Enhancing User Experience in Games with Large Language Models

Keywords:

Abstract:

Ciprian Paduraru', Marina Cernat' and Alin Stefanescu'?

I Department of Computer Science, University of Bucharest, Romania

2 Institute for Logic and Data Science, Romania

Large Language Models, Retrieval Augmented Generation, Teacher Model, Fine-Tuning, Video Games,
Active Assistance, Simulation Applications.

This paper explores the application of state-of-the-art natural language processing (NLP) technologies to im-
prove the user experience in games. Our motivation stems from the realization that a virtual assistant’s in-
put during games or simulation applications can significantly assist the user in real-time problem solving,
suggestion generation, and dynamic adjustments. We propose a novel framework that seamlessly integrates
large-scale language models (LLMs) into game environments and enables intelligent assistants to take the
form of physical 3D characters or virtual background entities within the player narrative. Our evaluation con-
siders computational requirements, latency and quality of results using techniques such as synthetic dataset
generation, fine-tuning, Retrieval Augmented Generation (RAG) and security mechanisms. Quantitative and
qualitative evaluations, including real user feedback, confirm the effectiveness of our approach. The frame-
work is implemented as an open-source plugin for the Unreal Engine and has already been successfully used
in a game demo. The presented methods can be extended to simulation applications and serious games in

general.

1 INTRODUCTION

Following the current development in the field of
Large Language Models (LLMs), our primary con-
tribution in this work is to explore and develop ap-
proaches that allow the end user to benefit from their
potential in games or simulation applications in gen-
eral. The main problem we are addressing is how to
support the user at runtime with the help of an assis-
tant who can be asked either by text or voice. The
entity assisting the user can be represented virtually
in the simulation environment, e.g. a non-playable
character (NPC) or a narrator/environmental listener.
Use Cases. Together with industry partners, we inves-
tigated use cases for the inclusion of such an assistant
in games and simulation applications in general. The
first category investigated relates to the classic senti-
ment analysis (Wankhade et al., 2022). An example of
this is when a user is playing with an NPC and states
either verbally or in writing that the difficulty of the
simulation is too high or not challenging enough. In
this case, one option would be to dynamically change
the difficulty level so that the user has an engaging
experience. Another concrete example: Imagine the
user is playing an ice hockey game like NHL! and is

Uhttps://www.ea.com/en-gb/games/nhl
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unhappy with the referee’s decision. Reactions that he
expresses loudly could prompt the referee in the game
to penalize the user’s actions in order to entertain and
motivate him.

Furthermore, we have discovered that NLP tech-
niques can be used to construct NPC companions that
physically exist in the simulated environment and can
be prompted by a voice or text command to help the
user. Specific examples are when the user is stuck at a
destination or is unable to find the way to a particular
destination. In this situation, the NPC companion can
understand the user’s request and guide them to a spe-
cific destination or give advice on how to solve vari-
ous tasks. Another source of irritation for users when
dealing with virtual worlds is their inability to under-
stand the many designed dynamics. This is a common
problem in the industry that leads to users abandoning
the applications before the developers can make rev-
enues or provide an adequate gaming experience. In
this scenario, we see NLP as a viable option where
the user can ask questions that a chatbot can answer
live to assist them. Specific examples include ques-
tions about healing procedures, finding certain items
in a particular room, determining what is needed or
missing to achieve certain goals, etc.
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Contributions. Our main research goal is to create
a novel framework that enables game developers to
use LLMs in their games in a reusable and efficient
way in terms of computational power. To the best of
our knowledge, this is the first work that addresses the
problem of integrating LLMs into games for real-time
inference that are locally deployed and fulfill develop-
ers’ requirements in terms of use cases and technolo-
gies. The contributions are summarized below: Our
contributions are summarized below.

* A reusable and flexible open-source framework
for game developers (and simulation applica-
tions in general) to integrate LLMs and re-
lated processes into their products. We re-
fer to this as GameAssistant and its open-
source repository https://github.com/AGAPIA/
NLPForVideoGames is intended to act as a plu-
gin for the Unreal Engine’, a game engine
widely used in games, the simulation industry and
academia. User input can be in the form of voice
or text messages.

Prototyping and evaluation of different techniques
to reuse processes and tools in the LLM domain
for simulation software and video games, such as
Retrieval Augmented Generation (RAG), agents
and tools, fine-tuning pipelines.

* A mechanism to incorporate a teacher LLM
model to create a synthetic dataset with rigorous
structure, input and output for customized game
actions. This is used to reduce the cost of obtain-
ing a fine-tuning dataset.

Address the efficiency problem of integrating
LLMs into games for end users without incur-
ring additional cloud costs or requiring a dedi-
cated GPU, running everything on the machine
where the game is played. Our solution is based
on evaluating and reusing small models that are
further trained (fine-tuned) depending on the use
case to achieve the required quality. The model
currently used is Phi-3-mini (Abdin et al., 2024),
a language model with 3.8 billion parameters re-
cently released by Microsoft. It is integrated in
a plugin-compatible form so that other extensions
can also be integrated.

The rest of the work is structured as follows. Sec-
tion 2 shows use cases of NLP applications and large
language models in different domains that have ex-
plored similar solutions in different environments.
Section 3 gives a sketch presentation of the field of
LLMs, both theoretical and practical, including the
motivation for the current model choice. A general

Zhttps://www.unrealengine.com
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overview of the supported features is shown in Sec-
tion 4. The architecture and implementation of the
GameAssistant framework are presented in Dection
5. The evaluation results are presented in Section 6,
which includes both a quantitative and a qualitative
evaluation as well as information on our setup, ob-
servations and datasets. The final section summarizes
our findings and suggestions for future work.

2 RELATED WORK

Conversational Agents (CA) are widely used in var-
ious industries, including medicine, the military and
online shopping, as reported in the review study (Al-
louch et al., 2021). These agents are usually vir-
tual agents that attempt to communicate with inter-
ested people and answer their queries, at least until
they receive information from them, which is then
passed on to actual human agents. Recently, LLMs
have improved the capabilities of traditional NLP
techniques in building virtual agents. The authors
of (Guan et al., 2023) investigate the application of
LLMs to improve the natural language understanding
and reasoning capabilities of intelligent virtual assis-
tants. The researchers present an innovative LLM-
integrated virtual assistant capable of autonomously
performing multi-step tasks within mobile applica-
tions in response to high-level user commands. The
implemented system, which is at its core a mobile
payment application, provides a comprehensive solu-
tion for interpreting instructions, deriving goals and
performing actions. The article in (Cascella et al.,
2024) explores the potential uses of LLMs in health-
care, focusing on their role in chatbots and systems
that interact in the management of clinical docu-
mentation and medical literature summarization (also
known as Biomedical NLP). The main hurdle in this
area is research into their application in diagnostics,
clinical decision support and patient triage. The re-
ported results are from one year of using LLMs in
real-life situations. CAs were also used for gamifica-
tion reasons. In (Yunanto et al., 2019), the authors
propose an educational game called Turtle Trainer
that uses an NLP method for its non-playable charac-
ters (NPCs). In the game, the NPCs can automatically
respond to other players’ questions in English. Hu-
man users can compete against NPCs, with the player
who answers the most questions correctly winning a
round. While their methods for understanding and an-
swering questions are based on standard NLP meth-
ods, we adopt their scoring strategy, which is based on
qualitative feedback from two perspectives: (a) How
do human users perceive how well their opponents,



i.e. NPCs, understand and answer the questions? (b)
Does the existence of NPCs in this way indicate a
stronger interest in the learning game itself? Duolingo
(Munday, 2017) is a common platform for learning
different languages. It supports the development of
educational games, such as language learning through
gamification , as well as machine learning-based ap-
proaches to performance testing. Using the platform
itself and NLP methods, the authors recommend the
use of automatically generated language tests that can
be scored and psychometrically analysed without hu-
man labour or supervision.

LLMs in Games. The work that comes closest to
our goals is (Paduraru et al., 2023), in which the au-
thor uses classical NLP techniques based on similar-
ity metrics and intent models to implement a chat as-
sistant in video games. However, they do not con-
sider an ongoing conversation or any additional con-
text and are strict regarding the phrases and natural
language variations that can be used. In comparison,
our work integrates a comprehensive language model
that has the following features: a) fast adaptation to
different user styles by training massive datasets con-
taining different language formats, b) support for vari-
able context that can be used as knowledge with the
RAG method, and c) full support for the history of
messages during a conversation. A motivating re-
lated work is presented in (Isaza-Giraldo et al., 2024),
in which the authors explore LLMs as evaluators in
serious games, focusing specifically on open-ended
challenges. The researchers developed a prototype
sustainability game about energy communities and
tested it with ChatGPT-3.5, finding that it scored 81%
of player responses correctly and provided valuable
learning experiences. The results suggest that LLMs
have the potential to act as mediators in educational
games and that they can facilitate the development of
game prototypes through natural language prompts.In
(Cox and Ooi, 2024), the authors discuss how the ca-
pabilities of LLMs can be used to improve the dynam-
ics and variety of conversational responses of NPCs
in video games. The paper explores what guidelines
can be created for designers to effectively incorporate
LLMs into NPC dialogs and the potential impact from
different perspectives to drive further research and de-
velopment efforts. We follow their study and integrate
their observations into our current work. In (Huber
et al., 2024), the authors discuss the transformative
potential and related challenges of LLMs in education
and how these challenges could be addressed with the
help of game and game-based learning. The paper ex-
plores how a new pedagogy of learning with Al could
utilize LLMs for learning by generating games and
gamifying learning materials. The work in (Gallotta
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et al., 2024) explores the diverse functions that LLMs
can perform within a gaming context and provides
an overview of the latest advancements in the various
uses of LLMs for gaming purposes. The authors also
delve into areas that have not been fully explored and
suggest potential avenues for the future application of
LLMs in gaming. The work strikes a balance between
the capabilities and constraints of LLMs in the realm
of gaming. It offers an understanding of how an LLM
can be incorporated into a broader system for sophis-
ticated gameplay. The authors express optimism that
this article will lay the groundwork for pioneering re-
search and innovation in this rapidly evolving field. In
comparison to ours, their work is a survey or highg-
lights of potential without ofering a technical deep so-
lution or architecture. We reuse their presented ideas
and future and ofer a technical framework that can
satisfy their discussed requirements.

Agents and Tools. The main goal of these elements
is to bridge the gap between user requests and back-
end systems through tasks expressed in natural lan-
guage. There are numerous strategies in this area. The
technique we have included in our project is one that
embeds reasoning traces and task-specific actions into
language models (Yao et al., 2023). This combination
allows the model to gain a comprehensive understand-
ing of the tasks and dynamically adapt its behavior
based on the state of the backend system and the con-
text of the conversation.

We have also experimented with another method,
known as (Schick, 2023), which offers several ad-
vantages and disadvantages compared to the previous
method. In their study, a language model (LLama 2
7B (Touvron et al., 2023)) is trained specifically for
independent interaction with external tools via sim-
ple APIs. By carefully selecting APIs, incorporat-
ing calls at the right time, and seamlessly integrating
their results into subsequent token predictions, Tool-
former effectively reduces the distance between lan-
guage modeling capabilities and practical tool usage.
However, we could not fully implement this approach
as it requires a dataset of API call examples, which
we could not create in time. A detailed comparison is
planned for future work.

When it comes to large systems and APIs, a more
appropriate strategy might be to include Gorilla (Patil
etal., 2023). In their research, the authors fine-tuned a
language model that outperforms GPT-4, especially in
the area of API request formulation. Gorilla, through
the use of APIs and integration with a document re-
triever, outperforms other methods in terms of adapt-
ability to document changes during testing. This
adaptability significantly increases reliability and ap-
plicability across a wide range of tasks, especially for
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large projects.

Retrieval Augmented Generation (RAG). To sup-
port RAG in our application, we use the Faiss library
(Douze et al., 2024), (Johnson et al., 2019), which is
designed for fast vector similarity search. It provides
a comprehensive toolkit with indexing techniques and
associated primitives for tasks such as search, cluster-
ing, compression and vector transformation.

3 A CONTEXTUAL
INTRODUCTION TO LLMs

Language Models (LMs) are statistical models that
assign probabilities to word sequences by capturing
the inherent structure and patterns of natural lan-
guage. An autoregressive language model (LLM), on
the other hand, predicts the next token in a sequence
based on the previous tokens. The main goal is to train
a model that improves the likelihood of text data.

Consider a text sequence represented as
(s1,82,...,87), where s, denotes the token at po-
sition ¢. The probability of predicting w, considering
the previous context (sy,s2,...,5—1) is denoted by
P(s¢|s1,52,...,51). The typical objective function in
this case is to minimize the cross entropy loss, i.e., to
maximize the conditional probability associated with
a given text sequence, Eq (1).

1 T
LLMZ ?Z—IOgP(St’S],SQ,...,Stfl) (1)
=1
Some of the well-known applications of au-
toregressive language models are: text generation,
translation, code auto- completion, question-
answering.

Architectures. Currently, the known LLMs are
based on the transformer (Vaswani et al., 2023)
architecture and different variants of self-attention
mechanisms. There are three known architectures:
encoder only, encoder-decoder and decoder only. The
models we experiment with in this paper fall into
the decoder-only architecture class, which uses only
the decoder component of the traditional transformer
architecture. In contrast to the encoder-decoder
configuration, which contains both an encoder and a
decoder, the decoder-only architecture focuses solely
on the decoding process. It generates the tokens
sequentially, taking into account the previous tokens
in the sequence. This approach has proven itself for
tasks such as text generation, as it eliminates the need
for an explicit encoding phase. It is also suitable for
our use case in which the chatbot receives a context,
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a user task, and has to generate a response in the form
of a text.

Embeddings. The text representation must be con-
verted to a sequence of floating point numbers to be
useful for training LLMs with transformers. This rep-
resentation is called embedding. It involves moving
a sequence of N words into a space of ®RV*P, where
D is the dimension used to embed each word. Intu-
itively, the goal is to give each word a fluent repre-
sentation such that the distance or angle between two
similar words is small and large when the semantics
of the words are different.

We briefly mention some other concepts used
along Section 5. Prompt Engineering is a technique
used to control the responses of Large Language
Models (LLMs) by formulating specific statements or
questions to elicit the desired results from the model.
As shown in the literature, providing examples in a
specific order and selecting the content for the prompt
is important for the quality of the results (Marvin
etal., 2024). Retrieval Augmented Generation (RAG),
is a method that extends the capabilities of LLMs by
incorporating knowledge from external sources, gen-
erally outside the training data used by the LLM. This
helps to improve the accuracy and credibility of the
generated content and avoid hallucinations. (Zhao
et al., 2024). agents refer to entities that can think,
plan and act individually when prompted with a query
by querying the LLM. The original problem is split
into smaller parts, some of which are solved using
tools or functions, which are interfaces provided by
the backends of the system. In this way, the LLM
is able to access external functionalities and provide
better quality answers, again avoiding hallucinations.
Fine-Tuning. The LLM models are trained in a
series of steps: a) preparing a training corpus of
data, b) pre-training the LLM, c) fine-tuning the
model using specific data or tasks. Since our work
reuses the Phi-3 models, we start with step c) and
use general supervised fine-tuning (SFT). Here, the
baseline LLM obtained after steps a) and b) is further
trained using a dataset of (instruction, output) pairs.
This process of data set acquisition and fine-tuning is
explained in detail in Section 5.5.

Motivation for Fine-Tuning. The efficiency of
LLMs can be significantly improved by using
domain-specific datasets (OpenAl et al., 2024) for ap-
plications that require a combination of general and
domain-specific language as well as the understand-
ing of technical terms. The efficiency of smaller fine-
tuned models and their performance after fine-tuning
is also described in the literature, and two main cases



are of interest for our work.

a) Training of models for code generation from gen-
eral language models, (Roziere et al., 2024), (Li
et al., 2023)

b) Fine-tuning of models for interaction with ex-
ternal agents and tools (Schick, 2023), (Schick,
2023), (Patil et al., 2023) on different data sets
and use cases.

Our methods follow these two themes in fine-
tuning the foundation LLM to achieve the proposed
goals. The former is used by the framework to make
the LLM aware of static content of a game that can be
presented in a textual format (e.g. manuals, guides,
Youtube transcripts, etc.), while the latter trains the
LLM to invoke functionalities exposed by the game
developer in a decoupled way. Sections 5.3 and 5.5
present the technical details.

4 FRAMEWORK OVERVIEW

Assistant Features. After discussions with the game
developers, we have set up some concrete use cases
where an assistant can be used in the game either in
physical form (NPC character) or without one (narra-
tive character). Note that the implementation of the
proposed framework is not limited to the feature list,
but that its architecture and components have been de-
veloped with generality in mind.

1. Question Answering.

This category is about situations where the user
needs help or support. Two subcategories have
been identified:

* Context-related situations during a game situa-
tion: e.g. How can I defend myself efficiently
against this fast attacker? - during a football
match.

* General questions that are in a loaded manual
and do not depend on the game: e.g. In this
UI window, where do I find the ammo upgrade?,
”Which buttons do I have to press for a chip shot
to trick the goalkeeper?”.

2. Explicit actions requests.
These are requests from the user to the game wiz-
ard to perform various actions. Typical use cases
are: (a) requesting hints or solutions to solve puz-
zles in contextual situations, (b) requesting a com-
panion NPC (in this case the physical assistant) to
show a path to a destination that the user has diffi-
culty reaching, (c) helping to eliminate an enemy
character, or even (d) changing settings to improve
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performance (e.g. rendering options) or volume
options without going through menus.

3. Actions derived through sentiment analysis This
category includes cases where the user requests or
responds to a change in settings but does not spec-
ify exactly what they want. For example, the user
could simply say by voice: This opponent is too
hard to defeat/too easy. In this case, the inten-
tion is not clearly defined, but a sentiment analysis
module tries to understand it and transmit it as in-
put to the assistant to then take appropriate action.
Another use case that is required from an indus-
try perspective is to capture automatically detected
defects or problems. For example, if a visual arti-
fact or incorrect physics simulation is displayed in
the current state of a game and the user vocalizes
this, a quick capture of memory dumps and screen-
shots can be grabbed and sent to the developers as
an open issue.

Input. The player can enter a command for the
assistant via voice or text chat, Figure 1. In the case
of a voice message, it is first converted into text
using the OpenAl Whisper-tiny speech-to-text model
(Radford et al., 2022). The GameAssistant then uses
both the PlayerState information (e.g. the user’s
current situation as represented and exported by the
game) and the data provided by the game (e.g. the
current context the user is in, available environments,
static information such as manuals or user guides,
etc.) to analyze and answer the user’s questions.
The extracted data is used for the LLM within the
GameAssistant component to provide a more targeted
response, either in the form of a message or an
action or a change in game state. Section 5 provides
details on the implementation of these interactions
and components. To increase the generality of the
interaction between the GameAssistant, the user’s
state (PlayerState) and the game data, the framework
keeps the communication as decoupled as possible
by using interfaces.

Base Language Model. One of the main criteria in
selecting a base model for further fine-tuning was the
required computing resources and latency in respond-
ing to requests, taking into account the available end-
user hardware. With these considerations in mind, we
opted for Phi-3 (Abdin et al., 2024), a model with
3.8B (billion) parameters. In particular, we opted for
the version with token windows of up to 4096 tokens
instead of the 128K version, as it fulfils the goals
of the assistance function while being cost-efficient.
A detailed comparison to motivate the choice is pre-
sented in Section 6.
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Figure 1: For an overview of the interaction between the components when the user, who is in a certain state during a game,
sends a message either verbally or via text. The first step in the pipeline is to convert this message into a text representation
and then pass it on to the GameAssistant framework, which uses NLP techniques to extract information from both the game
and the user’s state and then react or perform actions depending on the situation.

S ARCHITECTURE AND
IMPLEMENTATION

The architecture and components are designed to use
a plugin pattern. This allows the integration of higher
capacity models or other fine-tuning methods, as well
as the ability to enable or disable different functional-
ities and components depending on the requirements
of specific use cases. This approach corresponds to a
principle of software engineering known as separation
of concerns, which we want to take into account when
developing the framework. Figure 2 illustrates the in-
teraction between the system and its components dur-
ing a user conversation. The LangChain® APIs are
used to establish connections between the component
interfaces, monitor the conversation and manage the
message flow.

5.1 Conversation Handling

Ateach time ¢, a conversation history H, is kept so that
the assistant is able to respond in the context of previ-
ously requested messages. When a new user message
Q isrecognized, representing a request such as a ques-
tion, an action request or a response from the user, the
first step is to ask the LLM model to create a stan-
dalone request that contains both the history and the
new user’s request aggregated in a single prompt. In
the figure, a concrete example is given by the element
Q.. In this step, the ability of LLMs to summarize
long texts is used. If the input text is longer than the
4096 token limit, only the last part of the conversation
is kept within this limit. Our experiments have shown
that in a conversational environment, it is beneficial to
store a limited number of the last conversational mes-
sages and forget what the context of the discussion
was for more than the last 10 messages. To obtain
O, a summary request is made to LLM via a prompt
template as specified in Listing 1.

3https://www.langchain.com/
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I [INST]Rephrase the following conversation and subsequent
request so that it is a stand-alone question, in
its original language.

2 Conversation:

3 {conversation_H _var}

4 Follow-up request:

5 {request_-Q-var}

6 Stand-alone request:

7 [/INST]

Listing 1: The prompt template used to generate a
standalone query Qg from the ongoing discussion H and
the new user’s query Q. The variables enclosed in curly
brackets are used to populate the prompt with specific
instances. label

5.2 Retrieval Augmented Generation
(RAG)

To summarize and extract content from the game and
the user’s current state, the framework uses Retrieval
Augmented Generation (RAG). Figure 3 shows the
detailed architecture of the RAG component, which
was first shown in Figure 2. The data potentially
queried at runtime is divided into two parts:

e A static part - it represents data that does not
change during a game depending on user actions,
e.g. manuals, instructions, environment and item
descriptions, etc.

* A dynamic part - data that is constantly changing,
in our case represented by the PlayerState and the
current context of the game.

The static part can be represented in any text for-
mat (PDF, Word documents, etc.), Youtube video
transcripts (a commonly used resource in the field
of game development), formatted data sets (in CSV,
SQL, JSON files, etc.). These are processed offline
with the Langchain API, i.e. not during the run-
time of a game, by splitting them into text sections,
embedding them and then indexing them in a vector
database.

For the dynamic part, which is constantly chang-
ing, a general interface is needed that allows the de-
velopers of a game to share the information for the
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Figure 2: The conversational chat system implemented in the proposed method and its associated components. The flow is
represented by the blue arrows. The three main steps (the green boxes) are used to aggregate the conversation flow, retrieve
internally relevant stored data, and then obtain the final response after the safeguard component approves the results. The
optional step is used by the LLM to interact with the registered tools on the deployed platform.

RAG. The reason for this is that each game has a dif-
ferent context of information (e.g., in a shooter game
it could be information about weapons and locations,
while in a football game it could be about statistics
of the current game, the morale and energy status of
the players, etc.). To represent the information from a
game in a generic form, the framework uses the Jinja*
template format, inspired by the way LLMs use the
same method to adapt different types of datasets to
text representation in the process of training or fine-
tuning (Roziere et al., 2024), (Touvron et al., 2023),
(Gallotta et al., 2024).

The conversion of the text representation into a
vector database for embedding is done using the Faiss
(Douze et al., 2024), (Johnson et al., 2019) which is a
state-of-the-art indexing and retrieval method widely
used in the construction of real-time assistants based
on LLMs. The vector database is divided into two
parts, as the static one, VectorStoregqic, does not
change at all during the runtime of a game, while the
dynamic one, VectorStore ynamic, is constantly chang-
ing and updated at each V Store,4..

For a new query Q., both stores are checked,
and the best K results based on the similarity met-
ric are returned by Faiss. However, a threshold
Trac is used for this similarity to filter the results
and have finer control over the quality of the out-
put results. The extracted information is used to
help the LLM give a better quality response and
avoid hallucinations as much as possible. For each
query/prompt, the information is fed into the template
variable CONTEXT VAR, as shown in Listing 2, line
16.

“https://jinja.palletsprojects.com/en/3.0.x

5.3 Tools and Interaction with the
Backend Systems

The framework uses the ReACT agents (Yao et al.,
2023) from the Langchain API, with fine-tuning of
the LLM as described in Section 5.5. This allows our
project to integrate state-of-the-art methods that han-
dle the interaction between the user, the LLM and the
system processes (in our case a game) in a decoupled
way. The concepts are known in the literature under
the terms Agents, and Tools, or Functions, (Yao et al.,
2023), (Schick, 2023), (Patil et al., 2023). In short,
ReACT is an Al agent based only on the language
model that goes through a cycle of Thought-Action-
Observation in which it tries to decompose the prob-
lem into easier-to-solve sub-problems. At the end,
when it has enough knowledge, it will respond. An
example from the game prototype is shown in Listing
2. Any developer can reuse the same template for the
prompt and add their own customized set of functions
in the variable TOOLS_VAR, line 15. The available
functions can be defined in a JSON format, line 1.
When the user (or the ReACT agent itself) makes a
query, line 19, the descriptions of the tools are intu-
itively correlated with the query by the LLM based
on its training. If a strong similarity is detected, an
attempt is made to extract the parameters and return
the function call in order to obtain either an internal
response or a final response for the user. To achieve
this goal, the Phi-3 base model had to be fine-tuned,
as shown in Figure 4.

I TOOLS_VAR=
2
{"name’ : ’show_pathto_destination' ,
"description’: ’When the user requests to go to a
certain position or location in the game, extract
it and use as parameter to the function’,

AW

5 "parameter’: {
6 "type’: ’object’,
7 'properties’: {
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Retrieval Augmented Generation (RAG)

Static Game
information

Chunk 1
Split into chunks of text Chunk N
Chunk 2

PDF docs

Youtube transcripts

Formatted data: sql,
pandas, csv, etc

Player state

Game current state

Create embeedings for Embeddings

each data pieces

Template to expose
information as text

Information
database

VectorStoregiatic ~ | Output:
Top )

K results

- content as
VectorStoreaymamic )| text.
Score >T'qg

Get stored content based on similarity score to Qc

[ Contextual request QC ]

J

Figure 3: The pipeline for creating the RAG support for both the static data of the game (gray blocks and black arrows
flowing), as well as for the dynamic state (red colored flow). The upper part represents the indexing process. The lower part
represents the flow of the database query when a new query arrives.

8 "location’: {
9 "type’: ‘string’,
10 "description’: ’The position, location, area,
or object name to go'’,
'required’: True}}}}

1

N

3

4 <s><|system|>

5 You are a helpful assistant in a video with access to
the following functions: {TOOLS.-VAR}. Use them
only when necessary.

16 You can also use the following information in your

answer: {CONTEXT_VAR}.

18 < |user| >
19 Can youshowmethe pathtotheweapons shop where I canbuythe Sword withlevel 10?

20 <|end|>

21 <|assistant|>

22 Thought: To solve this query, I first need to find the
location of the level 10 sword. I will use the
search_manual tool.

23 Action: search.manual

24 Action Input: {’input':'sword level 10}

25 Observation: Sword level 10 is powerful...[omitted text
]... it can be found in Weapon Shop Mountain for
10 coins and for free under the rock near the
waterfall.

26 Thought: I have the answer now, it’s in Weapon Shop
Mountain. I will call a function that shows the
path.

27 RAction: show_path_to_destination

28 Action Input: {'location’: 'WeaponShopMountain'}

29 Response: Here it is.<|end|>

Listing 2: An example where a user needs to find a path to

a specific item and the response of the GameAssistantL.LM

in ReACT style. Highlighted are the The descriptions of the

tools are defined in the TOOLS_VAR variable (for space
reasons, only the path finding tool is shown). The relevant
information in the current state is extracted with RAG and
fed into the CONTEXT_VAR variable. In this example,
the ReACT agent tries to find the answer in the internal
manual by calling the search_manual function, and when
it has found the answer, it displays the final answer with
show_path_to_destination. In the game, this displays a

travel path in 3D to a specific location, as in Figure 5.
5.4 Safeguarding Interactions

This system component, shown in Figure 2, serves
two main purposes:

(a) Ensuring dialogue compliance: It ensures that in-
teractions between users and chatbots adhere to
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various rules, such as gender neutrality and po-
liteness. A comprehensive classification of these
rules can be found in the work of (Inan et al.,
2023).

(b) Secure interaction with user requests and tools:
The component guarantees secure interactions
when users make requests or use tools (e.g. when
writing or executing code). If an unsafe response
or request is detected, prompt engineering in-
structs the model to change the original output ac-
cordingly. By integrating these two aspects, the
language learning model (LLM) can usually gen-
erate a safe response in one or more attempts.

In our approach, we first investigated the integra-
tion of Llama Guard (Inan et al., 2023), an LLM se-
curity model developed specifically for this use case.
Llama Guard also provides a taxonomy of security
threats. When prompted, the model first determines
whether the response is secure or not. If it is deemed
unsafe, it provides details about the specific unsafe
element. Considering the computational overhead
of loading a 7B model, our approach also includes
packages from the Natural Language Toolkit (NLTK)
(Bauer et al., 2020). These packages use traditional
NLP techniques to account for different security clas-
sifications in prompts. There is a compromise be-
tween the two solutions: The Llama Guard provides
more precise results without requiring a local taxon-
omy of elements, while the NLTK packages are fast
and memory efficient on the request side.

5.5 Datasets Construction and
fine-tuning

The full flow of the processes that collect the datasets
and fine-tune the Phi-3 model on them is shown in
Figure 4. The purpose is to fine-tune the model to the
three categories of use cases mentioned in Section 4.



There are two types of datasets that are required for
fine-tuning the base model:

* Data sets for the category Question Answering
(from manuals, guides or video transcripts).

* Records for (explicit or implicit) action requests
related to the state of the game.

The former is obtained directly from the static data
content indexed by the RAG process, Figure 3. We
denote this with Dy ysic.

The second area requires more attention in order
to avoid wasting resources. With this in mind, we
first start with a set of human annotated datasets (au-
thors and collaborators) of possible questions, Qitials
as shown in Listing 3. This set contains 15 question
templates, where the variables between curly brackets
are placeholders that must be filled, e.g. the variable
SETOFOBJECTS in line 1, while the square brack-
ets are optional context variables for different situa-
tions. In the example, there are three types of con-
texts: a) a general one, line 1, b) a situation where
complex logic is required to proceed and the user
might need help or hints, line 2, and c¢) and object in-
formation in specific situations, line 3. There are tem-
plates where a context is optional, like a), and those
where the LLM cannot understand the question with-
out a previous context, like cases b) and c). These
contexts could intuitively correspond to the content
retrieved by RAG in Listing 2, line 16. One idea to
further automate this collection process is to use RAG
to annotate more examples.

Qinitial =

Can you show me the path to the {SETOFOBJECTS}? [
CONTEXT_G]

3 How can I solve this puzzle, can you show me?{CONTEXT_P}

4 What weapon should I get to defeat this opponent? {

CONTEXT_O}

)

6 }

TeacherPrompt :

8 You must create {N} variants for each of these:

9 Q_{initial}

10 Instructions:

Il You can vary the language and/or replace the variables
in curly braces and square brackets with the
following:

12 SETOFOBJECTS={Teleporter, Weapons Shop,...}

13 CONTEXT_P={Player is in the waterfall, near the elevator
pooolf

14 CONTEXT_O={Guardian near the temple,...}

15 The variables in curly brackets must be filled with one
of the specified options, the others are optional.
Do not use any other contexts or options outside
the specified text.

Listing 3: Examples from the initial dataset Q;;; and the
prompt used to vary the content with the teacher model
GPlfhe GPT4 model is considered as a teacher, and
we collect a dataset for instruction tuning using the
TeacherPrompt and the method of (Peng et al., 2023).
We obtain a dataset Q,ug where the model was asked
to create 30 variations for each template, resulting in a
total of 450 questions. Since GPT4 is trained on func-
tion calls, we query it to generate function calls using
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the tool description and Q,ug as the user prompt, as
shown in Listing 2. Of these, 314 were actually useful
after being evaluated by the game. We refer to this set
as Dyyg. Finally, the dataset D = Qjiriar U Quug 18 used
for fine-tuning the model using standard command
fine-tuning and cross-entropy loss (Hui and Belkin,
2020).

VectorStoresatic Ly Dpatic

'
1 —
] q

: D=DyUD, Instruction GameAsslstantLLM'
1

fine-tuning
GPT4 and Y

Y — ) S | -
Qinitial Teacher Prompt aug | Phi-3 base
1 model

Figure 4: The pipeline for extracting the datasets and fine-
tuning the Phi-3 (3.8B) base model using both static and
possibly contextual actions requests.

6 EVALUATION

6.1 Setup

Demo Application. The decision to use a plugin
on the UES engine was made to ensure a clear sep-
aration of responsibilities and minimal dependen-
cies between the application and the proposed frame-
work. During development and testing, Flask https://
flask.palletsprojects.com/en/2.2.x was used to quickly
switch between different models and parts used for
training or inference, etc. Throughout the evaluation
phase, the models were deployed locally using UES’s
Neural Network Engine (NNE) plugin. This model
was able to run the two models using the ONNX?> for-
mat. Using this decoupled format allows the models
to run on other similar solutions, e.g., Unity®. A snap-
shot from the game can be seen in Figure. 5.

Choosing the Foundation LLLM Version. In this
study, we evaluated several small models in the
range of 2B-7B, including Llama2-7B (Touvron et al.,
2023), Gemma 2B (Team et al., 2024) and Phi-3
(3.8B) (Abdin et al., 2024). The decision on which
LLM to choose as the basis for further fine-tuning
was mainly constrained by the resources consumed
and the inference speed. With the currently available
hardware, we only need to consider models that can
fulfil the runtime expectations on the end-user hard-
ware. Since most games are already pushing GPUs
to the limit with their rendering systems, another lim-
itation is to only use CPUs in comparison. There-
fore, we evaluate the memory requirements and words
per second generated by the LLMs on an entry-level
AMD Ryzen 7700 CPU that is limited to using only 4

>https://onnx.ai/
Shttps://unity.com/products/sentis
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Figure 5: A snapshot from the demo application in which
the user has an ongoing conversation with the assistant
(NPC). The user asks which item he needs to defend an en-
emy and where he can find it. After the conversation, the
assistant suggests the item needed and shows a path to its
location (the red arrows in the picture).

cores for inference. The results are shown in Table 1.
Although the literature generally evaluates the metric
tokens per second instead of words per second, we be-
lieve that this is a more natural choice for comparison
in the current use case.

Table 1: Inference speed measured in words per second for
an AMD Ryzen 7 CPU limited to 4 cores and memory re-
quirements (RAM, not GPU memory). 8-bit quantization
was used for all models.

Model Llama2B-7B | Gemma2B | Phi-3

Metric

Words/s 1.65 7.9 3.61
RAM 8.5GB 2.7GB 4.6GB

Voice-to-Text is processed with OpenAl Whisper-
tiny(Radford et al., 2022) with dynamic quantiza-
tion. On average, the inference time on the same
CPU was 1.6 seconds for a short message of 9-10
seconds. However, for a voice prompt, this time is
always added to the overall latency of the assistant’s
response, as it must finish the input before querying
the LLM.

Fine Tuning Parameters. The fine-tuning process
was performed over 10 epochs with LoRA (Low-
Rank Adaptation) (Hu et al., 2022). All layers were
fine-tuned with rank r = 16, a. = 32, dropout = 0.05.
The default quantization parameters with b float — 16
were used to maximize the training runtime. Nucleus
sampling with p = 0.95 and temperature = 0.8 was
used for decoding. However, during test time, the
temperature was set to zero to obtain deterministic re-
sults that are predictable and repeatable, a decision
inspired by previous research (Siddiq et al., 2022),
(Alshahwan et al., 2024). The AdamW optimizer
(Loshchilov and Hutter, 2019) is used, with B1 = 0.9
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and B2 = 0.95, with a learning rate y=3 x 1073, and a
decay rate of 0.01. In the first training phase, a warm-
up of 200 steps was used. Each batch had a size of 32,
with 4 gradient accumulation steps and different con-
text window sizes within the boundaries of the base
model.

6.2 Quantitative Evaluation

In this perspective, it is of interest to see how the fine-
tuned version of the GameAssistantLLM model per-
forms compared to the base version Phi-3. The BLEU
metric is used for evaluation similar to other related
work ((Touvron et al., 2023)). The score ranges from
0 to 100, with a higher score indicating a stronger
match between the generated response and the refer-
ence. The evaluation is based on samples from the
data set D and the averaging of the results over 100
trials. The averaged results show a score of 79% for
the fine-tuned model and 34% for the base model.
Looking at the different results, it is concluded that
the results of the base model were determined by the
general knowledge that an LLM may possess and that
it can hallucinate around topics even if it does not
know the answer, e.g. telling the user to use differ-
ent roads and modes of transportation when asked to
point the way to different objects.
Other parameters.

6.3 Qualitative Evaluation

The experiments and statistical results for the
qualitative evaluation of our framework and demo
come from a group of 46 people (volunteers from
the quality assurance departments of our industry
partners and students from University of Bucharest)
who played the demo for two hours and tried to
navigate through the application by asking the NPCs
questions on various topics. During our qualitative
review, we focused on three research topics.

RQ1. Do the application or NPCs give correct an-
swers, i.e. do they seem to understand the questions
or requests asked and answer in the right context?

To measure this, each of the 46 participants
played the demo for two hours and were instructed
to send between 80 and 100 messages to the ap-
plication/NPCs, using almost identical amounts of
voice and text input. After each response from the
application, they were asked whether the NPCs or
the application had responded correctly. Table 2
shows participants’ averaged feedback for both types
of input, categorized by message. The results show
that users are generally satisfied with the feedback,



with lower ratings for voice input as expected, as an
additional layer is required to convert voice to text
and performance naturally degrades along the way.
The scores are expectedly lower for requests where
actions need to be performed through function calls
and inference. One way to improve this is to create a
much larger dataset for fine-tuning. Also, the implicit
actions are more difficult to understand as the intent
expressed by the user sometimes does not match the
understanding of the language model.

Table 2: Qualitative evaluation of the correctness of feed-
back depending on the type of input and the message cate-

gory.

Input Category
type
Explicit Implicit
Question actions actions
answering | requests (sentiment
analysis)
Text 91% 87% 74%
Voice | 88% 85% 71%

RQ2. Do users believe that speaking to the assistant
is generally beneficial? (e.g. a better understanding of
the physics of the simulation environment, removal of
obstacles, help with difficult tasks or actions, etc.).
To assess this, each participant was given an
answer template at the end of the test to help
them answer this question. Overall, 39 out of 46
participants felt that the conversations supported
them during the demo, while 7 wished they could
discover the application and procedures themselves.
The following key findings emerge from the user
feedback: explicit calls to action was the most useful
and helped them to cope with difficult parts of the
demo. On the other hand, they did not use the support
for implicit actions as they did not find it very useful
and felt rather forced to use it. However, we think
that improving its quality (Table 2) might change
this opinion in the future. Another interesting fact is
that all respondents wanted the physical form of an
assistant, i.e. the use of an NPC in our demo case.

RQ3. Is the method suitable for use in real time? The
choice of models was carefully evaluated with knowl-
edge of the general user requirements, and the results
were discussed in Section 6.1. On the same hardware,
we evaluated the following two metrics by averaging
over all user requests:

* The average latency to the first response from the
assistant was ~ 1 second for text input and ~ 2.5s
for voice input.
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* Response throughput: ~ 3.5 words per second, af-
ter the first word response.

Participants were asked to rate how they felt about
the latency of the assistant’s response. 41 out of
46 participants received both text and voice feedback
from the assistant, while the remaining 5 participants
preferred to use voice input and found it too slow.
After evaluating the post-process surveys, we are not
sure whether users were actually disappointed by a
mixture of: a) the additional delay time in processing
voice (~ 1.5s) and b) the performance degradation in
the quality of responses when voice input is used as
an intermediate step before conversion to text.

7 CONCLUSION AND FUTURE
WORK

The paper presented a framework for integrating the
capabilities of large language models to create assis-
tants during the runtime of a game. In our demo,
the assistant could take the form of a physical 3D
character (NPC) or a virtual background character
(Narrative). Different models and architectures were
evaluated and methods were selected by combining
the general user requirements in terms of computa-
tional power requirements, latency and quality of re-
sults. Improvement methods such as synthetic dataset
generation using a teacher LLM model, fine-tuning,
retrieval-augmented generation (RAG) and conversa-
tional security were also discussed. The evaluation
was both quantitative and qualitative, i.e. based on
feedback from real users through surveys and inter-
action. Although the methods were implemented as
an open-source Unreal Engine plugin and applied to
a game demo, we believe that the scope could be ex-
tended to other real-time simulation applications. As
future work, we plan to collaborate more with indus-
try to apply the framework in larger projects and more
use cases, and potentially evaluate the methods on a
large scale.

ACKNOWLEDGMENTS

This research was supported by European Union’s
Horizon Europe research and innovation programme
under grant agreement no. 101070455, project DYN-
ABIC. We also thank our game development industry
partners from Amber, Ubisoft, and Electronic Arts for
their feedback.

303



ICSOFT 2024 - 19th International Conference on Software Technologies

REFERENCES

Abdin, M. I et al. (2024). Phi-3 technical report: A highly
capable language model locally on your phone. Tech-
nical Report MSR-TR-2024-12, Microsoft.

Allouch, M., Azaria, A., and Azoulay, R. (2021). Conver-
sational agents: Goals, technologies, vision and chal-
lenges. Sensors, 21(24).

Alshahwan, N. et al. (2024). Automated unit test improve-
ment using large language models at meta. 32nd ACM
Symposium on the Foundations of Software Engineer-
ing (FSE 24).

Bauer, T. et al. (2020). # metoomaastricht: Building
a chatbot to assist survivors of sexual harassment.
In Machine Learning and Knowledge Discovery in
Databases: International Workshops of ECML PKDD
2019, pages 503-521. Springer.

Cascella, M. et al. (2024). The breakthrough of large lan-
guage models release for medical applications: 1-year
timeline and perspectives. Journal of Medical Sys-
tems, 48(22).

Cox, S. R. and Ooi, W. T. (2024). Conversational interac-
tions with npcs in llm-driven gaming: Guidelines from
a content analysis of player feedback. In Chatbot Re-
search and Design, pages 167-184, Cham. Springer
Nature Switzerland.

Douze, M. et al. (2024). The faiss li-
brary. arXiv  preprint  arXiv:2401.08281,
https://github.com/facebookresearch/faiss.

Gallotta, R. et al. (2024). Large language models and
games: A survey and roadmap. arXiv preprint
arXiv:2402.18659. Submitted on 28 Feb 2024.

Guan, Y., Wang, D., Chu, Z., Wang, S., Ni, F,, Song, R.,
Li, L., Gu, J., and Zhuang, C. (2023). Intelligent vir-
tual assistants with 1lm-based process automation. In
https://arxiv.org/abs/2312.06677.

Hu, E. J. et al. (2022). LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Huber, S. E. et al. (2024). Leveraging the potential of
large language models in education through playful
and game-based learning. Educational Psychology
Review, 36(25):1-17.

Hui, L. and Belkin, M. (2020). Evaluation of neural archi-
tectures trained with square loss vs cross-entropy in
classification tasks. arXiv preprint arXiv:2006.07322.

Inan, H., Upasani, et al. (2023). Llama guard: Llm-
based input-output safeguard for human-ai conversa-
tions. arXiv preprint arXiv:2312.06674.

Isaza-Giraldo, A. et al. (2024). Prompt-gaming: A pilot
study on llm-evaluating agent in a meaningful energy
game. In Extended Abstracts of the CHI Conference
on Human Factors in Computing Systems (CHI EA
'24), page 12. ACM.

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale
similarity search with GPUs. IEEE Transactions on
Big Data, 7(3):535-547.

Li, R. et al. (2023). Starcoder: may the source be with you!
In https://arxiv.org/abs/2305.06161.

304

Loshchilov, I. and Hutter, F. (2019). Decoupled weight de-
cay regularization. In 7th International Conference on
Learning Representations, ICLR 2019.

Marvin, G., Hellen, N., Jjingo, D., and Nakatumba-
Nabende, J. (2024). Prompt engineering in large
language models. In Jacob, I. J., Piramuthu, S.,
and Falkowski-Gilski, P., editors, Data Intelligence
and Cognitive Informatics, pages 387402, Singa-
pore. Springer Nature Singapore.

Munday, P. (2017). Duolingo. gamified learning through
translation. Journal of Spanish Language Teaching,
4(2):194-198.

OpenAl et al. (2024). Gpt-4 technical report. In
https://arxiv.org/abs/2303.08774.

Paduraru, C., Cernat, M., and Stefanescu, A. (2023). Con-
versational agents for simulation applications and
video games. In Proceedings of the 18th International
Conference on Software Technologies, ICSOFT 2023,
pages 27-36. SCITEPRESS.

Patil, S. G. et al. (2023). Gorilla: Large language model
connected with massive apis. CoRR, abs/2305.15334.

Peng, B. et al. (2023). Instruction tuning with gpt-4. arXiv
preprint arXiv:2304.03277.

Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey,
C., and Sutskever, 1. (2022). Robust speech recogni-
tion via large-scale weak supervision.

Roziere, B. et al. (2024). Code llama: Open foundation
models for code. In https://arxiv.org/abs/2307.09288.

Schick, T. a. (2023). Toolformer: Language models can
teach themselves to use tools. In Advances in Neural
Information Processing Systems, volume 36.

Siddiq, M. L. et al. (2022). An empirical study of code
smells in transformer-based code generation tech-
niques. In 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipula-
tion (SCAM).

Team, G. et al. (2024). Gemma: Open models
based on gemini research and technology. In
https://arxiv.org/abs/2403.08295.

Touvron, H. et al. (2023). Llama 2: Open
foundation and fine-tuned chat models. In
https://arxiv.org/abs/2307.09288.

Vaswani, A. et al. (2023). Attention is all you need.

Wankhade, M., Rao, A., and Kulkarni, C. (2022). A sur-
vey on sentiment analysis methods, applications, and
challenges. Artificial Intelligence Review, 55:1-50.

Yao, S. et al. (2023). React: Synergizing reasoning and act-
ing in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Yunanto, A. A. et al. (2019). English education game using
non-player character based on natural language pro-
cessing. Procedia Computer Science, 161:502-508.
The Fifth Information Systems International Confer-
ence, 23-24 July 2019, Surabaya, Indonesia.

Zhao, P. et al. (2024). Retrieval-augmented generation for
ai-generated content: A survey.



