encoder 𝐸ఏ , decoder 𝐷థ , and
discriminator 𝐴ఊ, along with a momentum of 0.9 and
Nesterov acceleration. During training, we employed
schedulers for both learning rates 𝛼 and loss weights 𝜆 for the encoder 𝐸ఏ and decoder 𝐷థ. The loss weight
scheduler was activated after 50% of training epochs,
where the loss weights for the encoder 𝐸ఏ were
increased and for the decoder were decreased.
Detailed factors for each loss weight were presented
in equation 12 for the encoder 𝐸ఏ and in equation 13
for the decoder 𝐷థ. The notation 𝜆௫௘ୀ଴ represents loss
weight in the epoch 𝑒 = 0 for the loss function 𝑥. 𝜆ூ,ௌ,௉,஺ா= ൞𝜆ூ,ௌ,௉,஺ா௘ୀ଴ ∙ 1.0𝜆ூ,ௌ,௉,஺ா௘ୀ଴ ∙ 1.5𝜆ூ,ௌ,௉,஺ா௘ୀ଴ ∙ 2.0 𝑖𝑓 ≤ 50% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 𝑖𝑓 50% < 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 ≤ 80%𝑖𝑓 > 80% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 (12)

𝜆ெ = ቐ𝜆ெ௘ୀ଴ ∙ 1.0𝜆ெ௘ୀ଴ ∙ 0.5𝜆ெ௘ୀ଴ ∙ 0.25 𝑖𝑓 ≤ 50% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 𝑖𝑓 50% < 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 ≤ 80%𝑖𝑓 > 80% 𝑡𝑟𝑎𝑖𝑛 𝑒𝑝𝑜𝑐ℎ𝑠 (13)

Imperceptible QR Watermarks in High-Resolution Videos

315

The learning rate scheduler was also activated after
50% of the training epochs, and the learning rates
decreased for both the encoder 𝐸ఏ and the decoder 𝐷థ. After 50% of the epochs, the learning rates were
0.5 times smaller, after 70% 0.1 times smaller, and
after 90% 0.001 times smaller.

During the training of the entire pipeline,
including the encoder 𝐸ఏ , decoder 𝐷థ and
discriminator 𝐴ఊ , we observed that the encoder 𝐸ఏ
struggled to invisibly encode watermark on dimmed
and dark images. To address this issue, we used an
image transformation that adjusted the brightness of
the input images. Each input image had a 5% chance
of undergoing brightness correction in the range from
0 to 0.3, where 0 represents a completely dark image
and 1 represents the original image. The model was
trained with a batch size of 64 for 200 epochs.

3 EXPERIMENTS

We evaluated two models, one trained on a subset of
the COCO dataset and the second one trained on our
custom dataset. Both models were assessed on the
validation COCO dataset, comprising 1000 images.
Additionally, we evaluated the model trained on our
custom dataset on 315 short videos that lasted from
several seconds to several minutes. During the
evaluation, we applied the watermark only to a fixed,
small portion of the image, which served as the cover
image 𝐼௖ . The high-resolution input image size was (784, 784) for evaluation on the COCO dataset and (1920, 1080) for evaluation on short videos, while
the watermark size was (128, 128).

To further enhance the invisibility of the
watermark, albeit at the expense of decreasing
message recovery accuracy, we implemented a
technique we called Gaussian smoothing (GS). This
technique is only applied during inference and can be
easily disabled. This approach helped reduce the
visibility of the watermark in an entire high-
resolution input image. GS involved generating a
mask using Gaussian blur with kernel size and
standard deviation equal to the watermark size, which
was 128. This mask was used to merge the cover 𝐼௖
and the encoded 𝐼௘ images with the watermark, using
the proportion of each pixel value in the mask. In the
resulting image after applying GS, brighter areas had
a higher proportion of pixel values from the encoded
image 𝐼௘ , while darker areas had more pixel values
from the cover image 𝐼௖. As a result, at the edges, the
image with the watermark was much more similar to
neighboring pixels from the entire image.

Used Metrics. For evaluating message recovery, we
used two metrics: bit accuracy (BA) and message
accuracy (MA). The BA assesses the fidelity of
binary message recovery by comparing recovered
messages 𝑚௥ with the original binary messages 𝑚 ,
calculating the proportion of correctly matched bits.
The MA evaluates the accuracy of message recovery
by comparing recovered messages 𝑚௥ with the
original binary messages 𝑚 , assessing whether all
bits in each message match. To assess the visual
similarity between cover 𝐼௖ and encoded 𝐼௘ images
we used LPIPS, SSIM, and PSNR.

In the following subsections, we present results in
tables containing metric values for particular types of
attacks. Each table header displays the name of the
metrics with an arrow indicating whether higher or
lower values of the metric are more desirable. Each
column has its color scale, representing the best
values for each attack. The color scale transitions
smoothly between three colors: green (best), orange,
and red (worst).

3.1 Evaluation on the COCO Dataset

This section presents the results of the evaluation of
two models on the validation subset of the COCO
dataset. Additionally, we tested how GS influences
the robustness of our model and improves watermark
transparency.

During the evaluation, a different random binary
message 𝑚 was generated for each image, and it was
embedded only in that particular image - each image
had a watermark embedded with a different message 𝑚. Consequently, the decoder had only one image
(chance) to correctly decode the message. The
fragment of the image with size (128, 128) – the
cover image 𝐼௖ on which the watermark was
embedded and which served as the input to the
encoder 𝐸ఏ, was always located in the center of the
high-resolution input image with size (784, 784) .
The time taken to embed the watermark in one frame
of the image was below 5ms, while the message
decoding time was below 3ms.

The model trained on the COCO dataset (Table 1)
achieved very similar visual metrics for all types of
attacks. The average LPIPS was 0.0014, the SSIM
was close to 1.0, and the average PSNR was 49.6dB.
The best values for SSIM and LPIPS occurred when
the Gaussian blur attack was applied, and for PSNR
when no attack was applied. The worst visual metrics
were observed for JPEG attacks, but the difference
between the best and worst metrics was 0.22 dB for
PSNR and below 1∙10-4 for SSIM and LPIPS.

SECRYPT 2024 - 21st International Conference on Security and Cryptography

316

The highest accuracy in decoding a message was
observed when no attack was applied and for JPEG
compression with 𝑞=90. For both attacks, the BA was
above 0.9, while the MA was approximately 0.25.
The worst results were observed for crop attacks,
where for cropping factors from 0.8 to 0.9, the BA

was 0.5, resulting in the recovery of a completely
random message. Only for a cropping factor of 0.95,
the BA was 0.55, which still yielded a very poor
result. For all crop attacks, the decoder 𝐷థ was
unable to correctly recover the entire message 𝑚
from even a single image, resulting in an MA of 0.0.

Table 1: Results of the evaluation on the COCO dataset for the model trained on the COCO dataset without GS.

Attack name Bit accuracy↑ Message accuracy↑ LPIPS↓ SSIM↑ PSNR↑
Identity 0.901 0.243 0.00140 0.999 49.7
JPEG(𝑞=30) 0.846 0.086 0.00144 0.999 49.5
JPEG(𝑞=50) 0.884 0.169 0.00144 0.999 49.5
JPEG(𝑞=70) 0.900 0.222 0.00144 0.999 49.5
JPEG (𝑞=90) 0.914 0.266 0.00144 0.999 49.5
Gaussian blur (𝜎=(0.5, 4)) 0.892 0.191 0.00138 0.999 49.6
Gaussian noise (𝜎=0.04) 0.881 0.137 0.00139 0.999 49.6
Dropout (𝑝=0.85) 0.864 0.099 0.00139 0.999 49.6
Subsampling (4:2:0) 0.901 0.196 0.00139 0.999 49.6
Crop (𝑝=0.8) 0.507 0.000 0.00140 0.999 49.7
Crop (𝑝=0.85) 0.500 0.000 0.00139 0.999 49.7
Crop (𝑝=0.9) 0.497 0.000 0.00139 0.999 49.7
Crop (𝑝=0.95) 0.546 0.000 0.00139 0.999 49.7
Cropout (𝑝=0.8) 0.713 0.024 0.00140 0.999 49.7
Cropout (𝑝=0.85) 0.769 0.036 0.00139 0.999 49.7
Cropout (𝑝=0.9) 0.826 0.074 0.00140 0.999 49.7
Cropout (𝑝=0.95) 0.879 0.166 0.00139 0.999 49.7

Table 2: Results of the evaluation on the COCO dataset for the model trained on our custom dataset without GS.

Attack name Bit accuracy↑ Message accuracy↑ LPIPS↓ SSIM↑ PSNR↑
Identity 0.948 0.435 0.000997 0.999 54.3
JPEG(𝑞=30) 0.815 0.081 0.000992 0.999 54.1
JPEG(𝑞=50) 0.902 0.227 0.000992 0.999 54.1
JPEG(𝑞=70) 0.934 0.360 0.000992 0.999 54.1
JPEG (𝑞=90) 0.959 0.547 0.000992 0.999 54.1
Gaussian blur (𝜎=(0.5, 4)) 0.930 0.326 0.000933 1.000 54.4
Gaussian noise (𝜎=0.04) 0.856 0.094 0.001127 0.999 54.1
Dropout (𝑝=0.85) 0.920 0.285 0.001127 0.999 54.1
Subsampling (4:2:0) 0.947 0.438 0.001127 0.999 54.1
Crop (𝑝=0.8) 0.505 0.000 0.000996 0.999 54.3
Crop (𝑝=0.85) 0.501 0.000 0.001008 0.999 54.3
Crop (𝑝=0.9) 0.506 0.000 0.000998 0.999 54.3
Crop (𝑝=0.95) 0.568 0.000 0.000995 0.999 54.3
Cropout (𝑝=0.8) 0.749 0.040 0.001000 0.999 54.3
Cropout (𝑝=0.85) 0.793 0.050 0.000998 0.999 54.3
Cropout (𝑝=0.9) 0.860 0.108 0.000997 0.999 54.3
Cropout (𝑝=0.95) 0.902 0.210 0.000989 0.999 54.3

Imperceptible QR Watermarks in High-Resolution Videos

317

Table 3: Results of the evaluation on the COCO dataset for the model trained on our custom dataset with GS.

Attack name Bit accuracy↑ Message accuracy↑ LPIPS↓ SSIM↑ PSNR↑
Identity 0.911 0.250 0.000592 1.000 55.8
JPEG(𝑞=30) 0.753 0.023 0.000620 1.000 55.6
JPEG(𝑞=50) 0.851 0.111 0.000620 1.000 55.6
JPEG(𝑞=70) 0.891 0.168 0.000620 1.000 55.6
JPEG (𝑞=90) 0.927 0.309 0.000620 1.000 55.6
Gaussian blur (𝜎=(0.5, 4)) 0.871 0.133 0.000593 1.000 55.8
Gaussian noise (𝜎=0.04) 0.801 0.033 0.000608 1.000 55.8
Dropout (𝑝=0.85) 0.871 0.131 0.000608 1.000 55.8
Subsampling (4:2:0) 0.910 0.243 0.000608 1.000 55.8
Crop (𝑝=0.8) 0.505 0.000 0.000597 1.000 55.8
Crop (𝑝=0.85) 0.501 0.000 0.000600 1.000 55.8
Crop (𝑝=0.9) 0.506 0.000 0.000596 1.000 55.8
Crop (𝑝=0.95) 0.559 0.000 0.000596 1.000 55.8
Cropout (𝑝=0.8) 0.738 0.033 0.000600 1.000 55.8
Cropout (𝑝=0.85) 0.781 0.036 0.000600 1.000 55.8
Cropout (𝑝=0.9) 0.842 0.070 0.000596 1.000 55.8
Cropout (𝑝=0.95) 0.870 0.125 0.000596 1.000 55.8

The model trained on our custom dataset (Table
2) achieved better visual and accuracy metrics when
tested on the validation subset sampled from the
COCO dataset. The average LPIPS was 0.001, the
SSIM was close to 1.0, and the average PSNR was
54.2dB, representing a 38% improvement for LPIPS
and a 9% improvement for PSNR compared to the
model trained on the COCO dataset (the improvement
in SSIM was negligibly small). The best values again
occurred when the Gaussian blur attack was applied,
while the worst values were observed for Gaussian
noise, dropout, and subsampling. The difference
between the best and worst metric values was 0.3dB
for PSNR and below 1∙10-4 for SSIM and LPIPS.

Comparing the message recovery metrics between
these two models trained on different datasets,
improvements can also be noticed. Once again, the
highest accuracy in decoding a message was observed
for attacks identity and JPEG compression with a
quality factor of 𝑞=90. For both attacks, the BA was
close to 0.95, while the MA was approximately 0.5.
The most significant improvement compared to the
model trained on the COCO dataset can be noticed for
MA, which was three times better for dropout and two
times better for identity, JPEG(𝑞 =90), and
subsampling attacks. For the rest of the attacks, MA
improved in the range between 30% and 70%. Only
for two attacks, MA decreased, for JPEG(𝑞=30) by

6% and for Gaussian noise by 31%. The BA showed
an improvement in the range from 2% to 7%, except
for attacks JPEG(𝑞=30) and Gaussian noise, where
BA decreased by approximately 3%. The worst
results were observed again for crop attacks.

During the evaluation with GS, only the model
trained on our custom dataset was tested, as it yielded
better results during the initial evaluation stage. The
results of tests with GS for the model trained on our
custom dataset are presented in Table 3. For different
types of attacks, we observed LPIPS improvement in
the range from 57% up to 86%, and PSNR
improvement in the range from 2.5% to 3.2%
compared to the model without GS. The improvement
in visual metrics came at the expense of message
recovery metrics. The BA decreased from 1.4% to
7.6% for particular attacks, and the MA from 18% to
72%. The biggest drop was observed for JPEG
compression with a quality factor 𝑞 =30. For the
model trained on our custom dataset without GS
applied, the BA was above 0.85 for 10 attacks,
whereas with GS, it was above 0.85 for 8 attacks.

We compared the images without encoded
watermarks with those with encoded watermarks in
the middle of the high-resolution. input image. The
examples of the encoded images are presented in
Figure 5.

SECRYPT 2024 - 21st International Conference on Security and Cryptography

318

Figure 5: Examples of input image from the COCO dataset without watermark (first row); images with encoded watermark
in the middle ot the image (second row); the min-max difference between images with and without watermark (third row).

3.2 Evaluation on Videos

Embedding watermarks in videos simulates real-
world scenarios of applying content watermarking.
This section presents the results of evaluating the
model trained on our custom dataset with and without
GS applied. The videos had a resolution of (1920, 1080), and we encoded the watermark in the
middle of every frame of the videos. As with the tests
on the COCO dataset, the time taken to embed the
watermark in one frame of the image was below 5ms,
while the message decoding time was below 3ms. The
results from this evaluation are presented in Table 4
and Table 5.

For each video, a random binary message 𝑚 was
generated, and then we encoded the watermark with
this message in the middle of every frame of the
video. For every video, the decoder had to decode the
same message from each frame. We calculated BA,
MA, LPIPS, SSIM, and PSNR for every frame in
each video. The final metrics were averaged across all
metrics from particular frames. We also calculated
additional statistics for every movie. We averaged all
recovered messages from particular frames to
calculate the final video recovered message from all
frames of the video. Based on that, we were able to

calculate the number of correct and incorrect bits for
every video and the percentage of correct bits.

The model trained on our custom dataset without
GS (Table 4) showed similar performance during the
evaluation on videos compared to the evaluation on
the COCO dataset. The LPIPS was two times better,
and PSNR had a 14% improvement compared to the
evaluation on the COCO dataset. When it comes to
message recovery metrics, namely BA and MA, we
observed the worst results only for JPEG compression
and Gaussian noise attacks. The number of incorrect
bits was higher than 1 bit only for JPEG compression
with quality factors 𝑞 =50 and 𝑞 =30 and Gaussian
noise attacks. For identity and subsampling attacks,
our approach was able to recover all bits for 99.5% of
the videos. For 7 out of 9 attacks, we were able to
correctly recover all bits for 90% of the tested videos.

The model tested with GS (Table 5) showed a
similar performance pattern to the one without GS.
The LPIPS was over two times better, and PSNR had
a 14% improvement, achieving over 63dB compared
to the evaluation on the COCO dataset. The BA and
MA decreased only for JPEG compression and
Gaussian noise attacks. Similar to the model tested
without GS, the approach with GS was able to
correctly recover all bits for over 90% of the videos
for 7 out of 9 attacks.

Imperceptible QR Watermarks in High-Resolution Videos

319

Table 4: Results of the evaluation on videos for the model trained on our custom dataset without GS.

Attack name Bit
accuracy↑

Message
accuracy↑ LPIPS↓ SSIM↑ PSNR↑ % correct

bits↑
correct

bits↑
incorrect

bits↓
Identity 0.962 0.572 0.000560 1.000 61.8 0.995 15.9 0.1
JPEG(𝑞=30) 0.699 0.011 0.000526 1.000 61.9 0.817 13.1 2.9
JPEG(𝑞=50) 0.799 0.058 0.000526 1.000 61.9 0.916 14.6 1.4
JPEG(𝑞=70) 0.875 0.156 0.000526 1.000 61.9 0.970 15.5 0.5
JPEG (𝑞=90) 0.947 0.449 0.000526 1.000 61.9 0.994 15.9 0.1
Gaussian blur (𝜎=(0.5, 4)) 0.938 0.392 0.000518 1.000 62.0 0.993 15.9 0.1
Gaussian noise (𝜎=0.04) 0.733 0.008 0.000648 1.000 61.5 0.740 11.8 4.2
Dropout (𝑝=0.85) 0.937 0.366 0.000649 1.000 61.5 0.991 15.9 0.1
Subsampling (4:2:0) 0.962 0.555 0.000649 1.000 61.5 0.995 15.9 0.1

Table 5: Results of the evaluation on videos for the model trained on our custom dataset with GS.

Attack name Bit
accuracy↑

Message
accuracy↑ LPIPS↓ SSIM↑ PSNR↑ % correct

bits↑
correct

bits↑
incorrect

bits↓
Identity 0.935 0.375 0.000252 1.000 63.6 0.993 15.9 0.1
JPEG(𝑞=30) 0.665 0.005 0.000241 1.000 63.8 0.819 13.1 2.9
JPEG(𝑞=50) 0.759 0.027 0.000241 1.000 63.8 0.924 14.8 1.2
JPEG(𝑞=70) 0.828 0.071 0.000241 1.000 63.8 0.967 15.5 0.5
JPEG (𝑞=90) 0.910 0.251 0.000241 1.000 63.8 0.989 15.8 0.2
Gaussian blur (𝜎=(0.5, 4)) 0.886 0.165 0.000247 1.000 63.6 0.980 15.7 0.3
Gaussian noise (𝜎=0.04) 0.662 0.003 0.000265 1.000 63.6 0.698 11.2 4.8
Dropout (𝑝=0.85) 0.901 0.213 0.000265 1.000 63.6 0.982 15.7 0.3
Subsampling (4:2:0) 0.933 0.357 0.000265 1.000 63.6 0.990 15.8 0.2

Comparing our results to other approaches, we
achieved a significant improvement in the invisibility
of the watermark while maintaining a similar level of
message recovery accuracy. During the evaluation of
our model in a real-world environment, we obtained
a BA of 0.962, LPIPS of 0.00056, SSIM of 1.0, and
PSNR of 61.8dB for the scenario where the encoded
image was not subjected to any image distortion.
Furthermore, we even further improved the
invisibility of the watermark, achieving a slightly
lower BA of 0.935, LPIPS of 0.000252, SSIM of 1.0,
and PSNR of 63.6dB for the scenario where the
encoded image was not attacked. The authors of
(Chen et al., 2023) reported a PSNR of 47.6dB and
SSIM of 0.999, which is approximately 30% worse
PSNR than in our approach. The authors of the
DVMark model (Luo et al., 2023) achieved slightly
higher accuracy in message decoding, with a reported
accuracy of 0.967, but they reported almost two times
worse PSNR (37.5dB) and over 100x worse LPIPS
(0.0296).

3.3 Subjective Perceptual Evaluation

Despite using objective quality metrics like LPIPS,
SSIM, and PSNR, evaluating the visual experience of
end users is crucial for a transparent watermarking
system, as individual perceptual experiences vary. To
estimate subjective perceptual quality, we performed
a MOS evaluation with 72 volunteers aged 23 to 55,
watching videos on their own devices. All had a
technical background in computer science but not
necessarily in image processing. They were informed
about the research purpose and performed two tasks.
First, they rated the quality of five 5-second video
fragments on a scale from 1 (lowest) to 5 (highest).
The videos included unmodified, QR-watermarked,
and QR-watermarked with GS. The average ratings
were 3.48 (std 0.51) for unmodified, 3.39 (std 0.47)
for QR-watermarked and 3.47 (std 0.31) for QR-
watermarked with GS. After testing with Shapiro-
Wilk and performing ANOVA we obtained f<0.013,
hence there is no significant difference between the
ratings of all three groups.

SECRYPT 2024 - 21st International Conference on Security and Cryptography

320

Next, the volunteers were presented with pairs of
random frames, one unmodified and one
watermarked (with or without GS), and asked to
identify the modified frame. This task aimed to
ascertain the transparency of the watermark when a
reference frame is provided. Each user received 4
random frame pairs. The watermark was correctly
identified in 62.5% of cases without GS and 56.25%
with GS. These results indicate that the distinction is
not significantly higher than random guessing.

4 CONCLUSIONS

In the paper, we presented a novel QR-based
watermarking approach suitable for real-world
applications, allowing messages to be embedded in
each frame. We demonstrated two modes of our
watermark: a robust mode (without Gaussian
smoothing) and a transparent mode (with Gaussian
smoothing). The quality results were significantly
improved, with LPIPS reduced by a factor of 100 and
PSNR increased by 30dB. This method also features
faster embedding, enabling real-time application.
Additionally, tests with volunteers showed that the
watermarked materials were indistinguishable from
the originals. For future work, we aim to enhance
watermark localization in cases of cropping and
evaluate robustness against a broader spectrum of
attacks while maintaining quality, capacity, and
embedding time.

ACKNOWLEDGEMENTS

The research was partially supported by grant number
POIR.01.01.01-00-0090/22.

REFERENCES

Ahmadi, M., Norouzi, A., Soroushmehr, S. M. R., Karimi,
N., Najarian, K., Samavi, S., & Emami, A. (2018).
ReDMark: Framework for Residual Diffusion
Watermarking on Deep Networks (arXiv:1810.07248).
arXiv. http://arxiv.org/abs/1810.07248

Błaśkiewicz, P., Klonowski, M., & Syga, P. (2020).
Droppix: Towards More Realistic Video Finger-
printing. Proceedings of the 17th International Joint
Conference on E-Business and Telecommunications -
SECRYPT, 468–476. https://doi.org/10.5220/0009876
104680476

Chen, S., Malik, A., Zhang, X., Feng, G., & Wu, H. (2023).
A Fast Method for Robust Video Watermarking Based

on Zernike Moments. IEEE Transactions on Circuits
and Systems for Video Technology, 33(12), 7342–7353.
https://doi.org/10.1109/TCSVT.2023.3281618

Ernawan, F., & Ariatmanto, D. (2023). A recent survey on
image watermarking using scaling factor techniques for
copyright protection. Multimedia Tools and
Applications, 82(18), 27123–27163. https://doi.org/
10.1007/s11042-023-14447-5

Giladi, A. (2017, October 26). Integrating forensic
watermarking into adaptive streaming workflow. IBC.

Hamamoto, I., & Kawamura, M. (2020). Neural
Watermarking Method Including an Attack Simulator
against Rotation and Compression Attacks. IEICE
Transactions on Information and Systems, E103.D(1),
33–41. https://doi.org/10.1587/transinf.2019MUP0007

Hietbrink, E. (2018). Forensic Watermarking Implementa-
tion Considerations for Streaming Media Created and
Approved by the Streaming Video Alliance July 19 ,
2018.

Hsu, C.-S., & Tu, S.-F. (2020). Enhancing the robustness of
image watermarking against cropping attacks with dual
watermarks. Multimedia Tools and Applications,
79(17), 11297–11323. https://doi.org/10.1007/s11042-
019-08367-6

Huang, Y., Niu, B., Guan, H., & Zhang, S. (2019).
Enhancing Image Watermarking With Adaptive
Embedding Parameter and PSNR Guarantee. IEEE
Transactions on Multimedia, 21(10), 2447–2460.
https://doi.org/10.1109/TMM.2019.2907475

Kumar, C., Singh, A. K., & Kumar, P. (2020). Improved
wavelet-based image watermarking through SPIHT.
Multimedia Tools and Applications, 79(15), 11069–
11082. https://doi.org/10.1007/s11042-018-6177-0

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., &
Dollár, P. (2015). Microsoft COCO: Common Objects
in Context (arXiv:1405.0312). arXiv. https://doi.org/
10.48550/arXiv.1405.0312

Luo, X., Li, Y., Chang, H., Liu, C., Milanfar, P., & Yang,
F. (2023). DVMark: A Deep Multiscale Framework for
Video Watermarking. IEEE Transactions on Image
Processing, 1–1. https://doi.org/10.1109/TIP.2023.32
51737

Luo, X., Zhan, R., Chang, H., Yang, F., & Milanfar, P.
(2020). Distortion Agnostic Deep Watermarking. 2020
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 13545–13554.
https://doi.org/10.1109/CVPR42600.2020.01356

Mishra, A., Goel, A., Singh, R., Chetty, G., & Singh, L.
(2012). A novel image watermarking scheme using
Extreme Learning Machine. The 2012 International
Joint Conference on Neural Networks (IJCNN), 1–6.
https://doi.org/10.1109/IJCNN.2012.6252363

Plata, M., & Syga, P. (2020a). Robust Spatial-spread Deep
Neural Image Watermarking. 2020 IEEE 19th
International Conference on Trust, Security and
Privacy in Computing and Communications
(TrustCom), 62–70. https://doi.org/10.1109/TrustCom
50675.2020.00022

Imperceptible QR Watermarks in High-Resolution Videos

321

Plata, M., & Syga, P. (2020b). Robust watermarking with
double detector-discriminator approach (arXiv:2006.
03921). arXiv. https://doi.org/10.48550/arXiv.2006.0
3921

Singh, H. K., & Singh, A. K. (2024). Digital image
watermarking using deep learning. Multimedia Tools
and Applications, 83(1), 2979–2994. https://doi.org/
10.1007/s11042-023-15750-x

Wen, B., & Aydore, S. (2019). ROMark: A Robust
Watermarking System Using Adversarial Training
(arXiv:1910.01221). arXiv. https://doi.org/10.48550/
arXiv.1910.01221

Zhang, K. A., Xu, L., Cuesta-Infante, A., &
Veeramachaneni, K. (2019). Robust Invisible Video
Watermarking with Attention (arXiv:1909.01285).
arXiv. https://doi.org/10.48550/arXiv.1909.01285

Zhang, P., Li, C., & Wang, C. (2021). VisCode: Embedding
Information in Visualization Images using Encoder-
Decoder Network. IEEE Transactions on Visualization
and Computer Graphics, 27(2), 326–336.
https://doi.org/10.1109/TVCG.2020.3030343

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang,
O. (2018). The Unreasonable Effectiveness of Deep
Features as a Perceptual Metric (arXiv:1801.03924).
arXiv. https://doi.org/10.48550/arXiv.1801.03924

Zhang, Y., Ni, J., Su, W., & Liao, X. (2023). A Novel Deep
Video Watermarking Framework with Enhanced
Robustness to H.264/AVC Compression. Proceedings
of the 31st ACM International Conference on
Multimedia, 8095–8104. https://doi.org/10.1145/35817
83.3612270

Zhu, J., Kaplan, R., Johnson, J., & Fei-Fei, L. (2018).
HiDDeN: Hiding Data With Deep Networks. Computer
Vision – ECCV 2018: 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings,
Part XV, 682–697. https://doi.org/10.1007/978-3-030-
01267-0_40

SECRYPT 2024 - 21st International Conference on Security and Cryptography

322

