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Abstract: A lot of research in federated learning is ongoing ever since it was proposed. Federated learning allows col-
laborative learning among distributed clients without sharing their raw data to a central aggregator (if it is
present) or to other clients in a peer to peer architecture. However, each client participating in the federation
shares their model information learned from their data with other clients participating in the FL process, or
with the central aggregator. This sharing of information, however, makes this approach vulnerable to vari-
ous attacks, including data reconstruction attacks. Our research specifically focuses on Principal Component
Analysis (PCA), as it is a widely used dimensionality technique. For performing PCA in a federated setting,
distributed clients share local eigenvectors computed from their respective data with the aggregator, which
then combines and returns global eigenvectors. Previous studies on attacks against PCA have demonstrated
that revealing eigenvectors can lead to membership inference and, when coupled with knowledge of data dis-
tribution, result in data reconstruction attacks. Consequently, our objective in this work is to augment privacy
in eigenvectors while sustaining their utility. To obtain protected eigenvectors, we use k-anonymity, and gen-
erative networks. Through our experimentation, we did a complete privacy, and utility analysis of original
and protected eigenvectors. For utility analysis, we apply HIERARCHICAL CLUSTERING, RANDOM FOREST

regressor, and RANDOM FOREST classifier on the protected, and original eigenvectors. We got interesting
results, when we applied HIERARCHICAL CLUSTERING on the original, and protected datasets, and eigenvec-
tors. The height at which the clusters are merged declined from 250 to 150 for original, and synthetic version
of CALIFORNIA-HOUSING data, respectively. For the k-anonymous version of CALIFORNIA-HOUSING data,
the height lies between 150, and 250. To evaluate the privacy risks of the federated PCA system, we act as an
attacker, and conduct a data reconstruction attack.

1 INTRODUCTION

The demand for Artificial Intelligence (AI) tools that
align with legal regulations such as GDPR (Voigt
and Von dem Bussche, 2017) and individual privacy
preferences has become crucial. Federated Learn-
ing (FL), introduced by McMahan et al. (McMahan
et al., 2017), addresses this need by enabling col-
laborative model learning among distributed clients
without transmitting raw data. Despite its initial por-
trayal as a privacy-preserving solution, it is now ac-
knowledged that FL is susceptible to various attacks
on data, models, and communication links (Zhu et al.,
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2019). Therefore, developing FL frameworks, which
also preserves privacy is our main goal. FL was ini-
tially proposed for deep learning models. But, now it
has been applied to many classical machine learning
algorithms as well. Our study focuses on FL algo-
rithms (Hartebrodt and Röttger, 2022) that perform
PCA (Principal Component Analysis). To perform
data analysis of high dimensional data, we need di-
mensionality reduction techniques, and PCA is one
of the most popular dimensionality reduction tech-
niques. Through our research, we want to show
that FL-PCA algorithms, particularly those that share
information like local eigenvectors computed from
each distributed client’s data, lack privacy, as shar-
ing eigenvectors can reveal the members of train-
ing data, as shown in the paper (Zari et al., 2022),
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which showed a Membership Inference attack (MIA)
against PCA. When this knowledge is combined with
the knowledge of data distribution, the attacker can
estimate the original data of clients participating in
the FL process, as shown in the paper (Kwatra and
Torra, 2023), which showed a data reconstruction at-
tack against PCA. Hence, our objective is to introduce
protection in the eigenvectors and evaluate the util-
ity and privacy of protected eigenvectors compared
to the original eigenvectors. Our proposed privacy-
preserving approach can also be applied to real-life
scenarios. For example, consider there are hospi-
tals located at different locations, which have high-
dimensional data of RNA sequences, and their aim
is to identify genes associated with certain conditions
or diseases. Hence, hospitals can apply privacy pro-
tected FL-PCA algorithms to facilitate the collabora-
tion while preserving privacy, and also saving the
computation resources by removing the overhead of
collecting all the data at one location. Finally, we list
the contributions of this paper as follows.

• Introduction of privacy measures in the the com-
putation of eigenvectors by computing them on
private data. For creating private data, we use k-
anonymity, and synthetic data generated by Con-
ditional Tabular Generative Adversarial Network
(CTGAN).

• Evaluation of the privacy of the system by act-
ing as an intruder/attacker, who has some back-
ground knowledge, such as knowledge of some
top eigenvectors, and the knowledge of data dis-
tribution, and then conduct a data reconstruction
attack. We compare the case when the attacker
is aware of some top private (k-anonymous, and
synthetic) eigenvectors with the case when the at-
tacker is aware of some top original eigenvectors.

• Evaluation of utility through RANDOM FOREST,
and dendrogram analysis on both original and pro-
tected (k-anonymous, and synthetic) eigenvectors.

The subsequent sections of this paper are orga-
nized as follows: Section 2 reviews essential con-
cepts, including PCA, FL-PCA algorithms, member-
ship inference attack, and data reconstruction at-
tack. Section 3 elaborates on our contributions, where
we provide a comprehensive analysis of utility and
privacy using a RANDOM FOREST, HIERARCHICAL
CLUSTERING, and data reconstruction attack. This
analysis is relevant and adaptable to centralized and
Federated Learning (FL) scenarios. Section 4 outlines
the datasets and attack settings. Section 5 presents
and discusses the results, and Section 6 concludes the
paper with insights into future directions.

2 BACKGROUND AND RELATED
WORK

In this section, we explain all the relevant background
theories needed to understand our proposed analysis.

2.1 Principal Component Analysis

Given a set D = {xn ∈ Rd : n = 1 : N }, where N is
the number of samples, and xn is a sample in Rd , PCA
aims to determine a p dimensional subspace that ap-
proximates each sample xn (Abdi and Williams, 2010)
in a way that the maximum variance of the data is re-
tained. The formulation of PCA is as follows:

min
πp

E =
1
N

N

∑
n=1

En =
1
N

N

∑
n=1

1
N
||xn −πpxn||22 (1)

In the above expression, πp represents the projection
matrix onto the p-dimensional subspace. E is the
reconstruction error or the mean squared error, rep-
resenting the average squared distance between the
original sample xn and its projection πpxn. The solu-
tion to this optimization problem (1) can be obtained
through the Singular Value Decomposition (SVD)
of a sample covariance matrix Σcov of the standard-
ized data matrix D . The SVD of Σcov is given by
∑

d
i=1 λivivT

i , where λ1 ≥ λ2 . . . λd are the eigenval-
ues, and v1, v2 . . . vd are the corresponding eigenvec-
tors of Σcov, respectively. Let Vp denote the matrix
whose columns are the top p eigenvectors. The op-
timal projection matrix is then defined as πp=VpV T

p ,
and it provides the solution to the PCA optimization
problem in (1). This projection matrix πp allows for
the representation of the data in a lower-dimensional
subspace while minimizing the reconstruction error.

2.2 Federated PCA Algorithms

There are many existing algorithms to perform PCA
in a federated setting. In FL-PCA algorithms, the
clients compute the reduced subspace from its data,
and sends it to the aggregator. The aggregator does
it job by aggregating those reduced subspaces, and
sends the aggregated subspace back to the clients. In
this section, we discuss some of the FL-PCA algo-
rithms in detail, with the aim of analysing their pri-
vacy breaches, and further improving their privacy
protection while maintaining their utility. PCA is an
unsupervised machine learning method. There is also
a supervised version of FL-PCA in this recent work
(Briguglio et al., 2023). Nevertheless, in this pa-
per, our focus is on unsupervised FL-PCA algorithms.
In (Hartebrodt and Röttger, 2022) Hartebrodt et al.
present a plethora of state-of-the-art approaches for
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FL-PCA. They analyze both iterative and single-shot
approaches for horizontally partitioned data.

Regarding the first approach, Federated Subspace
Iteration (FSI) (Pathak and Raj, 2011) is one of
the state-of-the-art methods. FSI uses an exact ap-
proach for privacy-preserving computation of eigen-
vector matrices. Clients and aggregator exchange and
compute local and global matrices iteratively. With
a large number of iterations, the complete covariance
matrices can be recovered, which is a privacy breach,
as discussed in Section 2.3.

In terms of single-shot approaches, they require
the computation of local subspaces at the client side,
and the server aggregates the local subspaces received
from the distributed clients, and sends the global sub-
space back to the clients, such as P-COV, AP-COV,
AP-STACK (Liang et al., 2014). In AP-COV and
AP-STACK, the clients perform SVD on its data and
sends the local eigenvectors to the aggregator. In AP-
COV, the aggregator aggregates the local eigenvectors
by doing element wise addition, while in AP-STACK,
the aggregator aggregates the local eigenvectors by
stacking the local eigenvectors vertically. In the study
by Hartebrodt et al., it was empirically proven that
both methodologies exhibit comparable performance.
For this reason, for our investigation, we will concen-
trate on AP-COV. This choice is also influenced by
the presence of the parameter k, which constrains the
sharing of local eigenvectors. In a broader context,
sharing eigenvectors poses risks of revealing member-
ship information and data, as discussed in Section 2.3.

2.3 Privacy Attacks Against PCA

This Section briefly present two of the most popular
state-of-the-art privacy attacks against PCA-based ap-
proaches.

Membership Inference Attack(MIA) was first
published in 2017 (Shokri et al., 2017). It is a pri-
vacy attack against Machine Learning models, with
the objective of determining the membership of a
record to the original training dataset. In the case
of MIA for PCA-based approaches, Zari et al.(Zari
et al., 2022) defined a variant of MIA in which it is
assumed that the adversary intercepts certain princi-
pal components (eigenvectors) from PCA-transformed
data, which may contain sensitive information. The
adversary employs these intercepted eigenvectors to
calculate the reconstruction error for a given target
sample, representing the disparity between the orig-
inal and projected samples. The main insight is that
samples from the training set will show a lower re-
construction error compared to those outside the train-
ing set. This highlights the importance of protecting

eigenvectors in privacy-preserving scenarios to miti-
gate such membership inference risks.

Data Reconstruction Attack Recently, Kwatra et
al. (Kwatra and Torra, 2023) empirically proved that
in the context of PCA-based approaches, also a data
reconstruction attack is possible. The reconstruction
attack tries to approximate as closely as possible the
original data and to perform it requires the knowledge
of leaked eigenvectors. This attack generates syn-
thetic data, exploiting a Conditional Tabular Genera-
tive Adversarial Networks (CTGAN) (Xu et al., 2019)
and obtaining: X̂ = Xanonymized or synthesizedVV T . At
this point, the efficacy of the attack is assessed by
computing the reconstruction accuracy, which quanti-
fies the proximity between the estimated data and the
original data. Kwatra et al. showed the reconstruc-
tion attack, and did not mention about the utility of
protected eigenvectors. Hence, in this work we also
do the utility analysis of the protected eigenvectors,
and aim to provide a complete picture for the util-
ity and privacy. In this work, we experiment with k-
anonymous (Samarati, 2001; Samarati and Sweeney,
1998; Sweeney, 2002) eigenvectors, where we com-
pute eigenvectors from k-anonymous data using Mon-
drian.

3 PRIVACY-PRESERVING
COMPUTATION OF PCA

In this paper we consider the FL setting similar to the
one outlined in AP-COV algorithm, where each client
participating to the federation, sends to the aggregator
the local eigenvectors and the server will aggregate
the local contribution to compute an approximation
of the hypothetical global covariance matrix. Given
the privacy issues discussed above, we propose a pre-
liminary study which analyzes the effect of applying a
mitigation strategy on the client data before the eigen-
vector computation. Our methodology, illustrated in
Figure 1, involves the use of Mondrian k-anonymity
transformation (LeFevre et al., 2006) and a synthetic
data generation by CTGAN at the client level.

3.1 Threat Model and Attack
Methodology

In our attack setting, the client generates anonymous
or synthetic data, one at a time. We denote the k-
anonymous data as Danonymized , and the synthetic data
as Dsyn. Danonymized can be created by choosing the
value of parameter k according to the privacy require-
ments of client, and the synthetic data can be created
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using different percentages (10%, 30%, 50%, 70%,
100%) of samples from the original data D , using
CTGAN. The client then computes the eigenvectors
Ep of the synthetic data or the anonymized data, and
sends these to a trusted party, which is an aggrega-
tor in FL. We assume that the attacker A intercepts
some or all of the eigenvectors computed by eaves-
dropping on the communication channel. To do a suc-
cessful data reconstruction attack, the attacker needs
two things, eigenvectors, and the knowledge about the
distribution of the data. For the distribution of the
data, we assume that the attacker has access either to
the synthetic data, which is created using some per-
centage of samples from the original data or to the
k-anonymous data, which is a noisy version of the
original data. Both, k-anonymous, and synthetic data
have reduced re-identification risks, as compared to
the original data, which means they are not personal
data anymore. So, GDPR does not applies. Hence,
the attacker can utilize them to conduct the attack.

In Table 1, we list the possible combinations of the
assumptions for the attacker to conduct a data recon-
struction attack. E.g., the attacker may have access to
the original eigenvectors, and the synthetic data cre-
ated using 10% of the samples from the original data,
where those 10% samples can be selected either using
random sampling or stratified sampling.

After conducting the attack, it is needed to mea-
sure the efficacy of the attack to quantify the privacy
breach. We evaluate the success of our attack as fol-
lows.

Definition 1. Suppose R is the reconstructed data,
which is the estimator for the original data O. Let δ

be a parameter for reconstruction error, which quan-
tifies the acceptable deviation. The reconstruction ac-
curacy, R.A. is defined as follows:

R.A.=
#
{

R̂i, j : |Oi, j −Ri, j|, i = 1, ...n, j = 1, ...,d ≤ δ

}
n×d

(2)

where # means count, and n is the number of
records. Hence, R.A. expresses the percentage of re-
constructed entries for which the relative errors are
within δ.

4 DATA AND EXPERIMENTAL
SETTINGS

We conducted experiments on CALIFORNIA-
HOUSING, and COD-RNA datasets. The
CALIFORNIA-HOUSING dataset has 20,640 records,
and the COD-RNA dataset has 59,535 records. Both

Table 1: Cases for the privacy evaluation concerning data
reconstruction attack. Here, O.D. stands for Original Distri-
bution. S.S. stands for Stratified Sampling, and R.S. stands
for Random Sampling.

Eigenvectors (EVs) Data Distribution Infor-
mation

Original EVs Synthetic data from com-
plete O.D.
Synthetic data from 10%
O.D. via R.S.
Synthetic data from 10%
O.D. via S.S.

Synthetic EVs Synthetic data from the
complete O.D.
Synthetic from 10% O.D.
via R.S.
Synthetic from 10% of
O.D. via S.S.

k-anonymous EVs Used all the k-anonymous
data
Synthetic data from com-
plete k-anonymous data
Synthetic data from 10%
k-anonymous data (via
R.S. and S.S.)

datasets have 9 features. The CALIFORNIA-HOUSING
dataset is for a regression task, where the goal is to
estimate the housing prices, based on features such
as income, housing occupancy, and geographical lo-
cation attributes across various districts in California.
These features contain sensitive information. Hence,
privacy incorporation is important for data analysing.
The COD-RNA dataset is for a classification task.
For the utility analysis of CALIFORNIA-HOUSING
dataset, we use R2, also known as Coefficient of
Determination. R2 determines the proportion of
variability in the dependent variable that can be
explained by the independent variable(s) included
in the model. Mathematically, R2 is expressed as
follows.

R2 = 1− ∑
n
i=1 (yi − ŷi)

2

∑
n
i=1 (yi − ȳi)

2 (3)

Both, CALIFORNIA-HOUSING and COD-RNA are nu-
merical datasets. Therefore, as part of the pre-
processing, we implement standardization using the
scikit-learn library in Python. In our evaluation,
we utilize a 10-fold cross validation, and report mean
± standard deviation for R2 in Table 2.

5 RESULTS AND DISCUSSION

We explain our main experimental findings as fol-
lows.
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Figure 1: Our Methodology.
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(a) R.A. in general PCA
where we reach close to the
original data on increasing
no. of PCs.
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(b) R.A. b/w original and
reconstructed data when
20-anonymous eigenvectors
and 20-anonymous data is
known.
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(c) R.A. b/w original and
reconstructed data when
10-anonymous eigenvectors
and 10% data is randomly
drawn from 10-anonymous
data is known.
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(d) R.A. b/w anonymous
and reconstructed data when
eigenvectors computed from
the original data, and syn-
thetic data generated using
10% samples from the orig-
inal data via random sam-
pling.
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(e) R.A. b/w original and
reconstructed data when
eigenvectors computed
from the original data, and
synthetic data generated
using 10% samples from the
original data via stratified
sampling.
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(f) R.A. b/w original and
reconstructed data when
eigenvectors computed
from the original data, and
synthetic data generated
using 10% samples from
the original data via random
sampling.

Figure 2: Reconstruction Accuracy (R.A.) for California housing dataset with varied assumptions by the attacker.

• From the results in Table 2, we found out that
as we increase the number of principal compo-
nents, utility improves, and as the value of k in-
creases upto 20, the utility is almost constant,
which shows that the utility of data can be pre-

served while enhancing data privacy. This is be-
cause the machine learning models aim to avoid
overfitting.

• We show reconstruction attack results in the
Figure 2, which shows that the reconstructed
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(a) Original data. (b) Synthetic data created using CTGAN. (c) 30-anonymous data.

Figure 3: Dendrograms showing the HIERARCHICAL CLUSTERING for the CALIFORNIA-HOUSING data.

(a) Original data. (b) Synthetic data. (c) 30-anonymous data.

Figure 4: Dendrograms showing the HIERARCHICAL CLUSTERING for the cod-rna data.

(a) Original Top 3 projection scores. (b) Synthetic Top 3 projection scores. (c) 10-anonymous Top 3 projection scores.

Figure 5: HIERARCHICAL CLUSTERING for California-housing’s Top 3 projection scores.

(a) Original Top-3 projection scores. (b) Synthetic Top-3 projection scores. (c) 10-anonymous Top-3 projection scores.

Figure 6: Dendrograms showing results of HIERARCHICAL CLUSTERING for cod-rna’s Top 3 projection scores.
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Table 2: Utility analysis via regression task on
CALIFORNIA-HOUSING dataset. O-PCA refers to Original
PCA, S-PCA is Synthetic PCA and A-PCA is Anonymized PCA
with different values for k.

PCA # PCs R2

Baseline all 0.781 ± 0.019
O-PCA 3 0.148 ± 0.034
S-PCA 3 0.134 ± 0.030

A-PCA (k=5) 3 0.135 ± 0.030
A-PCA (k=10) 3 0.147 ± 0.035
A-PCA (k=15) 3 0.134 ± 0.030
A-PCA (k=20) 3 0.134 ± 0.030

O-PCA 4 0.455 ± 0.038
S-PCA 4 0.445 ± 0.034

A-PCA (k=5) 4 0.444 ± 0.034
A-PCA (k=10) 4 0.454 ± 0.038
A-PCA (k=15) 4 0.445 ± 0.034
A-PCA (k=20) 4 0.445 ± 0.035

O-PCA 5 0.631 ± 0.034
S-PCA 5 0.624 ± 0.029

A-PCA (k=5) 5 0.624 ± 0.029
A-PCA (k=10) 5 0.629 ± 0.035
A-PCA (k=15) 5 0.624 ± 0.029
A-PCA (k=20) 5 0.623 ± 0.029

O-PCA 6 0.697 ± 0.029
S-PCA 6 0.689 ± 0.003

A-PCA (k=5) 6 0.690 ± 0.032
A-PCA (k=10) 6 0.696 ± 0.030
A-PCA (k=15) 6 0.689 ± 0.032
A-PCA (k=20) 6 0.689 ± 0.032

dataset is farthest from the original dataset in
the case when eigenvectors are computed on the
k-anonymous data in comparison with the case
when eigenvectors are computed on the synthetic
dataset. Using the anonymous eigenvectors, we
can reach closer to the anonymous data, but not
to the original data, which means that anonymous
eigenvectors provide protection concerning the re-
construction attack. Hence, we observe that the
efficacy of attacker in inferring the data of users
in CALIFORNIA-HOUSING dataset declines, if we
incorporate privacy protection mechanism in our
data before the data analysis.

• We show the dendrograms obtained after em-
ploying HIERARCHICAL CLUSTERING on the
CALIFORNIA-HOUSING, and COD-RNA datasets
in Figure 3. The dendrograms of the original data,
and the anonymous data are quite similar for both
the datasets. For the synthetic data, the dendro-
grams look quite different, in the sense that the Y-
axis in figures, which shows the height at which
the clusters are merged is declined in synthetic
data, which shows that the clustering information

is somewhat lost in the synthetic datasets. In k-
anonymous datasets, as the value of k increases,
the clusters become compact.

• We show the dendrograms for the original and
protected projection scores in Figures 5, and 6.
We got the similar trends as we got when we ap-
plied HIERARCHICAL CLUSTERING on the origi-
nal, anonymous, and the synthetic datasets. The
reason for the different clustering results for the
synthetic datasets/eigenvectors from the original
datasets/eigenvectors is that the synthetic data
generation algorithm, which is CTGAN in our case
reproduce data points within a fixed range, which
leads to loss of information concerning the actual
number of clusters.

• We found out that datasets, and eigenvectors pro-
tected using k-anonymity produces more accu-
rate clustering results in comparison with the syn-
thetic datasets created using CTGAN. For syn-
thetic datasets, the size of clusters becomes com-
pact in comparison with the original, and the
k-anonymized dataset. Hence, generative algo-
rithms can be utilised, if we intend to protect the
outliers in the data. But, it should be avoided if we
want better clustering results, especially for criti-
cal applications.

• In conclusion, eigenvectors computed from k-
anonymous data provide better privacy-utility
tradeoff in comparison with the eigenvectors com-
puted from synthetic data, and eigenvectors with
no privacy, in our attack, and utility analysis setup.

6 CONCLUSION AND FUTURE
DIRECTIONS

This paper focuses on FL-PCA algorithms, in which
each client participating in the FL framework shares
the information of eigenvectors with the central ag-
gregator, which can leak the data of clients. Hence,
we explore Privacy Preserving Principal Component
Analysis (PP-PCA). We propose that each client
creates a protected database using k-anonymity, and
generative networks, one at a time. This protected
database is basically k-anonymous, and synthetic
database, respectively. On the protected database,
each client computes private eigenvectors. We eval-
uate the utility and privacy of private eigenvectors
against their original counterparts. We employed re-
gression, classification and HIERARCHICAL CLUS-
TERING for utility assessment, demonstrating strong
performance of anonymized data and eigenvectors.
Privacy evaluation involves a data reconstruction at-
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tack on PCA, showcasing the attacker’s success in re-
constructing the original databases. Our results reveal
that anonymized eigenvectors maintain good utility
compared to the original ones. Differential Privacy
(DP) is also utilised in FL-PCA (Grammenos et al.,
2020). In future, we will also consider DP to pro-
tect eigenvectors. As, in this work, we quantify in-
dividual privacy leakage arising from sharing of local
eigenvectors, which were derived from the data of in-
dividual clients. So, our future investigation will ex-
tend to privacy leakage post-aggregation. In the case,
when global eigenvectors are compromised, there is
a potential risk of the attacker to deduce the records
of specific individuals, particularly those who are in-
fluencing the aggregation step predominantly. Hence,
our future research aims to focus on the performance
of PP-PCA when aggregated or global eigenvectors are
compromised in a FL scenario.
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and the Knut and Alice Wallenberg foundation; the
EU NextGenerationEU programme under the funding
schemes PNRR-PE-AI FAIR (Future Artificial Intel-
ligence Research); PNRR-“SoBigData.it - Strength-
ening the Italian RI for Social Mining and Big Data
Analytics” - Prot. IR0000013; the EU – Horizon 2020
Program under the scheme “INFRAIA-01-2018-2019
– Integrating Activities for Advanced Communities”
(G.A. n.871042) “SoBigData++: European Integrated
Infrastructure for Social Mining and Big Data Analyt-
ics” (http://www.sobigdata.eu).

REFERENCES

Abdi, H. and Williams, L. J. (2010). Principal component
analysis. Wiley interdisciplinary reviews: computa-
tional statistics, 2(4):433–459.

Briguglio, W., Yousef, W. A., Traoré, I., and Mamun, M.
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