
Detecting and Resolving Bad Organisational Smells for Microservices

Michele Agostini, Jacopo Soldani a and Antonio Brogi b

Department of Computer Science, University of Pisa, Italy

Keywords: Microservices, DevOps, Bad Smells, Organizational Smells, Refactoring.

Abstract: The development and maintenance of microservices should be decentralised. The microservices in an appli-
cation should be partitioned among DevOps teams so to reduce cross-team interactions, which are costly and
slow the delivery of updates. To this end, this paper identifies three bad organisational smells for microser-
vices, which may possibly denote decentralisation lapses in DevOps team assignments for microservice ap-
plications, together with the organisational refactorings allowing to resolve them. We then introduce a model-
driven method to automatically detect and resolve bad organisational smells in a microservice application.
The proposed method is based on extending µTOSCA, an existing metamodel for specifying microservice
applications, to also support modelling the DevOps team assignment of microservices. Finally, we illustrate
the feasibility and usefulness of the proposed model-driven method by providing its prototype implementation
and reporting on a controlled experiment, respectively.

1 INTRODUCTION

Microservice applications (MSAs) are pervading en-
terprise IT (Bisicchia et al., 2024). This is mainly be-
cause of their cloud-native nature (Kratzke and Quint,
2017). MSAs are indeed highly distributed, dynamic,
and fault-resilient, and such peculiar aspects make
MSAs capable of fully exploiting the capabilities of
cloud computing (Soldani et al., 2018).

MSAs are essentially service-oriented applica-
tions that adhere to an extended set of key design prin-
ciples (Zimmermann, 2017). These include decentral-
isation, which should occur also in the development
and maintenance of the microservices forming an
MSA (Newman, 2021). The microservices forming
an MSA should indeed be partitioned, with different
partitions assigned to different DevOps teams, so that
DevOps teams can independently decide when/how
to proceed when updating the microservices they own
(Carrasco et al., 2018). The rationale is the follow-
ing: if an update requires two or more DevOps teams
to interact, it will require such DevOps teams to agree
based on a cross-team interaction, hence slowing the
delivery of the update and requiring cross-team bud-
getary approval (Lewis and Fowler, 2014).

Therefore, a key question is the following, also
considering that MSAs are continuously updated and

a https://orcid.org/0000-0002-2435-3543
b https://orcid.org/0000-0003-2048-2468

evolving over their lifetime (Soldani et al., 2021):
How to identify decentralisation issues in the
DevOps team assignment for an MSA?

To answer the above question, we hereby introduce
three bad organisational smells, together with the or-
ganisational refactorings enabling to resolve them.
Inspired by bad architectural smells (Neri et al.,
2020), a bad organisational smell can be observed in
the DevOps team assignment for an MSA. A bad or-
ganisational smell is essentially a possible symptom
of a bad decision taken when assigning the microser-
vices forming an MSA to different DevOps teams,
which may possibly denote decentralisation lapses in
the DevOps team assignment.1

We also introduce a model-driven method to de-
tect and resolve the occurrence of bad organisa-
tional smells in MSAs. More precisely, we extend
µTOSCA (Soldani et al., 2021), an existing meta-
model for specifying MSAs as typed topology graphs,
whose nodes and arcs represent the application com-
ponents forming MSAs and their interactions, re-
spectively. The proposed extension enables mod-
elling also the assignment of application components
to DevOps teams. We then illustrate how to auto-
matically detect the occurrence of bad organisational
smells in the DevOps team assignment modelled in an

1Whilst antipatterns necessarily result in issues, smells
are just symptoms deserving further investigation to deter-
mine whether any issue is truly there (Neri et al., 2020).

Agostini, M., Soldani, J. and Brogi, A.
Detecting and Resolving Bad Organisational Smells for Microservices.
DOI: 10.5220/0012851200003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 67-78
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

67



extended µTOSCA topology graph, as well as how to
refactor such a graph to implement the organisational
refactorings for resolving the detected smells.

Finally, to assess the feasibility of our method
for detecting/resolving bad organisational smells, we
introduce its open-source prototype implementation.
The latter is an extension of µFRESHENER, an exist-
ing tool for modelling and analysing µTOSCA topol-
ogy graphs (Soldani et al., 2021). We also report on a
controlled experiment assessing the usefulness of the
extended µFRESHENER, where 14 ICT experts were
asked to edit the µTOSCA topology graph modelling
an MSA, detect the smells therein, and refactor the
MSA to resolve the occurrence of detected smells.
The results of the experiment show that our model-
driven method successfully enabled all participants to
detect and resolve all bad organisational smells they
were submitted to, as well as that the proposed exten-
sion of µFRESHENER was easy to use and useful.

In summary, the main contributions of this paper
are the following:

• We identify three bad organisational smells for
microservices and the refactorings allowing to re-
solve their occurrence.

• We introduce a model-driven method to automat-
ically detect bad organisational smells in MSAs
modelled as extended µTOSCA topology graphs
and to resolve detected smells.

• We provide an open-source prototype implemen-
tation of our proposed method.

• We illustrate the usefulness of the proposed
method by reporting on the results of a controlled
experiment.

The rest of this paper is organised as follows. Sec-
tion 2 provides the necessary background. Section 3
introduces three organisational smells for MSAs,
whose detection/resolution method is proposed in
Section 4. Sections 5 and 6 present the new version
of µFRESHENER and report on its usage in controlled
experiments, respectively. Finally, Sections 7 and 8
discuss related work and draw some concluding re-
marks, respectively.

2 BACKGROUND

The µTOSCA type system (Figure 1) allows specify-
ing MSAs as typed topology graphs in TOSCA (OA-
SIS, 2020). A µTOSCA topology graph includes
nodes of type Service or Database, used to model
components implementing business logic or used to
store business data, respectively. It can also include

Service Database

MessageRouter

AsynchronousMessageBroker SynchronousMessageBroker

InteractsWith Edge

micro.nodes.Root

CommunicationPattern

MessageBroker

micro.relationship.Root micro.groups.Root

Figure 1: µTOSCA type system (Soldani et al., 2021).

mB

mR

mR

edge

gateway shop

catalogue

router

orders shipping

payment

c

Legend

Service

mR Message
Router

mB Message
Broker

Database
InteractsWith

InteractsWith
(with circuit breaker)

c

Edge

Figure 2: Example of MSA modelled with µTOSCA.

nodes modelling integration components decoupling
the communication among two or more components
by implementing two communication patterns defined
by (Hohpe and Woolf, 2003), viz., MessageRouters
or MessageBrokers. Examples of all the above com-
ponents are available in the MSA displayed in Fig-
ure 2, which models a toy e-commerce application
composed of a gateway routing external requests to
the main shop service. The MSA in Figure 2 is com-
pleted by a database storing the catalogue, by two
other services for the payment and shipping of orders,
by a message router, and by a message queue used to
asynchronously process to-be-shipped orders.

A µTOSCA topology graph can be completed by
typed oriented arcs. Arcs of type InteractsWith allow
to model that a source node invokes functionalities of-
fered by a target node, e.g., shipping invokes orders to
obtain to-be-shipped orders in our example (Figure 2).
Arcs can also be enriched by setting the boolean prop-
erties, e.g., to indicate an interaction exploits a circuit
breaker for the source component to tolerate the fail-
ure of the target component – as it happens between
shop and router in our example (Figure 2).

Finally, nodes can be placed in Edge groups, to
define which application components are publicly ac-
cessible from outside of the application. This allows
to specify which components of an MSA can be di-
rectly accessed by external clients, without requiring
to explicitly model the interaction with such external

ICSOFT 2024 - 19th International Conference on Software Technologies

68



clients. This is the case for the gateway in Figure 2,
which is the only entry point for external clients to the
toy e-commerce MSA in our example.

3 ORGANISATIONAL SMELLS

The development of MSAs should be decentralised
and distributed among multiple DevOps teams, each
reponsible for a separate portion of components (Neri
et al., 2020). We hereafter define three organi-
sational bad smells, i.e., Single-Layer Team (Sec-
tion 3.1), Tightly-Coupled Teams (Section 3.2), and
Shared Bounded Context (Section 3.3), by also dis-
cussing the organisational refactorings enabling to re-
solve them.2 The decision on whether/how to apply
a refactoring depends on the contextual information
specific to a given MSA, which is accessible only to
the product owners. They are indeed the only who can
determine whether an organisational smell truly de-
notes a decentralisation issue and, if so, decide how to
effectively implement an organisational refactoring.

3.1 The Single-Layer Teams Smell

To fully leverage the potential autonomy enabled by
MSAs, the development, operation, and maintenance
of microservices should be decentralised by delegat-
ing them to different DevOps teams that manage dif-
ferent microservices (Zimmermann, 2017). Adopt-
ing the typical splitting of teams by technology layers
(e.g., frontend, backend, middleware, and database
teams) is, therefore, considered an organisational bad
smell. With one such organisation, any change to a
microservice may require the setup of a cross-team in-
teraction, which will take time and require budgetary
approval (Lewis and Fowler, 2014).

The approach to splitting DevOps teams work-
ing on MSAs is orthogonal to the typical splitting
approach. Each microservice should be indeed as-
signed to a DevOps team that is “cross-functional”,
namely composed of team members whose expertise
span across all technology layers (Neri et al., 2020).
This would indeed enable – in most cases – a Dev-
Ops team to independently decide when and how to
proceed when applying changes to a microservice, by
increasing the chances that the interactions needed for
applying a change to a microservice are restricted to

2The Single-Layer Team smell is obtained by adapt-
ing to the organisational view the homonym architectural
smell presented in (Neri et al., 2020). Instead, the Tightly-
Coupled Teams and Shared Bounded Context smells are
brand new and first presented in this paper.

only the members of DevOps team owning such mi-
croservice (Carrasco et al., 2018).

In short, assigning microservices so that a DevOps
team owns components pertaining to a single technol-
ogy layer is considered a bad organisational smell,
hereby called Single-Layer Teams. A Single-Layer
Teams smell can be resolved by refactoring the as-
signment by splitting teams by microservice, rather
than by technology layer (Neri et al., 2020).

3.2 The Tightly-Coupled Teams Smell

The microservices forming an MSA should be as-
signed to DevOps teams in a decentralised manner,
so to possibly maximise the autonomy of teams in
taking decisions on the microservices they own (Neri
et al., 2020). At the same time, the microservices
in an MSA are interdependent, which means that
the decisions and changes applied to a microservice
may impact on the microservices that depend on it
(Soldani et al., 2018). If such microservices are as-
signed to other teams, the change under consideration
will require the interested teams to agree based on
a cross-team interaction, hence slowing the delivery
of change/updates and possibly requiring cross-team
budgetary approval (Lewis and Fowler, 2014).

The above situation is very likely to happen be-
tween two DevOps teams if the microservices they
own are tightly coupled.3 In particular, consider a
microservice that is more coupled to the microser-
vices owned by another DevOps team than to those
owned by the DevOps team responsible of the mi-
croservice under consideration. In this scenario, any
change or update to such microservice is likely to im-
pact on a microservice owned by the other DevOps
team, thus requiring the two DevOps teams to coordi-
nate and collaborate in a cross-team project (Carrasco
et al., 2018). Situations like that described above
are hereby proposed as occurrences of the Tightly-
Coupled Teams bad organisational smell for MSAs.

A Tightly-Coupled Teams smell can be resolved
by changing the assignment of the microservice that
is causing the smell. Such microservice should rather
be assigned to the DevOps team that it is most cou-
pled to, which is the one owning the highest num-
ber of microservices that would be impacted by a
change/update to the microservice under considera-
tion. This would actually result in enacting a sort of
inverse Conway maneuver, as we would be changing
the DevOps team organisation based on the coupling
of the microservices in an MSA (Fowler, 2022).

3Tight coupling occurs when microservices strongly de-
pend on each other (Ntentos et al., 2020).

Detecting and Resolving Bad Organisational Smells for Microservices

69



3.3 The Shared Bounded Context Smell

One of the main tenets of MSAs is adopting domain-
driven design practices to identify and conceptualise
microservices (Zimmermann, 2017). Microservices
should be organised around bounded contexts,4 typ-
ically based on the business capabilities realised by
an MSA, by assigning the responsibility for each
bounded context to a single DevOps team (Lewis and
Fowler, 2014). Instead, if multiple DevOps teams
were responsible for different microservices within
the same bounded context, this may lead to inter-team
frictions, which may slow the delivery of functionali-
ties and raise the overall costs (Vernon, 2016).

According to microservices and domain-driven
design practices, databases should not cover more
than a bounded context (Mitra and Nadareishvili,
2020). This – combined with the above considera-
tion that different DevOps teams should not be re-
sponsible for the same bounded context – means that
the microservices assigned to a DevOps team should
not directly interact with a database owned by another
DevOps team. If this instead happens, we may have
that different DevOps teams are operating on a Shared
Bounded Context, which we hereby propose as a bad
organisational smell for MSAs. The Shared Bounded
Context may indeed denote a domain-level violation
of the decentralisation principle in the DevOps team
assignment for an MSA.

An occurrence of the Shared Bounded Context
smell can be resolved in two ways, viz., reorganise
teams by bounded contexts or split bounded contexts
by teams. The choice of either of the two depends
on contextual information on the service and database
causing the smell itself. If they pertain to the same
bounded context, then the easiest solution is apply-
ing the reorganise teams by bounded contexts organ-
isational refactoring, namely assigning the applica-
tion components causing the smell to a single Dev-
Ops team, e.g., that owning the database. Instead,
if they actually pertain to different bounded contexts,
the bounded contexts should be kept separate and as-
signed to different DevOps teams (Buchanan, 2024).
This could be realised, e.g., by splitting the shared
database into two different databases storing the data
pertaining to the different bounded contexts. In this
case, if the services were relying on some form of
consistency on shared data, the consistency should
continue to be assured by relying on existing dis-
tributed consistency protocols.

4In domain-driven design, large domain models are
partitioned into multiple different bounded contexts, each
defining a specific business domain area (Vernon, 2016).

4 DETECTING AND RESOLVING
ORGANISATIONAL SMELLS

To enable resolving bad organisational smells in
MSAs, we hereafter first extend µTOSCA to en-
able modelling the assignment of microservices to
DevOps teams (Section 4.1). Then, we introduce a
µTOSCA-based method for automatically detecting
bad organisational smells in MSAs and to reason on
whether/how to refactor detected smells (Section 4.2).

4.1 Modelling DevOps Team
Assignment in µTOSCA

According to (Soldani et al., 2021), an MSA can
be modelled by a µTOSCA topology graph, which
is formally represented by a triple containing (i) the
typed nodes representing application components,
(ii) the relationships forming the graph represent-
ing the architecture of an application, and (iii) the
edge group, which contains the nodes that are di-
rectly accessible to external clients. To model Dev-
Ops team assignment, we hereby add a fourth ele-
ment, namely (iv) a set of groups of nodes, each repre-
senting the assignment of the nodes therein to a Dev-
Ops team. The choice of using groups for modelling
DevOps team assignment is motivated by the notion
of TOSCA groups themselves, which are natively in-
tended to group application components to be man-
aged together (OASIS, 2020).

Definition 1 (MSA). Let L be the set of properties
that can hold onto an interaction5 and let T denote
the universe of possible team names. An MSA is rep-
resented by a quadruple ⟨N,R,E,A⟩, where

(i) N is a finite set of typed nodes representing the
components forming an application,

(ii) R ⊆ N × N × 2L is a finite set of triples, each
denoting a typed interaction between two com-
ponents and the properties holding on such in-
teraction,

(iii) E ⊆ N is a set of nodes defining the components
forming the edge of the architecture, and

(iv) A ⊆ T ×2N is a finite set of pairs, each denoting
the assignment of a set of components to a team.

The assignment defined in an extended µTOSCA
topology graph is well-formed when different teams
own different components.

5Properties can be set on interactions to indicate that,
e.g., circuit breakers are used therein (such as between shop
and router in Figure 2). Further information on interactions’
properties can be found in (Soldani et al., 2021).

ICSOFT 2024 - 19th International Conference on Software Technologies

70



Definition 2 (Well-Formed Team Assignment). Let
⟨N,R,E,A⟩ be an MSA. The team assignment A is
well-formed iff

∀⟨t,C⟩,⟨t ′,C′⟩ ∈ A : t ̸= t ′ ⇒C∩C′ = /0.

For simplicity, and without loss of generality,
we hereafter assume the DevOps team assignment
modelled in a µTOSCA topology graph to be well-
formed. We also assume each team assignment to be
complete, namely such that (i) each application com-
ponent is assigned to a DevOps team and that (ii) each
team manages at least one application component.

Definition 3 (Complete Team Assignment). Let
⟨N,R,E,A⟩ be an MSA. The team assignment A is
complete iff

(i) ∀n ∈ N∃⟨t,C⟩ ∈ A : n ∈C, and
(ii) ∀⟨t,C⟩ ∈ A : C ̸= /0.

An example of a well-formed and complete as-
signment of application components to DevOps teams
is displayed in Figure 3. The figure shows a toy MSA,
whose application components are partitioned among
the blue, green, orange, and yellow DevOps teams.
For instance, the yellow team owns the frontend of
the MSA, the catalog service, and the items database.

orange

blue

yellow

green

mR
gateway

frontend

router login

order orders

shipping

catalog items

mR
edge

Figure 3: Running example. DevOps team assignment is
represented by background colour boxes.

The DevOps team assignment in Figure 3 is de-
vised on purpose to exhibit all the bad organisational
smells proposed in Section 3. We shall, therefore,
use it as a running example to showcase the proposed
smell detection method, as well as the smell resolu-
tion via refactoring.

4.2 Model-Driven Detection and
Resolution of Organisational Smells

We hereby illustrate how to automatically detect the
bad organisational smells defined in Section 3 in
µTOSCA topology graph modelling an MSA. We
also enable reasoning on whether/how to refactor the
MSA modelled by a µTOSCA topology graph to re-
solve the occurrence of detected smells.

4.2.1 Single-Layer Teams

A Single-Layer Teams smell occurs when a DevOps
team owns components pertaining to a single tech-
nology layer (Section 3.1). In a µTOSCA topology
graph, this situation is denoted by a DevOps team as-
signed with components all of the same type – or of
compatible types (e.g., a DevOps team owning only
MessageBrokers and MessageRouters, which are all
implementing CommunicationPatterns).

Notation 1 (Node Types). Let ⟨N,R,E,A⟩ be an
MSA. We denote by T = {Service, Database,
CommunicationPattern, MessageRouter, Message-
Broker, AsynchronousMessageBroker, Synchronous-
MessageBroker} the set of possible types for a node
n ∈ N, and we write n.type to denote the type of node
n. We also write x.type ≥ τ to denote that the type of
x extends or is equal to the type τ ∈ T .

Definition 4 (Single-Layer Team Smell). Let
⟨N,R,E,A⟩ be an MSA. A DevOps team assignment
⟨t,C⟩ ∈ A denotes a Single-Layer Team smell iff

∃τ ∈ T : ∀c ∈C : c.type≥ τ.

Our running example (Figure 3) provides an ex-
ample of Single-Layer Teams smell, with the green
team owning only MessageRouters. This may sug-
gest that the green team is not cross-functional, but
rather composed of middleware experts only – who
actually handle all the middleware components in the
MSA considered in our running example.

Our choice here is to refactor the DevOps team
assignment to resolve the occurrence of the detected
smell. We hence implement the splitting teams by
microservice refactoring described in Section 3.1. In
this case, the refactoring consists of changing the re-
sponsible teams for the frontend service, so that the
green team owns not only the gateway, but the whole
user-facing part of the MSA in our running example
(Figure 4). Correspondingly, the green DevOps team
must adapt to now hold the expertise to also handle
services, if this was not yet the case.

green

orange

blue

yellow

mR
gateway

frontend

router login

order orders

shipping

catalog items

mR
edge

Figure 4: Running example refactored to resolve the Single-
Layer Team smell.

Detecting and Resolving Bad Organisational Smells for Microservices

71



4.2.2 Tightly-Coupled Teams

A Tightly-Coupled Teams smell occurs when an appli-
cation component is more coupled to the application
components owned by another DevOps team than to
those owned by the DevOps team responsible for the
component itself (Section 3.2).

In a µTOSCA topology graph, this situation is de-
noted by a DevOps team t owning a node c that is
coupled more to another DevOps team t ′ than to t. To
formalise this, we first introduce some shorthand no-
tation to generalise the notion of coupling from node-
to-node to node-to-team. For simplicity, we shall use
the number of interactions to measure node coupling,
but other existing metrics – such as those in (Ntentos
et al., 2020) – can be used for the same purpose.

Notation 2. Let ⟨N,R,E,A⟩ be an MSA, let n ∈ N be
a node, and let ⟨t,C⟩ ∈ A be a team assignment. We
denote by γ(n, t) the coupling degree of a node n to a
team t, defined as

γ(n, t) = #{⟨n,c, ⟩,⟨c,n, ⟩ ∈ R | c ∈C}

Definition 5 (Tightly-Coupled Teams Smell). Let
⟨N,R,E,A⟩ be an MSA. A DevOps team assignment
⟨t,C⟩ ∈ A denotes a Tightly-Coupled Teams smell iff

∃c ∈C,⟨t ′,C′⟩ ∈ A : γ(n, t ′)> γ(n, t)

The login service in Figure 4 provides an example
of Tightly-Coupled Teams, as login is coupled more
to the components owned by the green DevOps team
than to those owned by the blue one, which is the re-
sponsible team for login. This increases the probabil-
ity of cross-team interactions between the green and
blue teams, as these might probably be required when
updating, e.g., the login service.

Considering what is above, we opt for resolving
the Tightly-Coupled Teams smell occurrence under
consideration. To this end, we apply an inverse Con-
way maneuver to login (Section 3.2). More precisely,
we change the responsible DevOps team for the login
service, by assigning it to the team it is more coupled
to, i.e., the green team (Figure 5).

orange

blue

yellow

green

mR
gateway

frontend

router login

order orders

shipping

catalog items

mR
edge

Figure 5: Running example refactored to resolve the
Tightly-Coupled Teams smell.

4.2.3 Shared Bounded Context

A Shared Bounded Context smell occurs when a
service assigned to a DevOps team interacts with
a database owned by another DevOps team (Sec-
tion 3.3). In µTOSCA, this situation is denoted by
a cross-team relationship, which models a direct in-
teraction from a Service node owned by a team t to a
Database node owned by another team t ′.

Definition 6 (Shared Bounded Context Smell). Let
⟨N,R,E,A⟩ be an MSA. A couple of DevOps team
assignments ⟨t,C⟩,⟨t ′,C′⟩ ∈ A (with t ̸= t ′) denote a
Shared Bounded Context smell iff

∃c ∈C,c′ ∈C′ : ⟨c,c′, ⟩ ∈ R ∧
c.type≥ Service∧ c′.type≥ Database

The InteractsWith relationship from shipping to
orders in Figure 5 provides an example of Shared
Bounded Context smell. The shipping service is in-
deed owned by the blue DevOps team, and it di-
rectly interacts with the orders database owned by
the orange DevOps team. Any update to the orders
database may impact the shipping service, hence pos-
sibly requiring cross-team interactions between the
blue and orange DevOps teams.

Our choice is to resolve the occurrence of the
smell, but this time we have to decide which of
the two possible organisational refactorings to apply
(Section 3.3). In this case, given that the blue team
owns only the shipping service, and since the ship-
ping of orders pertains to the bounded context of or-
der management, we decide to reorganise teams by
bounded context. In particular, we change the respon-
sible team for the shipping service by assigning it to
the orange team (Figure 6).

orange

yellow

green

mR
gateway

frontend

router login

order orders

shipping

catalog items

mR
edge

Figure 6: Running example refactored to resolve the Shared
Bounded Context smell.

As a result, no more bad organisational smells af-
fect the obtained DevOps team assignment (Figure 6).
Additionally, the blue DevOps team has disappeared,
which means that we can redistribute its correspond-
ing resources to other DevOps teams working on the
considered MSA or on other projects.

ICSOFT 2024 - 19th International Conference on Software Technologies

72



5 PROTOTYPE
IMPLEMENTATION

To assess the feasibility of the proposed method for
detecting and resolving bad organisational smells,
we prototyped into a new version of µFRESHENER
(Soldani et al., 2021), hereby called µFRESHENER
v2.6 Firstly, we enabled distinguishing between
the product owner and team members while edit-
ing the µTOSCA topology graph modelling an
MSA, as well as while detecting and resolving bad
smells for microservices. We hereafter illustrate
how µFRESHENER v2 enables visualising and editing
MSAs – and resolving bad smells therein – by dis-
tinguishing the two newly supported user roles, i.e.,
product owner and team member.

5.1 Product Owner Role

In µFRESHENER v2, the product owner has full power
over the whole µTOSCA topology graph modelling
an MSA. Therefore, beyond editing, analysing, and
refactoring the application components and interac-
tions forming an MSA, the product owner is the only
user who can edit the DevOps team assignment. To
this end, we implemented the automated detection of
the bad organisational smells presented in Section 4,
as well as the possibility of applying known refac-
torings to resolve their occurrence. For instance, if
a Tightly-Coupled Teams smell is detected, the prod-
uct owner can ask µFRESHENER v2 to apply the in-
verse Conway maneuver. As a result, the application
component denoting the considered Tightly-Coupled
Teams smell is automatically re-assigned to the Dev-
Ops team to which it is more coupled.

Additionally, to further support the product owner
in managing DevOps team assignment, we also im-
plemented multiple different views over the current
DevOps team assignment, e.g., showing details on the
types of services owned by DevOps teams or plotting
figures about inter-team dependencies (Figure 7).

5.2 Team Member Role

The view and editing capabilities of team members
are instead restricted to only the application compo-
nents owned by the corresponding DevOps team.

More precisely, when accessing as team mem-
bers, µFRESHENER v2 displays only the portion of
the MSA that is owned by the logged DevOps team.
This is to enable team members to focus their visual
thinking only on the components they actually own.

6µFRESHENER v2 is publicly available online at https:
//github.com/di-unipi-socc/microFreshener.

(a)

(b)

Figure 7: Informative views offered by µFRESHENER to
product owners on (a) nodes assigned to DevOps teams and
(b) cross-team interactions.

(a)

(b)

Figure 8: Teamwise visualisation of (a) outgoing and (b)
ingoing cross-team dependencies in µFRESHENER.

Detecting and Resolving Bad Organisational Smells for Microservices

73



Figure 9: Prevention and alerting of changes requiring in-
teractions with other DevOps teams.

Outgoing and ingoing cross-team interactions are
also displayed differently to the members of a logged
team, given that they have different meanings. Outgo-
ing cross-team interactions indicate the dependencies
of the logged DevOps team on other DevOps teams,
and they are directly displayed on the editing pane
(by showing only the target DevOps teams’ compo-
nents on which the logged team depends – Figure 8a).
Instead, ingoing cross-team interactions indicate the
dependencies that other DevOps teams have on the
components owned by the logged DevOps team, be-
ing them the “users” of the business capabilities man-
aged by the logged team. This is similar to the case
of end-users invoking the functionalities offered by
the application components exposed externally. For
this reason, ingoing cross-team interactions and edge
nodes – if any – are displayed together in a “users”
sidebar (Figure 8b).

Team members can also edit the portion of the
MSA they own. For instance, they can add new
components and relationships to the MSA, with
newly added components automatically assigned to
the logged DevOps team. They can also remove or
refactor existing components and relationships, e.g.,
to resolve bad architectural smells. This is supported
by µFRESHENER v2 as long as the actions of a logged
DevOps team do not interfere with the operativity of
other DevOps teams. In particular, µFRESHENER pre-
vents actions that would result in changing interac-
tions starting from other teams’ components, rather
displaying an alert informing the logged team to inter-
act with the other involved DevOps teams to perform
the desired change. This holds also when exploiting
µFRESHENER’s refactoring capabilities for resolving
bad architectural smells, as shown in Figure 9.

6 EVALUATION

To assess the usefulness of our proposal, we run a
controlled experiment in which we asked participants
to use µFRESHENER v2 to edit the µTOSCA specifi-
cation of a given MSA, detect the bad smells therein,
and refactor the MSA to resolve the occurrence of the
detected bad smells.

6.1 Experiment Design

The experiment was run in two steps, with partici-
pants asked to first (1) take the role of product owners
and then (2) that of team members.

As the product owner is the only role capable of
managing DevOps team assignment, we exploited the
first step to assess the proposed modelling of Dev-
Ops team assignment and the proposed method for
detecting and resolving bad organisational smells. To
this end, step 1 was designed as a sequence of five
tasks: (T1.1) model a service and an interaction, (T1.2)
change the ownership of an application component,
(T1.3) add a new DevOps team owning and assign it
five application components, (T1.4) create a new Dev-
Ops team, assign it all components owned by another
DevOps team, and delete the latter team, and (T1.5)
run the automated smell detection and resolve a de-
tected Single-Layer Teams smell.

Step 2, instead, focused on exploiting the Dev-
Ops team assignment to assess the usefulness of
µFRESHENER v2 also from the perspective of team
members. For this reason, step 2 was designed as a
sequence of seven tasks: (T2.1) model interactions be-
tween nodes owned by the DevOps team and towards
nodes owned by other DevOps teams, (T2.2) replace a
component owned by the DevOps team with a new
component and model its interactions with compo-
nents owned by the same DevOps team, (T2.3) delete
a database that is used by a service owned by another
DevOps team, (T2.4−5) resolve two automatically de-
tected architectural smells, both impacting only on
components owned by the DevOps team, and (T2.6)
resolve an automatically detected architectural smell
by refactoring a cross-team interaction. Differently
from step 1, the tasks of step 2 were designed so that
all but two could be successfully completed. Indeed,
T2.2 and T2.6 could not be completed when acting as
team members, since they require to apply architec-
tural refactorings that impact on application compo-
nents owned by other DevOps teams.

ICSOFT 2024 - 19th International Conference on Software Technologies

74



6.2 Experiment Execution

The two steps described above were run by 14 ICT
experts: eight practitioners working in the ICT in-
dustry (four holding an MSc in Computer Science,
and three holding a BSc in Computer Science) and
six coming from academic institutions (one holding
a PhD in Computer Science, two holding an MSc in
Computer Science, and three holding a BSc in Com-
puter Science).

We remotely met all participants to collect infor-
mation on their background and experience in Com-
puter Science, and to provide them with a 5-minutes
introduction to the experiment and to µFRESHENER
v2. Participants were then proceeding autonomously
with the experiment, by connecting to a running in-
stance of µFRESHENER v2 deployed on AWS EC2.
They were guided in the experiment – which took
approximately 30 minutes on average – by an on-
line questionnaire with gamification elements. The
questionnaire stated the tasks to run by also asking
the participants to mark them as completed or not
completed, with the latter being the expected answer
for T2.2 and T2.6 (as µFRESHENER v2 should prevent
team members to complete them, since their comple-
tion requires cross-team interactions). At the end of
each step, the questionnarie also asked participants to
evaluate whether/how µFRESHENER v2 truly helped
them, by indicating their agreement with a set of given
statements on a Likert scale from 1 (strongly dis-
agree) to 5 (strongly agree).

6.3 Results

The answers collected from all 14 participants are ac-
cessible online.7 Despite limited to 14 participants,
the results of our experiment already provide insights
on the usefulness and ease of use of our proposal. All
tasks were indeed effectively run by 100% of partic-
ipants, but for the case of T2.1 and T2.5, which were
successfully completed by 64% and 93% of partici-
pants, respectively. The average success rate for task
is, therefore, 100% when acting as product owner,
namely when experimenting our proposed method for
modelling DevOps team assignment and resolving
bad organisational smells.

Still on the product owner side, we achieved quite
good results also when assessing the user experi-
ence of running the given task with the proposed
µFRESHENER v2. Figure 10a shows the state-
ments submitted to participants to assess whether
they agree on the fact that – as product owners –
µFRESHENER v2 was (PO1) easy to use and (PO2-5)

7https://zenodo.org/records/10952834

ID Statement
PO1 I found µFRESHENER easy to use
PO2 I find the MSA refactored by µFRESHENER better

than the one preceding the refactoring
PO3 µFRESHENER simplified the detection of the bad

smells affecting the considered MSA (with respect to
doing it manually)

PO4 µFRESHENER simplified the reasoning on the resolu-
tion of the bad smells affecting the considered MSA
(with respect to doing it manually)

PO5 I found µFRESHENER useful

(a)

0 2 4 6 8 10 12 14

PO5

PO4

PO3

PO2

PO1
Strongly
Disagree
Disagree
Neutral
Agree
Strongly
Agree

(b)
Figure 10: Evaluation of the new version of µFRESHENER
as product owner: (a) statements and (b) agreement.

ID Statement
TM1 I found µFRESHENER easy to use
TM2 I find the architecture refactored by µFRESHENER

better than the one preceding the refactoring
TM3 µFRESHENER simplified the detection of the bad

smells affecting the considered MSA (with respect to
doing it manually)

TM4 µFRESHENER simplified the reasoning on the resolu-
tion of the bad smells affecting the considered MSA
(with respect to doing it manually)

TM5 I found µFRESHENER useful

(a)

0 2 4 6 8 10 12 14

TM5

TM4

TM3

TM2

TM1
Strongly
Disagree
Disagree
Neutral
Agree
Strongly
Agree

(b)
Figure 11: Evaluation of the new version of µFRESHENER
as team member: (a) statements and (b) agreement.

useful. In addition to the direct statement in PO5, the
usefulness of µFRESHENER was assessed also based
on PO2’s outcomes and by asking (PO3-4) whether
µFRESHENER simplified detecting bad organisational
smells and reasoning on their resolution. As shown in
Figure 10b, almost all the participants agreed that the

Detecting and Resolving Bad Organisational Smells for Microservices

75



modelling, detection, and resolution of bad organisa-
tional smells implemented in µFRESHENER v2 is easy
to use and useful.

Similar results were achieved in the assessment
of the user experience of participants while acting as
team members. We submitted them analogous state-
ments (Figure 11a), however asking them to indicate
their agreement by considering only the tasks they
run in the second step of the experiment. Again, it
turned out that participants agreed on the ease of use
of µFRESHENER v2 and its usefulness (Figure 11b).

7 RELATED WORK

Various existing studies classify bad smells for mi-
croservices, as well as the refactorings allowing to re-
solve the occurrence of such bad smells in MSAs. For
instance, (Carrasco et al., 2018) and (Taibi and Lenar-
duzzi, 2018) first elicited bad architectural smells for
MSAs. (Neri et al., 2020) extends the set of known
bad architectural smells by also eliciting the architec-
tural refactorings known to resolve their occurrence.
(Ponce et al., 2022b) instead elicits the bad secu-
rity smells for microservices, along with the security
refactorings for resolving their occurrence.

Based on the existing taxonomies of bad smells
for MSAs, different methods and tools for their de-
tection and resolution have been proposed. As for ar-
chitectural smells, we already mentioned the possibil-
ity of detecting and resolving them in existing MSAs
with µFRESHENER (Soldani et al., 2021). Arcan (Ar-
celli Fontana et al., 2017) and Designite (Sharma
et al., 2016) are two other tools for detecting bad
smells in software systems, which have been adapted
to enable detecting bad architectural smells in MSAs
in (Pigazzini et al., 2020) and (Capilla et al., 2023).

(Dell’Immagine et al., 2023), (Howard-Grubb
et al., 2023), and (Wizenty et al., 2023) instead al-
low detecting bad security smells in MSAs. (Wizenty
et al., 2023) actually also allows to resolve a subset of
the detected smells by applying the security refactor-
ings known to resolve them. The resolution of de-
tected smells can also prioritised by relying on the
triage methodology proposed in (Ponce et al., 2022a),
which essentially combines the importance of secu-
rity and other quality attributes for an MSA with the
known impacts of security smells on such quality at-
tributes (Ponce et al., 2023).

However, to the best of our knowledge – and also
according to the tertiary study in (Cerny et al., 2023) –
no support for detecting and resolving bad organisa-
tional smells is currently available. This is, therefore,
the main novelty of our proposal: we introduce a first

support to model DevOps team assignment, analyse
modelled MSAs to automatically detect bad organisa-
tional smells, and reason on whether/how to refactor
DevOps team assignment to resolve detected smells.

The organisational aspects are however crucial in
MSAs (Soldani et al., 2018; Zimmermann, 2017).
This is also witnessed by the recently proposed stud-
ies on the topic. For instance, (D’Aragona et al.,
2023) analysed the actual usage of the microservice-
per-developer pattern in open-source projects, ob-
serving that this is rarely the case, except for MSAs
developed by dedicated DevOps teams. (Li et al.,
2023) and (Zabardast et al., 2023) instead focus on
monitoring the DevOps team assignment for mea-
suring cross-team coupling and accumulated techni-
cal debt, respectively. Our proposal complements the
above studies by providing a first support to detect
and resolve bad organisational smells in MSAs.

8 CONCLUSIONS

We identified three bad organisational smells, which
may denote decentralisation lapses in the organisation
of MSAs, together with the organisational refactor-
ings allowing to resolve their occurrence. We also
introduced a model-driven method to automatically
detect the identified bad organisational smells in the
DevOps team assignment of an MSAs, modelled as
an extended µTOSCA topology graph, and to resolve
detected smells by applying their corresponding or-
ganisational refactoring. Finally, we illustrated the
feasibility and usefulness of the proposed method by
implementing it as an extension of µFRESHENER and
by reporting on a controlled experiment, where 14
ICT experts were asked to use the extended version
of µFRESHENER to model the DevOps team assign-
ment of an MSA and to detect and resolve the bad
organisational smells therein.

The three bad organisational smells introduced in
this paper (and their refactorings) provide a first refer-
ence set, elicited from existing literature, but further
investigation is needed to better cover the state-of-the-
art and state-of-practice on the topic. For this reason,
we plan to extend the set of bad organisational smells
and refactorings for microservices, e.g., by running a
multivocal literature review to elicit them, as done by
(Neri et al., 2020) and (Ponce et al., 2022b) for other
types of bad smells for microservices.

We also plan to accordingly extend our model-
driven method to detecting/resolving bad organisa-
tional smells and its implementation in µFRESHENER.
More broadly, we plan to further support product
owners and DevOps teams in taking more informed

ICSOFT 2024 - 19th International Conference on Software Technologies

76



decisions, by relating the DevOps team assignment
modelled in µTOSCA with other metadata gathered
from other sources, e.g., activities recorded by ver-
sion control systems, cognitive load estimated on a
project’s source code, or information on the DevOps
team members themselves.

ACKNOWLEDGEMENTS

This work was partly funded by the follow-
ing projects: FREEDA (CUP: I53D23003550006),
funded by the frameworks PRIN (MUR, Italy) and
Next Generation EU; OSMWARE (UNIPI PRA 2022
64), funded by the University of Pisa, Italy.

REFERENCES

Arcelli Fontana, F., Pigazzini, I., Roveda, R., Tamburri,
D. A., Zanoni, M., and Di Nitto, E. (2017). Arcan:
A tool for architectural smells detection. In 2017
IEEE International Conference on Software Architec-
ture Workshops (ICSAW), pages 282–285.

Bisicchia, G., Forti, S., Pimentel, E., and Brogi, A. (2024).
Continuous QoS-compliant orchestration in the cloud-
edge continuum. Software: Practice and Experience.
In press.

Buchanan, I. (2024). Team topologies: How four fun-
damental topologies influence a devops transforma-
tion. Atlassian, https://www.atlassian.com/devops/
frameworks/team-topologies.

Capilla, R., Arcelli Fontana, F., Mikkonen, T., Bacchiega,
P., and Salamanca, V. (2023). Detecting architec-
ture debt in micro-service open-source projects. In
49th Euromicro Conference on Software Engineering
and Advanced Applications, (SEAA 2023), pages 394–
401. IEEE.

Carrasco, A., van Bladel, B., and Demeyer, S. (2018). Mi-
grating towards microservices: Migration and archi-
tecture smells. In Proceedings of the 2nd Interna-
tional Workshop on Refactoring, IWoR 2018, pages
1–6. ACM.

Cerny, T., Abdelfattah, A. S., Al Maruf, A., Janes, A., and
Taibi, D. (2023). Catalog and detection techniques of
microservice anti-patterns and bad smells: A tertiary
study. Journal of Systems and Software, 206:111829.

D’Aragona, D. A., Li, X., Cerny, T., Janes, A., Lenarduzzi,
V., and Taibi, D. (2023). One microservice per devel-
oper: Is this the trend in OSS? In Papadopoulos, G. A.
et al., editors, Service-Oriented and Cloud Computing
- 10th IFIP WG 6.12 European Conference (ESOCC
2023), volume 14183, pages 19–34. Springer.

Dell’Immagine, G., Soldani, J., and Brogi, A. (2023).
KubeHound: Detecting microservices’ security
smells in Kubernetes deployments. Future Internet,
15(7).

Fowler, M. (2022). Conway’s law. https://martinfowler.
com/bliki/ConwaysLaw.html.

Hohpe, G. and Woolf, B. (2003). Enterprise Integration
Patterns: Designing, Building, and Deploying Mes-
saging Solutions. Addison-Wesley, 1st edition.

Howard-Grubb, T., Soldani, J., Dell’Immagine, G., Ar-
celli Fontana, F., and Brogi, A. (2023). Smelling
homemade crypto code in microservices, with kube-
hound. In Monti, F. et al., editors, Service-Oriented
Computing - ICSOC 2023 Workshops, LNCS, pages
317–324. Springer.

Kratzke, N. and Quint, P.-C. (2017). Understanding cloud-
native applications after 10 years of cloud computing
- a systematic mapping study. Journal of Systems and
Software, 126:1–16.

Lewis, J. and Fowler, M. (2014). Microservices: A
definition of this new architectural term. https://
martinfowler.com/articles/microservices.html.

Li, X., D’Aragona, D. A., and Taibi, D. (2023). Evalu-
ating microservice organizational coupling based on
cross-service contribution. In Kadgien, R. et al., edi-
tors, Product-Focused Software Process Improvement
- 24th International Conference (PROFES 2023, vol-
ume 14483 of LNCS, pages 435–450. Springer.

Mitra, R. and Nadareishvili, I. (2020). Microservices: Up
and Running. O’Reilly Media, Inc.

Neri, D., Soldani, J., Zimmermann, O., and Brogi, A.
(2020). Design principles, architectural smells and
refactorings for microservices: A multivocal re-
view. SICS Software-Intensive Cyber-Physical Sys-
tems, 35:3–15.

Newman, S. (2021). Building Microservices: Designing
Fine-Grained Systems. O’Reilly Media, 2nd edition.

Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., and
Geiger, S. (2020). Assessing architecture confor-
mance to coupling-related patterns and practices in
microservices. In Jansen, A. et al., editors, Soft-
ware Architecture, pages 3–20, Cham. Springer Inter-
national Publishing.

OASIS (2020). TOSCA Simple Profile in YAML, version
1.3. OASIS Standard.

Pigazzini, I., Arcelli Fontana, F., Lenarduzzi, V., and Taibi,
D. (2020). Towards microservice smells detection. In
Proceedings of the 3rd International Conference on
Technical Debt (TechDebt 2020), page 92–97. ACM.

Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022a).
Should microservice security smells stay or be refac-
tored? towards a trade-off analysis. In Gerostathopou-
los, I. et al., editors, Software Architecture - 16th Eu-
ropean Conference, ECSA 2022, volume 13444 of
LNCS, pages 131–139. Springer.

Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022b).
Smells and refactorings for microservices security: A
multivocal literature review. Journal of Systems and
Software, 192:111393.

Ponce, F., Soldani, J., Taramasco, C., Astudillo, H., and
Brogi, A. (2023). To security and beyond: On the im-
pacts of microservice security smells and refactorings.
In XLIX Latin American Computer Conference (CLEI
2023), pages 1–10.

Detecting and Resolving Bad Organisational Smells for Microservices

77



Sharma, T., Darraji, R., and Ghannouchi, F. (2016). Design
methodology of high-efficiency contiguous mode har-
monically tuned power amplifiers. In 2016 IEEE Ra-
dio and Wireless Symposium (RWS), pages 148–150.

Soldani, J., Muntoni, G., Neri, D., and Brogi, A. (2021).
The µTOSCA toolchain: Mining, analyzing, and
refactoring microservice-based architectures. Soft-
ware: Practice and Experience, 51(7):1591–1621.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W. J.
(2018). The pains and gains of microservices: A sys-
tematic grey literature review. Journal of Systems and
Software, 146:215–232.

Taibi, D. and Lenarduzzi, V. (2018). On the definition of
microservice bad smells. IEEE Software, 35(3):56–
62.

Vernon, V. (2016). Domain-Driven Design Distilled.
Addison-Wesley.

Wizenty, P., Ponce, F., Rademacher, F., Soldani, J., As-
tudillo, H., Brogi, A., and Sachweh, S. (2023).
Towards resolving security smells in microservices,
model-driven. In Fill, H. G. et al., editors, Proceed-
ings of the 18th International Conference on Software
Technologies (ICSOFT 2023), pages 15–26.

Zabardast, E., Gonzalez-Huerta, J., Palma, F., and
Chatzipetrou, P. (2023). The impact of ownership and
contribution alignment on code technical debt accu-
mulation. CoRR, abs/2304.02140.

Zimmermann, O. (2017). Microservices tenets. Computere
Science: Research and Development, 32(3–4):301–
310.

ICSOFT 2024 - 19th International Conference on Software Technologies

78


