
Evaluating the Relative Importance of Product Line Features  
Using Centrality Metrics 

Fathiya Mohammed1 a, Mike Mannion2 b, Hermann Kaindl3 c and James Paterson2 d 
1School of Computing, Engineering & Physical Sciences, University of West of Scotland, Paisley, U.K. 

2Department of Computing, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, U.K. 
3Institute of Computer Technology, TU Wien, Austria 

 

Keywords: Feature Model, Centrality Metrics, Product Line. 

Abstract: A software product line is a set of products that share a set of software features and assets, which satisfy the 
specific needs of one or more target markets. One common artefact of software product line engineering is a 
feature model, usually represented as a directed acyclic graph, which shows the product line as a set of 
structural feature relationships. We argue that there are benefits to considering a feature model as a directed 
graph and an undirected graph, respectively. One element of managing the impact of a change to these models, 
as they increase in complexity, is to evaluate the relative importance of the features. This paper explores the 
application of centrality metrics from social network analysis for the identification of the relative importance 
of features in feature models. The metrics considered are degree centrality, closeness centrality, eccentricity 
centrality, eigenvector centrality and between-ness centrality. To illustrate, a product feature model is 
constructed from a real-world GSMA AI-mobile phone product line requirements specification. 

1 INTRODUCTION 

A software product line is a common platform to 
develop a family of products at lower cost, reduced 
time to market and with better quality (BS ISO 2017). 
The discipline of systematically planning, 
constructing, evolving and managing that set of 
products is known as Software Product Line 
Engineering (SPLE). In SPLE, a product line feature 
model consists of a hierarchy of features with some 
additional cross-cutting relationships. 

Over time, within a product line organisation, as 
the volume and variety of products increase in scope 
and scale, and personnel come and go, the risk of the 
organization not fully understanding the product line 
increases. Feature model analysis methods and tools 
can help mitigate that risk. Feature models are usually 
represented as (directed acyclic) graphs. Graphs can 
represent application problems in many fields e.g. 
city networks, biological networks, social media. 
Feature   model   analysis   can   benefit   from  graph 
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analysis theory. 
There can be different purposes for analyszing a 

feature model. (Benavides, 2010) provides a review 
of automated approaches to analysis for discovering 
valid product configurations and managing them 
effectively. Other purposes include conducting an 
impact analysis of a change to the model, planning the 
introduction of a new product, or making a 
comparison of products configured from the model. 

Within most product lines, some features are 
often perceived by different stakeholders as having a 
different level of importance than others. A high 
relative importance might be attributed, for example, 
to a feature being a key differentiator in its market 
sector, of significant value to a key customer, a 
significant conduit for communication between other 
features, or as start of a set of features whose design 
will be allocated to an external third party. Often, 
during feature model analysis, the greater the relative 
importance of a feature, the more attention it receives 
and the more influence it has on the analysis outcome. 
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Some characteristics that contribute to the 
calculation of a feature’s relative importance can be 
determined by its semantic properties e.g. its 
significance to a key customer. Other characteristics 
can be determined by its structural properties within 
the model e.g. how many features depend on it. For a 
product line that contains thousands of features the 
calculation of relative importance values is only 
practical when done automatically.  

Different structural graph analysis metrics afford 
an insight into the scope and scale of an application 
problem. They are a useful aid when the scale and 
scope of the graph make visual inspection unwieldy. 
In social network analysis (Scott, 2017) centrality 
metrics provide an assessment of each vertex’s 
structural relative importance within a graph i.e. its 
“centrality” to the graph. 

This paper explores the application of several 
centrality metrics to help identify the relative 
importance of different features in a product line 
feature model. The metrics considered are: degree 
centrality, close centrality, eccentricity centrality, 
eigenvector centrality and between-ness centrality. 

Our research question is: 
RQ1: What are the effects of different metrics for 

calculating a feature’s relative importance 
in a software product line? 

We address this question by constructing a feature 
model from a real-world product line requirements 
specification and examining the value of the metrics. 

Section 2 reviews the representation of a product 
line feature model as a graph to make this paper self-
contained. Section 3 introduces a real-world product 
line specification for next generation mobile phones. 
Section 4 shows the calculations for centrality 
metrics. Section 5 presents the application of the 
metrics to the mobile phone specification. Section 6 
discusses the the findings. Section 7 refers to related 
work. Section 8 draws some conclusions. 

2 SPL FEATURE MODELS 

Feature models are often large and complex and many 
factors affect their design e.g. graphical notation, 
language rigour, tool support availability, ease of 
comprehension, navigation difficulty, encoding 
simplicity, analysis complexity, and product 
configuration process. A feature model is often 
constructed as a set of structural feature relationships 
organized in a hierarchical graph with some abstract 
features that aid modelling but are unimplemented. 
The most popular graphical representation of a 

feature model is a tree with additional crosscutting 
relationships between nodes (Appendix 1), resulting 
in an undirected acyclic graph.  

Expressing crosscutting relationships between 
features in different parts of the graph is hard and 
often done separately in text. In (BS ISO, 2017) such 
relationships are restricted to requires and excludes. 
Sometimes, these relationships are so complex that 
product-preserving transformation mechanisms are 
needed to convert them into a feature modelling 
language (Knuppel et al, 2017) to make processing 
easier albeit longer. 

Product configuration is the task of selecting 
features for a product from the feature model. During 
selection, the feature model can be traversed using 
different methods. Regardless, selection decisions are 
largely governed by a feature’s variability type. This 
property anticipates that not all features will appear in 
every product. Domain engineers who construct and 
maintain a feature model allocate values to feature 
variability-type properties based on the existing 
product portfolio and product roadmaps. Over the 
lifecycle of a product line, for any individual feature, 
the value of its variability-type property may also 
change as features move in and out of popularity. 

Table 1 shows four commonly used variability 
types (BS ISO, 2017). When a feature is selected and 
its variability type is Mandatory, it is automatically 
selected. When a feature is selected and its variability 
type is Exclusive-OR then only one of the set of 
mutually exclusive features must be selected. When a 
feature is selected and its variability type is Inclusive-
OR then one, some or all must be selected. When a 
feature is selected and its variability type is Optional, 
then it can be selected or not. 

Table 1: Description of Variability Type. 
Variability Type Description 

Mandatory A mandatory feature is automatically 
selected. 

Exclusive-OR A set of choices which are mutually 
exclusive and only one must be selected 

Inclusive-OR A set of choices of which one, some or all 
must be selected 

Option A single choice which may or may not be 
selected 

A feature model is sometimes implicitly 
considered a directed graph because some features 
are regarded as parents and some as children, In an 
undirected graph, edges represent a two-way 
connection between features. Deciding if a product 
line feature model an undirected or a directed graph 
can vary depending on the purposes of the modelling. 
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3 GSMA APPLICATION 

The Global Systems for Mobile communications 
Association (GSMA) is a worldwide industry trade 
body to support and promote the interests of hundreds 
of mobile operators. Its purposes include easing 
cooperation between countries deploying GSM 
technology, facilitating protocols and standards, 
supporting interoperability, and encouraging 
innovation across the mobile ecosystem. 

In July 2023, to accelerate the deployment of AI 
technology across the industry, GSMA published a 
non-confidential Artificial Intelligence (AI) Mobile 
Device Requirements Specification (GSMA, 2023). 
In effect, it specifies a set of product line 
requirements. Actual products derived from this 
specification will have some but not all of the features 
this specification points to. In the specification, 
readers are directed to (Bradner, 1997) to understand 
the interpretation of the keywords “MUST”, “MUST 
NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, 
“SHOULD”, “SHOULD NOT”, 
“RECOMMENDED”, “MAY” and “OPTIONAL”.  

We used this specification to construct a feature 
model. We introduced some abstract features in the 
model to aid modelling and understanding, but they 
would not be implemented in any product. We gave 
each requirement an identifier. A full list showing 
how we labelled each requirement in the specification 
and where we introduced some abstract requirements 
is at https://figshare.com/s/1475000bed40c6f7bc56. 

We did not have access to the authors of this 
document so in structuring the feature model and 
allocating a variability type for each feature (using 
Table 1) we used our own interpretation and do not 
claim it to be the best. 

Appendix 1 shows a feature model. It uses the 
notation of the tool it was constructed with, 
pure::variants (Pure Systems, 2024). Many feature 
models are implicitly assumed to be directed graphs 
because they adopt the guidance in (Lee et al, 2002) 
i.e. the model captures structural or conceptual 
relationships among features e.g. a composed-of 
relationship, a generalization-specialization 
relationship, an implemented-by relationship which in 
turn assumes information flow direction. In practice, 
when analysing a feature model the comprehension 
process is iterative and includes viewing the model as 
a directed and an undirected graph. 

To illustrate product configuration, let us assume 
for simplicity that the GSMA feature model is 
traversed depth-first starting at Feature 0. Feature 1 is 
considered first and selected automatically because it 
is Mandatory a. Next, one or more of Features 2, 3, 4, 

5 are selected because their variability type is 
Inclusive-OR. Feature 6 is selected automatically 
because it is Mandatory. Then, one or more of 
features 7, 8, 9, 10, 11 are selected because their 
variability type is Inclusive-OR. Feature 12 is 
selected automatically because it is mandatory. Then 
either Feature 13 or Feature 14 is selected because 
their variability-type is Exclusive-OR. The process 
continues until all selections have been made. 

4 DETERMINING A FEATURE’S 
RELATIVE IMPORTANCE 

The process of allocation of a relative importance 
value to a feature is undertaken before feature 
analysis takes place. Importance is normally 
represented by attaching a weight to a feature and/or 
to the edges connecting it. Maintaining agreement on 
weights allocation is difficult for many reasons 
including the different perspectives of organizational 
stakeholders, changes to the model, having people 
who work on the product line come and go over time. 
Collectively, they motivate seeking an automatic 
weight allocation method. 

Social Network Analysis (Scott, 2017) is the 
discipline of analyzing the relationships of interaction 
among actors in a social network. A network is 
arranged as a graph with vertices and edges 
connecting the vertices. Important vertices are 
typically those which maintain the graph’s 
cohesiveness, or are significant information conduits 
from lying on pathways through which other vertices 
are reached. Normally, the higher the connectivity of 
a feature the greater is its relative importance.  

In a product line feature model, a vertex is a 
feature. Centrality metrics can provide an assessment 
of each feature’s relative importance within a feature 
model. There are many centrality metrics, each one a 
function of the number of connections a feature has 
to other features and the strength of each connection. 
Connectivity can be measured in different ways, 
reflecting an understanding that a feature might be 
strongly connected locally within the graph but 
weakly connected globally, or vice-versa. Some 
metrics also consider connectivity to highly important 
features wherever they are in the graph. Such features 
may exist a priori from the graph structure e.g. the 
root of a tree, or are designated by an engineer.  

In large feature models, the manual allocation of 
weights is not tenable and an agreed algorithm for the 
automatic allocation of weights needs to be 
established. We do not address this issue in this paper. 

Degree Centrality: The connection strength of a 
feature F can be formed by calculating the degree of 
each feature (vertex) on a graph i.e. the sum of the 
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total number of edges going into the feature (in-
degree) and the total number of edges coming out of 
the feature (out-degree). Eq. (1) shows that for an 
undirected graph, the Degree Centrality (DC) of a 
feature F is the sum of the connection strengths FGi 
for each F directly connected to a feature Gi (i.e. “one-
hop”) where DF is the total number of connections to 
feature F. Normalisation between 0 and 1 is achieved 
through division by (N-1) where N is the total number 
of features in the graph. 

DF 
DC (F)= (Σ FGi) / (N-1)   (1) 

  i=0 

Closeness Centrality: The overall connection 
strength of a feature F can be formed by calculating 
the average shortest distance from each feature to 
every other feature Gi where N is the total number of 
features in the graph (Eq. 2). For undirected graphs 
inward and outward edges are included in the 
calculations. For directed graphs, only the out-degree 
is included. If there is no (directed) path from F to Gi 
then the distance is 0. If the sum of the distances for 
a feature is small then its closeness is high. The higher 
the closeness the quicker a feature can communicate 
to other features across the graph. Closeness 
Centrality can be a useful measure of identifying 
global connectivity but in a highly connected 
network, many features can have similar scores and 
are less distinctive in their global relevance. 
Closeness Centrality can also help with finding 
influential features in an isolated large cluster. 

           DF 
CC (F) = 1 / (Σ FGi(avg shortest path distance))  (2) 

          i=0 

Eccentricity Centrality: The overall connection 
strength of a feature F can be formed by calculating 
the maximum distance (longest path) between the 
feature and any other feature Gi in the graph. Eq. 3 
shows Eccentricity Centrality to be the inverse of the 
maximum distance i.e. the shorter the distance the 
greater the relative importance. Eccentricity can be a 
useful indicator of the absolute centrality of a feature 
within a graph. For undirected graphs, inward and 
outward edges are included in the calculations. For 
directed graphs, only outward edges are included, and 
if there is no outward edge e.g. on leaf features, then 
the eccentricity score is 0. 

        DF  
EC (F) = 1 / Σ FGi(max distance)       (3) 

                      j= 0 

Eigenvector Centrality: The overall connection 
strength of a feature F can be formed by calculating if 
it has an outgoing connection to features that in turn 
have outgoing connections or if it has incoming 

connections from features that themselves have 
incoming connections. Eq. (4) shows that the 
Eigenvector Centrality of F connected to Gi is a 
function of the eigenvector centralities of the features 
that Gi is connected to. For undirected graphs inward 
and outward edges are included in the calculations. 
For directed graphs, only outward edges are included. 
Eigenvector centrality can be a useful measure of 
global relevance. For directed graphs, a feature’s 
importance derives from the centrality of the features 
that point to it; for undirected graphs, a feature’s 
importance combines the centrality of features that 
point to it and those to which it points where DF is the 
set of features directly connected to F and where λ is 
a constant. 

   DF 
EGC (F) = (1/λ) Σ EGC(Gi)    (4) 

   i=0 

Between-ness Centrality: The overall connection 
strength of a feature F can be formed by calculating 
the number of times it lies on one of the shortest paths 
between two other features Pi and Qj (Eq. 5). For 
undirected graphs inward and outward edges are 
included in the calculations. For directed graphs, only 
the out-degree is included. Features with high 
between-ness centrality are important because they 
typically connect different groups of features. 
Features with a low between-ness centrality are less 
important and are often located at the periphery of a 
network. To normalize the value between 0 and 1 
divide by (N-1)(N-2) where N is the total number of 
features in the graph. For directed graphs divide by 
(N-1)(N-2)/2. 

 DF 

BC (F) = Σ No. shortest paths in PiQj going through F (5) 
     i,j, i≠j        No. of shortest paths in PiQj  

Table 2 summarises the Centrality Metrics used 

Table 2: Summary of Centrality Metrics. 
Metric Benefits 
Degree 

Centrality 
a measure of a feature’s local connectivity 
(“one-hop” connections) 

Closeness 
Centrality 

a measure of how quickly a feature can 
communicate to other features across the 
graph– the closer the better 

Eccentricity 
Centrality 

a measure of a feature’s distance to the absolute 
centre point of the graph 

Eigenvector 
Centrality 

a measure of a feature’s connectivity to other 
important features 

Between-ness 
Centrality 

a measure of a feature’s connectivity to 
disparate groups of features 

The metrics in Eqs. (1-5) assume that the connection 
strength value (“weight”) of the connecting edge 
between features is the same throughout the network 
and equal to 1, effectively “unweighted”. 
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5 GSMA MODEL 

Using the GSMA feature model we calculated values 
for each of the five centrality metrics in Section 3. 
Table 3 and 4 show the top 10 ranked features for 
each centrality metric when considering the feature 
model as an unweighted undirected graph. and an 
unweighted directed graph. 

Full tables are available at: https://figshare.com/s/ 
1475000bed40c6f7bc56. 

Table 3: Centrality Metrics for Feature Model as an 
Unweighted Undirected Graph. 

 Unweighted Undirected Graph 
Feature Rank DC CC EC EGC BC 

1 82 15 0 16 15 
2 16 0 15 15 0 
3 36 77 77 82 77 
4 30 16 1 0 82 
5 47 30 6 30 47 
6 53 47 12 77 30 
7 0 6 70 47 16 
8 6 12 16 26 53 
9 15 65 30 27 36 
10 77 68 47 28 70 

Table 4: Centrality Metrics for Feature Model as an 
Unweighted Directed Graph. 

 Directed Graph 
Feature Rank DC CC EC EGC BC 

1 82 1 2 21 15 
2 16 6 3 24 82 
3 36 12 4 38 47 
4 30 17 5 39 53 
5 47 20 7 45 30 
6 53 23 8 55 36 
7 0 26 9 56 16 
8 6 27 10 58 77 
9 15 28 11 59 89 
10 77 37 13 60 95 

When comparing metrics on the same graph, the 
feature rank is more helpful than the absolute value 
because the calculations are different. Absolute 
values can be helpful when comparing the structure 
of two different graphs with the same metric (using 
normalised values between 0 and 1). Table 5a and 6b 
show the frequency with which a feature appears in 
the Top 10 rankings in Table 3 e.g. in Table 3 Feature 
15 appears in the Top 10 for all five metrics. 

For the unweighted undirected graph, the most 
prominent six features that appear in each metric list 
are: Features, 0, 15, 16, 30, 47, 77. Appendix 1 shows 
these features occupy prominent roles in the upper 
echelons of the model. Interestingly, Features 16, 30 
and 47 are all Optional which raises the question of 
whether they actually should be Optional. In other 
cases, where a feature appears in the Top 10 of only 

one metric, consideration might be given to whether 
these features are connected appropriately within the 
model. For example, consider Features 26 and 27 
concerning device unlocking and application login, 
respectively. Given that access to many functions is 
dependent on if a device is locked or not and whether 
a user is logged in or not, one might review if these 
features should be situated higher up the model. 

Table 5: Frequency of Top Features in Centrality Metrics 
for Unweighted Graphs (a) Undirected (b) Directed. 

Undirected (Table 3)  Directed (Table 4) 
Feature Top 10 

Ranking 
Frequency 

 
Feature 

Top 10 
Ranking 

Frequency 
0 5  6 2 
15 5  16 2 
16 5  36* 2 
30 5  47 2 
47 5  53 2 
77 5  77 2 
6 4  82 2 
82 3  89* 2 

12,36,53,70 2  95* 2 
*These 3 features also share the highest value for Closeness Centrality 
with 16 other features so arguably are slightly more important. 

For the unweighted directed graph, several 
prominent features are also prominent in the 
undirected graph i.e. Features 6, 16, 36, 47, 77, 82, 
but their Top 10 ranking frequency is lower, which 
seems to be less helpful. Similarly, Feature 15, which 
appears prominently in the undirected graph, does not 
appear in the directed graph principally because it is 
not in the top 10 rankings for the closeness, 
eccentricity or eigenvector metrics. However, 
representing a feature model as a directed graph helps 
identify “root nodes” and “leaf nodes”. Root nodes 
have only outward connections i.e. their in-degree 
value is 0. Leaf nodes have only inward connections 
i.e. their out-degree is 0, and the closeness, between-
ness and eigenvector centrality metrics will be 0. 

6 DISCUSSION AND THREATS 
TO VALIDITY 

Product line feature models evolve over time and can 
include changes to their topology and to each 
feature’s properties and its relative importance. 
Relative importance metrics offer clues to where 
significant impacts might occur as a model evolves 
and are computationally straightforward. 

Any analysis of a feature model using metrics 
requires the normal degree of caution and prudence 
about relying on any one metric. A single individual 
metric is likely to be of greater value to managers and 
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engineers when it is placed against other sources of 
evidence. The practices of reflection, relying on 
intuition and any visual inspection of the graphical 
version of a feature model, if available and practical, 
remain valuable methods to deploy alongside metrics. 

Relative Importance here refers only to a feature’s 
prominence within the model and may be affected by 
other perspectives of the supplier or a customer, 
captured in a feature’s semantic properties. Future 
work might explore the value of other centrality 
metrics as well as combining them with semantic 
property values. The usefulness of a metric is often 
determined by the running time of the algorithm that 
implements it. We did not explore the running times 
of each of these metrics on very large feature models. 

Allocating weights to features and edges in a 
feature model can offer additional insight into the 
relationships between features. In large feature 
models, weights allocation is untenable without the 
use of an automated algorithm. We did not address 
automatic weight allocation in this paper. Future 
work might also consider whether weights should be 
adapted to reflect different influences that features 
might have on one another when models are 
scrutinised for different purposes e.g. examining the 
impact of proposed changes on different customers, 
exploring design or implementation considerations, 
or considering outsourcing arrangements.  

We used the open-source tool Gephi version 
0.10.1 (Gephi, 2024). We observed that the 
calculation for degree centrality includes both inward 
and outward edges whether the graph is directed or 
undirected. However, when calculating the other four 
metrics in a directed graph, Gephi only includes 
outward edges. We also noted that if there are weights 
attached to edges, Gephi includes these in its 
calculations for degree centrality, but ignores them 
for the other four metrics. We have not explored how 
other tools behave. 

7 RELATED WORK 

Many graph metrics have been proposed to identify 
important vertices in a graph, across many different 
fields. Selecting the most suitable for specific 
applications remains a challenge. To address this 
problem a culling method is proposed (Chebotarev et 
2003) that involves forming a set of candidate 
measures, generating the minimum number of graphs 
needed to distinguish each measure, constructing a 
decision-tree survey for experts, and identifying the 
measure consistent with the expert’s view. 

Centrality metrics have been investigated for 
diverse applications. For internet topology analysis, 
(Wills et al, 2020) made a comparison of commonly 
used graph metrics and distance measures to discern 
between common topological features found in both 
random graph models and real-world networks. They 
proposed a multi-scale picture of a graph structure to 
study the effect of global and local structures on 
changes in distance measures. In (Wan et al, 2011) a 
small number of centrality metrics are discussed in 
their application and performance for solving various 
computing and engineering problems in networks 
based on extensive simulation experiments. A com-
parative overview of metrics for evaluating network 
robustness is presented in (Oehlers et al, 2021). Other 
applications include mobile social network applica-
tions (Zhou et al, 2018), visual reasoning in online 
social networks (Correa et al, 2012), water distribu-
tion networks (Narayanan et al, 2014) and traffic 
management for space satellite networks (Zhang et al, 
2018). (Jirapanthong 2012) proposed the use of a 
social network to represent software product line 
artefacts and relationships between those artefacts to 
apply centrality metrics for analysing the dependen-
cies between software artefacts and stakeholders to 
improve software processes. 

(Bagheri et al, 2011) showed that structural met-
rics in an SPLE feature model can be used to predict 
its maintainability. Thresholds for implementation 
metrics were examined in (Vale at al 2015). In 
(Bagheri et al, 2010) a Stratified Analytic Hierarchy 
Process (S-AHP) method is presented for prioritizing 
(ranking) and filtering the features based on the judg-
ments of users of a product line, to enhance and ex-
pedite the feature selection and product configuration 
process. An algorithm was described in (Peng et al, 
2016) to identify the relative importance of a feature 
in a feature model assumed to be a directed acyclic 
weighted graph. Relative importance was calculated 
as a function of weighted degree centrality i.e. the 
weighted in-degree divided by the weighted out-de-
gree. The weight values allocated were 1 to manda-
tory, 0.5 to optional, 1/N for XOR where N is the total 
number of features that are mutually exclusive and for 
I-OR the weight is some value between 1/N and 1 
where N is the total number of features that can be 
included. Another approach to weight allocation was 
presented in (Mannion et al, 2023), where features 
were allocated weights based on their variability type 
and where the calculations relied on designated start 
and end vertices i.e. a directed graph was assumed. 

In object-oriented software engineering, the 
connections between classes and objects can be used 
to build a dependency graph of classes from which 
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centrality measures can be extracted. This type of 
graph was used in (Ouellet et al, 2023) to show that 
using centrality measures in combination with object-
oriented metrics can improve the prediction of fault-
prone classes as well as the prediction of the number 
of faults in a class. Centrality measures when 
combined with object-oriented metrics can also be 
shown (Levasseur et al, 2024) to better predict the 
unit testing effort and help prioritize unit tests.   

8 CONCLUSION 

During product line feature model analysis, the more 
important a feature, the more attention it receives and 
the more influence it has on the analysis outcome. 
Over time, as a product line evolves, features’ relative 
importance values change and need to be 
recalculated. We show how a small number of 
centrality metrics drawn from social network analysis 
can be used to establish a feature’s relative 
importance for feature model analysis. The metrics 
selected were: degree centrality, closeness centrality, 
eccentricity centrality, eigenvector centrality and 
between-ness centrality. The metrics provide some 
insight into a feature’s contribution to a model’s 
cohesiveness and the information flows between 
features. We acknowledge that a feature’s relative 
importance refers here only to its structural 
prominence within a feature model and does not 
include its value from other perspectives. We 
recommended comparing how a feature ranks across 
several metrics rather than just one metric. 
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