
Implementing OntoUML Models with OntoObject-Z Specifications: A
Proof of Concept Relying on a Partial Ontology for VLANs

Mohamed Bettaz a

Faculty of Information Technology, Czech Technical University in Prague, Thakurova 9, Prague, Czech Republic

Keywords: Ontology, UML, UFO, OntoUML, Object-Z, OntoObject-Z, Descriptive Language, Metamodel, EBNF,
VLAN.

Abstract: OntoObject-Z is a descriptive language inspired by OntoUML. Just as OntoUML is a profile for the Uni-
fied Modeling Language (UML), OntoObject-Z is an extension of the Object-Z notation. The objective of
this article is threefold. We first define a metamodel for OntoObject-Z and an EBNF-like notation formal-
izing the syntax of OntoObject-Z specifications. Second, we construct a partial ontology for Virtual Local
Area Networks (VLANs) and describe it by OntoUML models. Third, we implement our OntoUML models
with OntoObject-Z specifications. The OntoObject-Z metamodel is expressed in OntoUML and the proposed
EBNF rules are based on OntoUML concepts. Thanks to this, each syntactically correct OntoObject-Z speci-
fication corresponds de facto to a correct implementation of an OntoUML model.

1 INTRODUCTION

OntoObject-Z (Bettaz and Maouche, 2023a) is a de-
scriptive language inspired by OntoUML, an onto-
logically well-defined language used for conceptual
modelling (Guizzardi, 2005). Just as OntoUML is
a UML profile, OntoObject-Z is an extension to the
Object-Z notation (Smith, 2000). Our interest in
UML and Object-Z is motivated by the fact that, de-
spite their relative longevity, both continue to attract
interest from the academic and industrial communi-
ties. In addition, these two languages appear promi-
nently in several undergraduate and graduate pro-
grams. Finally, both are equipped with modelling and
verification tools (TOZE for Object-Z, and OpenPonk
for UML and OntoUML). TOZE was used to edit the
OntoObject-Z specifications presented in Section 7,
and OpenPonk to edit and verify the OntoObject-Z
metamodel presented in Section 5 and the OntoUML
models presented in Section 6. Our interest in On-
toUML and OntoObject-Z is motivated by their status
of prescriptive languages acquired thanks to their an-
choring in ontologies (cf. Section 4 and Section 5).
For a good discussion on the prescriptiveness and
descriptiveness of models and ontologies, the kind
reader may consult the excellent work of (Aßmann
et al., 2006). The basic ingredients of OntoObject-

a https://orcid.org/0000-0003-1346-0244

Z were introduced in (Bettaz and Maouche, 2023a)
and (Bettaz and Maouche, 2023b), where it was in-
formally shown how to map some of the basic On-
toUML constructs into OntoObject-Z. In this paper,
we address one of the main points announced as “fu-
ture work” in (Bettaz and Maouche, 2023a), which
is to provide OntoObject-Z with a metamodel, aim-
ing to be the very first step towards the formaliza-
tion of this language. Second, we construct a partial
ontology for VLANs and describe it with OntoUML
models. Third, we implement our OntoUML models
with OntoObject-Z specifications. The OntoObject-
Z metamodel is expressed in OntoUML and the pro-
posed EBNF rules are based on OntoUML concepts.
Thanks to this, each syntactically correct OntoObject-
Z specification corresponds de facto to a correct im-
plementation of an OntoUML model. Equipped with
a relatively “diverse” set of OntoUML constructs,
we believe that our VLANs’ ontology can serve as
a proof of concept for such an implementation. A
first motivation behind the idea of implementing On-
toUML models with OntoObject-Z specifications is to
describe ontologies in a formal descriptive language.
A second motivation is to address most of the phases
of the Software Development Life Cycle (SDLC) in a
language equipped with a refinement method. Indeed
OntoObject-Z, based on Object-Z, “benefits” from
such a method. In (Bettaz and Maouche, 2023b), we
define a refinement approach that can be exploited in

Bettaz, M.
Implementing OntoUML Models with OntoObject-Z Specifications: A Proof of Concept Relying on a Partial Ontology for VLANs.
DOI: 10.5220/0012854500003758
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2024), pages 407-414
ISBN: 978-989-758-708-5; ISSN: 2184-2841
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

407

this sense. A third motivation is to express specifi-
cations and constraints on them in a single language.
Indeed like UML, OntoUML uses OCL (Object Con-
straint Language) to express constraints on domain
descriptions. The construction of an ontology for
VLANs is motivated by our interest in domain knowl-
edge (Bettaz, 2024), a concept known from the soft-
ware engineering discipline. Indeed, to develop an
application or system for a domain, you need a cer-
tain expertise (knowledge) of the domain. In this con-
text, to develop “high quality” protocol-specific ap-
plications, you need in-depth knowledge of protocol-
based VLANs (not just port-based or address-based
VLANs). In this sense VLANs can be considered as
a domain in their own right. More details about the
motivation behind our choice of building an ontology
for VLANs are given in Section 6.

The rest of this paper is organized as follows. Sec-
tion 2 presents our research method. In Section 3 we
discuss some related works. Section 4 gives succinct
information about the Unified Foundation Ontology
(UFO) and OntoUML. In Section 5 we present our
metamodel for OntoObject-Z and the EBNF rules for-
malizing the syntax of OntoObject-Z specifications.
Section 6 is devoted to the ontology for VLANs and
its description by OntoUML. The implementation of
the OntoUML models describing our VLANs’ ontol-
ogy with OntoObject-Z specifications is presented in
Section 7. Concluding remarks and future work are
presented in Section 8.

2 RESEARCH METHOD

This paper uses a formal approach (Roggenbach et al.,
2022) to provide OntoObject-Z with a metamodel
and OntoObject-Z specifications with a formal no-
tation describing their syntax. The OntoObject-Z
metamodel is expressed in OntoUML and the for-
mal notation (describing the syntax of OntoObject-
Z specifications) is expressed by EBNF rules based
on OntoUML concepts. Thanks to this, each syn-
tactically correct OntoObject-Z specification corre-
sponds de facto to a correct implementation of an On-
toUML model. For the construction of our VLANs’
ontology we use an analytical method and a “reverse-
engineering” approach relying on material from spe-
cialized literature such as, (Comer, 2015), (Odom,
2016), (Seifert and Edwards, 2008), and sometimes
on our long-life experience in teaching and research.

3 RELATED WORKS

Mapping between UML and Object-Z dates back to
the work of (Kim and Carrington, 2000). An institu-
tion based on ideas from to this work gives a formal
syntax and semantics to Object-Z (Baumeister et al.,
2015). The work in (Bettaz and Maouche, 2017)
shows how a “combination” of UML and OCL can
be mapped into Object-Z. The objective was to show
that Object-Z can serve as an implementation lan-
guage for “UML + OCL”. Indeed, thanks to its pred-
icate part, Object-Z can implement the constraints
expressed in OCL. From an SDLC perspective, this
leads to the adoption of an “evolutionary” approach
instead of a “discrete” approach. This applies mainly
in the context of Model Driven Requirements Engi-
neering (MDRE) (Assar, 2014). In an evolutionary
approach, most of the SDLC phases are processed us-
ing a single language, where we proceed through step-
wise refinement. For this, a refinement idea based on
the transformation of inheritance into delegation can
be exploited for OntoObject-Z (Bettaz and Maouche,
2023b). In a discrete approach a different language
is used to process each phase, which raises the prob-
lem of “correct” mapping of specifications expressed
in various languages.

4 UFO AND OntoUML

OntoUML is a language for conceptual modelling,
conceived as a profile of UML based on UFO. Report-
ing on OntoUML and UFO is out of the scope of this
paper; the reader interested in more detail is kindly
directed to the rich bibliography treating on both sub-
jects - cf. for instance (Guizzardi et al., 2021) and
(Pergl, 2023). In a nutshell, UFO classifies “entities”
into two broad “categories” named sortals and non-
sortals. Instances (individuals) of sortals (types) al-
ways have one and the same identity principle, and
each instance must have exactly one identity. In-
stances of non-sortals can have different identity prin-
ciples. Indeed, non-sortals are abstract classes. Sor-
tals and non-sortals can be either rigid or anti-rigid.
Rigidity is a qualifier for entities that are unable to
adapt to change, while anti-rigidity is a qualifier for
entities that do. The concepts of rigidity and anti-
rigidity are formalized in modal logic; cf. for instance
(Guizzardi et al., 2021) and (Pergl, 2023). Exam-
ples of rigid sortals, anti-rigid sortals, rigid non-sortal,
and anti-rigid non-sortal are given in Section 6. On-
toUML uses sortals and non-sortals in their rigid and
anti-rigid form as stereotypes for its classes (in the
sense of UML classes). Moreover, in OntoUML, as-

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

408

sociations are also stereotyped. These stereotypes and
others (cf. Section 5) bring a noticeable change in the
semantics of UML models. A stereotype is placed be-
tween << and >>. Stereotype (Kind), for instance,
is written as <<Kind>>.

5 OntoObject-Z

The basic ingredients of OntoObject-Z were intro-
duced in (Bettaz and Maouche, 2023a). In this sec-
tion, we present a metamodel for OntoObject-Z (cf.
Figure 1) and an EBNF-like notation formalizing the
syntax of OntoObject-Z specifications.

Figure 1: An OntoUML metamodel for OntoObject-Z.

Since OntoObject-Z borrows stereotypes from
OntoUML, it is quite “natural” to build the very first
OntoObject-Z metamodel in OntoUML. Another rea-
son is that OntoUML is supported by a tool (Open-
Ponk) allowing to verify OntoUML models. For sake
of readability, we will write between braces the names
used in the different figures when they are mentioned
in the text. Our metamodel (cf. Figure 1) shows
that an OntoObject-Z class (OntoObject-ZClass) is a
“whole” having a name and a stereotype. It consists
of three “parts”: a basic attribute part (BasicAttribute)
representing its basic attributes, a reference attribute
part (ReferenceAttribute) representing its reference
attributes, and a predicate part (Predicate) represent-
ing its predicates. A basic attribute has name and a
type. A reference attribute has a name, a type and a
stereotype. The types of the various attributes relat-
ing to the whole and to the various parts are defined
by enumeration type declarations, which are nothing
more than UFO stereotypes used in OntoUML. A for-
mal definition for basic and reference attributes (in-
cluding the significance of stereotyping for reference
attributes) is given in (Bettaz and Maouche, 2023a).
The OCL constraint associated with the association
(subclasses) states that an OntoObject-Z class cannot
be its own subclass. Similar OCL expressions can

be formulated to specify constraints on relationships
between the various stereotypes defined for class
stereotypes (Cls stereotype). Also, the OntoObject-
Z metamodel defines an OntoObject-Z specification
(OntoObject-ZSpecification) as a collection of several
OntoObject-Z classes.

We define the formal syntax for OntoObjectZ
specifications with the following EBNF-like rules.
<OntoObject-Z specification> ::= {OntoObject-
Z class}+
<OntoObject-Z class> ::= <header> <state>
<header> ::= <header of sortal class> |
<header of nonsortal class>
<header of sortal class> ::=
<<<cls stereotype>>>
<cls name> [{<cls name>}]
<header of nonsortal class> ::=
<<<cls stereotype>>> <cls name> : abstract
<cls stereotype> ::= category | collective | kind |
mixin | mode | phase | phasemixin | quality | quantity
| relator | role | rolemixin | subkind
<state> ::= [<declaration>] [<predicate>]
<declaration> ::= {<basic attribute> |
<reference attribute>}
<basic attribute> ::=
<<<cls stereotype>>>
<cls name> :
<bas attribute name> : <type name>
<type name> ::= boolean | integer | . . .
<ref attribute> ::=
<<<cls stereotype>>>
<cls name> :
<<<ref stereotype>>> <ref attribute name> :
P <<<ref stereotype>>> <cls name>
<ref stereotype> ::= characterization | componentof
| containment | derivation | domainformal | material |
mediation | memberof | subcollectionof | subquanti-
tyof
<predicate> ::=
{<multiplicity predicate> |
<navigability predicate> |
<is whole for predicate> | <is part of predicate>
| isDisjoint | isComplete}
<multiplicity predicate> ::=
<ref attribute name> <rel operator> <value>
<rel operator> ::= >= | <= | = | < | > | !=
<value> ::= 0 | 1 | 2 | ...
<is whole for predicate> ::= <cls name> isW-
holeFor <cls name>
<is part of predicate> ::= <cls name> isPartOf
<cls name>
<navigability predicate> :: = ∀ <var name> :
<cls name> • self in <var name> · <cls name>

The formal definition for the predicates (isWhole-

Implementing OntoUML Models with OntoObject-Z Specifications: A Proof of Concept Relying on a Partial Ontology for VLANs

409

For) and (isPartOf) can be defined using the predicate
logic in the same way as (isDisjoint) and (isComplete)
were defined in (Bettaz and Maouche, 2023a).

6 DESCRIPTION OF THE VLANS’
ONTOLOGY

In this section we present our ontology for VLANs
and its description with OntoUML. Describing
VLANs in OntoUML allows to have a shared con-
ceptualization not only for various (hardware / soft-
ware) entities composing a VLAN but also for the
knowledge (implicitly) defined by their interrelation-
ships. So, while it is probably obvious to list all
the concepts revolving around VLANs such as broad-
cast domains, collision domains, LANs’ generations,
computing devices, transmission media, virtual LAN
switches, port-based VLANs, address-based VLANs,
Layer 3-based VLANs, native VLANs, VLANs using
separate physical links, VLANs using trunks, Dot1q
protocol, routing between VLANs, VLANs using
routers or Layer 3 switches, bridged LANs, bridged
LANs containing cycles, spanning trees, spanning
tree protocols, forwarding tables, forwarding algo-
rithms, blocked ports, root ports, designated ports,
disconnected bridges, designated bridges and so forth,
nothing is less obvious than establishing all the in-
terrelationships in a concise, complete and consis-
tent manner. For sake of readability, our model for
VLANs’ ontology is decomposed into four (ontol-
ogy) “fragments”. The first fragment presents vari-
ous generations of LANs. The second fragment de-
scribes the concept of VLAN switch and various types
of VLANs (port-based, address-based, and Layer 3-
based). The third fragment addresses the notion of
routing between VLANs. The fourth fragment intro-
duces the concept of bridged LANs, the notions of
spanning tree, and Spanning Tree Protocol (STP) as
well. Classes that are “replicated” serve to “glue” the
various fragments.

6.1 LAN Generations

The ontology fragment depicted in Figure 2 should
be read as follows. A LAN (<<Kind>> LAN)
is seen as a kind of the category of computer net-
works (<<Category>> Computer Network). Kinds
(stereotype <<Kind>>) are rigid sortals, while cat-
egories (stereotype <<Category>>) are rigid non-
sortals. Non-sortals in UFO (and in OntoUML) are
abstract classes (in the sense of object-oriented pro-
gramming), and they are written in italic. The rigid
sortal (<<Mode>> Broadcast Domain) expresses

Figure 2: LAN Generations: an OntoUML representation.

the fact that a LAN is defined as a broadcast do-
main. Stereotype <<Mode>> is used to empha-
size the importance of a given characteristic of the
“bearer” (<<Kind>> LAN) in our case. The associ-
ation between a mode and a bearer should be “dec-
orated” by the stereotype (<<characterization>>).
The various LAN generations are all seen as LANs,
and are de facto also broadcast domains, since they
all inherit the relationship (<< characterization >>
defined as). As expected, the various generations of
LANs are distinguished just by the type of the used
transmission medium (<<Relator>> Thick Cable),
(<<Relator>> Thin Cable), etc. The relationships
ending by a diamond describe a “whole-part” rela-
tionship. A “filled” diamond expresses the fact that
a “part” is not shareable (a thick cable is not shared
by two different LANs, and so on.) The multiplici-
ties written next to the diamonds express the fact that
the “whole” is not mandatory for the “part” (while a
first generation LAN necessitates two or more com-
puting devices, a first generation LAN is not manda-
tory for a computing device). The various kinds of
transmission media are seen are relators (stereotype
<<Relator>>). A thick cable, for instance, relates
(mediates) two or more connected computing devices.
A connected computing device (<<Role>> Con-
nected Computing Device) is seen as a role played
by a computing device (<<Kind>> Computing De-
vice).

6.2 VLAN Types

The ontology fragment depicted in Figure 3 should be
read as follows. A VLAN (<<Subkind>> VLAN) is
a switched LAN (<<Subkind>> Switched), which
is itself a LAN (<<Kind>> LAN). As a LAN,
a VLAN is also defined as a broadcast domain.
A VLAN can be created or removed at any time.
Thus, we have two phases: (<<Phase>> Cre-

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

410

Figure 3: VLAN Types.

ated VLAN) and (<<Phase>> Removed VLAN).
(<<Subkind>> VLAN) is an abstract class because
these two phases define a generalization set that is
complete and disjoint. This is expressed by the
meta-attribute {complete, disjoint}. A VLAN in the
first phase (<<Phase>> Created VLAN) consists of
one or more VLAN switches (<<Kind>> VLAN
Switch), where a VLAN switch is seen as an “in-
separable part” of a LAN switch (the meta-attribute
{inseparable} is used for this purpose). Inseparable
here means that an instance of (<<Kind>> VLAN
Switch) cannot exist without the same instance of
(<<Kind>> LAN Switch). The various types
of VLAN (<<Role>> Port-based), (<<Role>>
Address-based), and (<<Role>> Layer3-based) are
modelled as roles played by a created VLAN. As ex-
pected, a port-based VLAN is associated with two
or more ports, an address-based VLAN is associated
with two more MAC addresses, and a Layer3-based
VLAN is associated with two or more network ap-
plications. A configured VLAN switch (<<Role>>
Configured VLAN Switch) and a connected comput-
ing device (<<Role>> Connected Computing De-
vice) are related by twisted pairs (<<Relator>>
Twisted Pair).

6.3 Routing Between VLANs

The ontology fragment depicted in Figure 4 should be
read as follows. A switched VLAN (<<SubKind>>
VLAN) using a trunk (<<Role>> Using a Trunk)
and a switched VLAN using separate physical
links (<<Role>> Using Separate Links) can be
seen as two different roles played by a VLAN
(<<SubKind>> VLAN). In such a situation the
router plays also two roles (<<Role>> Connected
to Trunk) and (<<Role>> Connected to Separate
Links). The relators (<<Relator>> Trunk) and

Figure 4: Routing between VLAN.

(<<Relator>> Separate Physical Links) mediate, re-
spectively, both of these material relations. As we
know, when a VLAN is using a trunk, the frames are
tagged before crossing the router. This is represented
by (<<Mode>> Tagged Frame).

6.4 Bridged LAN

The ontology fragment depicted in Figure 5 should
be read as follows. A bridged LAN (<<Kind>>

Figure 5: Bridged LAN.

Bridged LAN) consists of a bridge (<<Kind>>
Bridge) and two or more LAN segments (<<Role>>
LAN Segment). The bridge is “characterized” by a
forwarding table (<<Quality>> Forwarding Table),
with a distinguished attribute defining its size, and
a forwarding algorithm (<<Quality>> Forwarding
Algorithm) with a distinguished attribute defining its
performance. A bridged LAN, as a LAN, is also seen
as a broadcast domain (<<Mode>> Broadcast Do-
main). Both bridged LAN with cycles (<<Role>>
Bridged LAN with Cycles) and bridged LAN with no
cycles (<<Role>> Bridged LAN With no Cycles)
are seen as roles of a bridged LAN. The spanning
tree protocol (<<Relator>> Spanning Tree Proto-
col) is used to associate a spanning tree (<<Role>>

Implementing OntoUML Models with OntoObject-Z Specifications: A Proof of Concept Relying on a Partial Ontology for VLANs

411

Spanning Tree) with a bridged LAN with cycles. All
spanning trees form a collective (<<Collective>>
All Spanning Trees). A bridge in a spanning tree
(<<Role>> Bridge in Spanning Tree) possesses one
root port, one designated port, and can have one or
more of its ports blocked. In case that all of the ports
are blocked, the bridge is merely disconnected. These
are modelled as attributes of (<<Role>> Bridge in
Spanning Tree).

7 IMPLEMENTATION OF THE
VLANS’ ONTOLOGY

For lack of space, only the implementation of the
first fragment is presented in this Section. For sake
of readability, the implementation of our first on-
tology fragment is represented by several pieces of
OntoObject-Z specifications (cf. Figures 6, 7, 8, 9,
and 10).

<< category>>ComputerNetwork : abstract

<< kind >> (WAN,MAN,LAN)

<< category >> ComputerNetwork

<< kind >> LAN : (broadcastDomain :
P<< Mode >> BroadcastDomain) :
<< characterization >>

(WAN,MAN,LAN) isDisjoint

Figure 6: Networks kinds.

The piece of OntoObject-Z specification depicted
in Figure 6 describes an OntoObject-Z abstract
class (<<category>> ComputerNetwork: abstract)
implementing the OntoUML abstract class of the
same name, and an OntoObject-Z class (<<kind>>
(WAN, MAN, LAN)) implementing the three On-
toUML classes of the same name (cf. Subsection 6.1).

OntoObject-Z “enriches” Object-Z with a new
notation that consists in regrouping the specifica-
tion of two or more “child” classes together with
their “parent” class. The motivation behind this,
is to write concise and more readable specifica-
tions. Next, our piece of OntoObject-Z specifi-
cation declares a reference attribute (broadcastDo-
main) for (<<kind>> LAN). This reference attribute
has the type (PBroadcastDomain) and the stereo-
type (<<characterization>>). (<<Mode>>) is the
stereotype of the class (BroadcastDomain). The pred-
icate part of our piece of OntoObject-Z specification

<< category >> ComputerNetwork : abstract

<< subkind >> (First,Second,Third,Switched)

<< kind >> LAN

<< subkind >> First :<< compOf >> thick :
P<< relator >> Thick
<< subkind >> First :<< compOf >>

compDevice : P<< kind >> CompDevice
<< subkind >> Second :<< compOf >>

thin : P<< relator >> Thin
<< subkind >> Second :<< compOf >>

compDevice : P<< kind >> CompDevice
<< subkind >> Third :<< compOf >>

hub : P<< relator >> Hub
<< subkind >> Third :<< comOf >>

compDevice : P<< kind >> CompDevice
<< subkind >> Switched :<< compOf >>

lanSwitch : P<< relator >> LanSwitch
<< subkind >> Switched :<< compOf >>

compDevice : P<< kind >> CompDevice

isDisjoint(First,Second,Third,Switched)
Thick isPartOf First ∧ #thick = 1
CompDevice isPartOf First
#compDevice ≥ 2
Thin isPartOf Second ∧ #thin = 1
CompDevice ispartOf Second
#compDevice ≥ 2
Hub isPartOf Third ∧ #hub = 1
CompDevice isPartOf Third
#compDevice ≥ 2
LANSwitch isPartOf Switched
#lanSwitch = 1
CompDevice isPartof Switched
#compDevice ≥ 2

Figure 7: LAN generations.

consists of one predicate stating that the three sub-
classes (WAN, MAN, and LAN) are not overlapping.
A formal specification of (isDisjoint), is given in (Bet-
taz and Maouche, 2023a).

The piece of OntoObject-Z specification de-
picted in Figure 7 defines an OntoObject-Z
class (<<subkind>> (First, Second, Third,
Switched)) regrouping three “children” of
(<<Kind>> LAN) implementing, respectively,
the four OntoUML classes (<<SubKind>> First
Generation), (<<SubKind>> Second Genera-
tion), (<<SubKind>> Third Generation), and
(<<SubKind>> Switched). The declaration part
of this piece of specification defines the attributes

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

412

for each “child” as follows. The declaration of each
reference attribute (stereotype, name, and type) is
indexed by the name of the “child” (stereotype,
name). For sake of readability the declaration of the
attributes are regrouped by “child”. For instance,
the “child” (<<subkind>> Switched) has two
attributes:
i) a first attribute (thick) with stereotype
(<<CompOf>>) and type (P<< relator >>Thick).
The index is (<<subkind>> First).
ii) a second attribute (compDevice) with stereotype
(<<CompOf>>) and type (P<<kind>> CompDe-
vice). The index is the same, i.e., (<<subkind>>
First). The predicate part of our piece of specification
(Figure 7) states several constraints that might be
commented as follows. The meaning of the predicate
(isDisjoint(First, Second, Third, Switched)) states
that the set-theoretic models of the classes (First,
Second, Third, and Switched) as not overlapping.
(Thick isPartOf First), a notation for (isPartOf(Thick,
First)), expresses the fact that in the whole-part
relationship between the classes (ThickCable) and
(FirstGeneration), (ThickCable) is the part and
(FirstGeneration) is the whole. (#thick = 1) states that
a thick cable is a mandatory part for a first generation
LAN.

The piece of specification depicted in Figure 8 de-
fines an OntoObject-Z class (<<kind>> CompDe-
vice) implementing the OntoUML class (Computing
Device). The declaration part defines four reference
attributes that all are stereotyped as (<<compOf>>).
Each attribute is typed by the power-set of the cor-
responding whole (i.e., First, Second, Third, and
Switched). The predicate part can be commented as
follows. (First isWholeFor CompDevice) is an ex-
pression for (isWholeFor(First, CompDevice)) stating
that a first generation LAN is a whole for each com-
puting device connected to it. (#first = 0 ∨ #first = 1)
states that a first generation LAN is not mandatory
for a computing device that could be connected to it.
The predicate (∀ f : first • self ∈ f .compDevice) de-
fines the navigability of the association relating (First)
and (compDevice).

The piece of specification depicted in Figure 9
defines an OntoObject-Z class (<<role>> Con-
necCompDevice) implementing the OntoUML class
(Connected Computing Device).

The declaration part defines four reference at-
tributes that all are stereotyped as (<<mediation>>).
Each attribute is typed by the power-set of the ref-
erenced class. The predicate part can be com-
mented as follows. (#twisted = 1) means that a
twisted pair is mandatory for a computing device con-
nected to a LAN. The predicate (∀ t : twisted • self ∈

<< kind >> CompDevice

<< compOf >> first : PFirst
<< compOf >> second : PSecond
<< compOf >> third : PThird
<< compOf >> switched : PSwitched

First isWholeFor CompDevice
#first = 0 ∨ #first = 1
∀ f : first • self ∈ f .compDevice
Second isWholeFor ComDevice
#second = 0 ∨ #second = 1
∀s : second • self ∈ s.compDevice
Third isWholeFor CompDevice
#third = 0 ∨ #third = 1
∀ t : third • self ∈ t.compDevice
Switched isWholeFor CompDevice
#switched = 0 ∨ #switched = 1
∀s : switched • self ∈ s.compDevice

Figure 8: Computing device.

<< role >> ConnecCompDevice

ComputingDevice :<< kind >>

<< mediation >> twisted : PTwisted
<< mediation >> thick : PThick
<< mediation >> thin : PThin
<< mediation >> hub : PHub
<< mediation >> lanSwitch : PLANSwitch

#twisted = 1
∀ t : twisted • self ∈ t.connecCompDevice
#thick = 1
∀ t : thick • self ∈ t.connectCompDevice
#thin = 1
∀ t : thin • self ∈ t.connectCompDevice
#hub = 1
∀h : hub • self ∈ h.connectCompDevice
#lanSwitch = 1
∀ l : lanSwitch • self ∈ l.connectCompDevice

Figure 9: Connected computing device.

<< category >> Switch

<< kind >>NetSwitch,<< relator >>LANSwitch

<< category >> Switch

Figure 10: Category of switches.

t.connecCompDevice) defines the navigability of the
association relating a connected computing device to

Implementing OntoUML Models with OntoObject-Z Specifications: A Proof of Concept Relying on a Partial Ontology for VLANs

413

a twisted pair.
The piece of specification depicted in Figure 10

defines two OntoObject-Z classes (<<kind>>
NetSwitch) and (<<relator>> LANSwitch) imple-
menting the OntoUML abstract class (Switch).

8 CONCLUSIONS

The first result of this contribution consists in defining
a metamodel for OntoObject-Z and formalizing the
syntax of the specifications written in this language.
This paves the way for a “sound” formalization of this
promising language.

Building an ontology for VLANs and describing
it in OntoUML is a second result of this work.

The third result is the implementation of our
OntoUML models with OntoObject-Z specifications.
The motivation behind the idea of implementing On-
toUML models with OntoObject-Z specifications is
given in Section 1 and Section 3. It is important to
emphasize here that the approach used to build the
metamodel and to write the EBNF rules makes it pos-
sible to achieve an implementation that is correct by
construction.

Providing formal semantics for the implementa-
tion of OntoUML models with OntoObject-Z specifi-
cations can be approached in two ways. Using an On-
toUML metamodel expressed in OntoUML and writ-
ing the rules mapping this metamodel into the On-
toUML metamodel of Object-Z, or providing both
OntoUML and OntoObject-Z with metamodels ex-
pressed in OntoObject-Z and writing the rules for
mapping the first metamodel into the second one.
This task is left for future work.

Another more elaborated future work is to provide
OntoUML and OntoObject-Z with appropriate insti-
tutions (Diaconescu, 2023), (Baumeister et al., 2015)
formalizing both the syntax and the semantics of the
two languages and implementing OntoUML models
with OntoObject-Z specifications through the map-
ping of one institution into the other.

ACKNOWLEDGEMENTS

The author thanks four anonymous reviewers for their
valuable comments that helped improve the final ver-
sion of this article.

REFERENCES

Assar, S. (2014). Model Driven Requirements Engineering:
Mapping the Field and Beyond. In 4th International
Model-Driven Requirements Engineering Workshop
(MoDRE), Karlskrona, Sweden. IEEE.

Aßmann, U., Zschaler, S., and Wagner, G. (2006). Ontolo-
gies, Meta-models, and the Model-Driven Paradigm.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Baumeister, H., Bettaz, M., Maouche, M., and
Mosteghanemi, M. (2015). An Institution for
Object-Z with Inheritance and Polymorphism. In
LNCS 8950 (2015). Springer.

Bettaz, M. (2024). Towards an OntoObject-Z Based Ontol-
ogy for Virtual Local Area Networks, Keynote Speech
- Amity Institute of Information Technology.

Bettaz, M. and Maouche, M. (2017). UML/OCL or Object-
Z? In 2017 International Conference on Infocom
Technologies and Unmanned Systems (ICTUS’2017).
IEEE.

Bettaz, M. and Maouche, M. (2023a). Towards a New
Ontology-Based Descriptive Language: OntoObject-
Z. In 2023 6th International Conference on Contem-
porary Computing and Informatics (IC3I). IEEE.

Bettaz, M. and Maouche, M. (2023b). Towards an Ontol-
ogy for Network Management: Analysis and Refine-
ment. In 2023 10th IEEE International Conference
on Electrical, Electronics and Computer Engineering
(UPCON). IEEE.

Comer, D. (2015). Computer Networks and Internets. Pear-
son, Edinburgh Gate, 6th edition.

Diaconescu, R. (2023). Preservation in Many-valued Truth
Institutions. Fuzzy Sets and Systems, 456:38–71.

Guizzardi, G. (2005). Ontological Foundations for Struc-
tural Conceptual Models,. Phd thesis, University of
Twente, The Netherlands.

Guizzardi, G., Benevides, A., Fonseca, C., Porello, D.,
Paulo, J., Almeida, A., and Sales, T. (2021). UFO:
Unified Foundational Ontology. In Applied Ontology
1 (2021). IOS PRESS.

Kim, S. and Carrington, D. (2000). A Formal Mapping Be-
tween UML Models and Object-Z Specifications. In
LNCS 1878 (2000). Springer-Verlag.

Odom, W. (2016). CCENT/CCNA ICND1 100-105 Official
Certification Guide, Academic Edition. Cisco Press,
Indianapolis, 2nd edition.

Pergl, R. (2023). Lectures on Conceptual Modelling, Fac-
ulty of Information Technology - Czech Technical
University in Prague.

Roggenbach, M., Cerone, A., Schlingloff, B.-H., Schneider,
G., and Shaikh, S. A. (2022). Formal Methods for
Software Engineering. Springer Cham.

Seifert, R. and Edwards, J. (2008). The All-New Switch
Book. Wiley, Indianapolis, 2nd edition.

Smith, G. (2000). The Object-Z Specification Language.
Springer.

SIMULTECH 2024 - 14th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

414

