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Abstract: The massive demand for connected and smart applications and the growth of high-speed communication tech-
nologies like 5G have led to a surge in the use of Android and Internet-of-Things (IoT) devices. The popularity
of such devices has resulted in a huge number of malware attacks and infections being inflicted upon these de-
vices. Cyber criminals relentlessly target the Android and IoT devices by developing new strains of malware.
To defend against these malware attacks, researchers have developed different types of malware detection
and categorization techniques. In this paper, we investigate the applicability and effectiveness of different
transformer-based models, which use self-attention to learn global dependencies and contextual information,
for malware classification on two platforms: Android and IoT. We consider two types of inputs for malware
analysis - images and sequences. For image-based analysis, we convert Android APKs and IoT traffic into
images that reflect their structural and behavioral features. We compare various convolutional neural network
(CNN) based models with and without transformer layers, and a pure transformer model that directly processes
the images. For sequence-based analysis, we extract the API call sequences from Android APKs, and apply
a transformer model to encode and classify them. We also explore the effect of pretraining and embedding
initialization on the transformer models. Our experiments demonstrate the advantages and limitations of using
transformer-based models for malware classification, and provide insights into the training strategies and chal-
lenges of these models. To the best of our knowledge, this is the first work that systematically explores and
compares different transformer-based models for malware classification on both image and sequence inputs.

1 INTRODUCTION

Malicious applications, or malware, pose a serious
threat to the security and privacy of various comput-
ing systems, as they can damage, steal, or spy on the
data and resources of the host devices. The Internet
plays a key role in the dissemination and infection
of malware across different types of device, such as
desktops, laptops, servers, mobile phones, tablets, and
Internet-of-Things (IoT) devices. These devices have
diverse resource constraints, such as memory, bat-
tery, and processing power. Mobile phones, tablets,
and IoT devices have become essential for our daily
activities and communications. However, they also
face a surge of malware attacks, with more than 5.04
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billion incidents reported in 2022 as per 2022 Son-
icWall Cyber Threat Report1. 2023 experienced a
worldwide increase in malware volume by 2% with
a massive surge of 87% in IoT malware2. Moreover,
in 2023, 6.06 billion malware attacks were recorded
alone by researchers associated with SonicWall Cap-
ture Labs3. Android, being one of the most popular
mobile operating systems, attracts a large number of
malware developers and distributors. To combat this
challenge, various malware detection and classifica-
tion techniques have been proposed and implemented

1https://www.sonicwall.com/resources/white-papers/
2022-sonicwall-cyber-threat-report/

2https://www.sonicwall.com/news/2023-sonicwall-cyb
er-threat-report-casts-new-light-on-shifting-front-lines-t
hreat-actor-behavior/

3https://www.sonicwall.com/medialibrary/en/white-p
aper/2024-cyber-threat-report.pdf

858
Joshi, A., Pasupuleti, D., Nischith, P., Sutaone, S., Ray, S., Dey, S. and Mitra, B.
Malware Analysis Using Transformer Based Models: An Empirical Study.
DOI: 10.5220/0012855100003767
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 858-865
ISBN: 978-989-758-709-2; ISSN: 2184-7711
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.



in the literature.
Attention mechanism is a powerful technique that

allows a model to dynamically weigh the relevance
of different parts of the input and output sequences,
and to process them in parallel without relying on re-
current or convolutional operations. This enables the
model to capture long-range dependencies and con-
textual information in data, which are essential for
many natural language processing and computer vi-
sion tasks. Transformer architecture, which is based
on attention mechanism, has achieved remarkable re-
sults and efficiency in these domains, surpassing pre-
vious state-of-the-art models (Vaswani et al., 2023).
However, the applications of attention and trans-
former are not limited to natural language and com-
puter vision. Recently, they have also been explored
in various malware analysis and classification tasks,
where they have shown promising performance and
robustness against malware obfuscation and evasion
techniques. Malware analysis and classification is a
challenging problem that requires the model to un-
derstand the semantic and syntactic features of mali-
cious code as well as the behavioral and contextual
aspects of its execution. Attention and transformer
can potentially address these challenges by learning
high-level representations of malware from different
sources of data, such as binary, assembly, API calls,
or network traffic (Seneviratne et al., 2022), (Jo et al.,
2023), (Ravi et al., 2023).

Malware classification is a complex task that re-
quires the ability to capture the complex and diverse
behaviors of ever-evolving malicious programs. In re-
cent years, transformer-based models have been in-
creasingly used for malware categorization. In this
paper, we investigate the applicability and effective-
ness of different transformer-based models for mal-
ware classification on two platforms: Android and
IoT. Our inputs are primarily of two types: images
and sequences. Image-based malware analysis in-
volves conversion of the Android APKs and IoT traf-
fic traces into images. Such images capture the
morphological and behavioral features of the corre-
sponding data. We then compare the performance of
various convolutional neural network (CNN) based
models, such as ResNet-50 (He et al., 2015), Mo-
bilenetV2 (Sandler et al., 2018), and LCNN (Yuan
et al., 2022), with and without transformer layers on
top of them. We also evaluate the effect of a pure
transformer model, namely the Visual Transformer
(ViT), which directly processes the malware images
without any CNN layers. For sequence-based mal-
ware analysis, the API call sequences are extracted
from Android APKs. These sequences represent the
interactions between the apps and the system. We

then apply a transformer model, namely BERT (De-
vlin et al., 2018), to encode and classify the API call
sequences. Our experiments present a detailed perfor-
mance comparison of malware classification strate-
gies using transformer-based models. Moreover, var-
ious aspects of the training strategies and the chal-
lenges of these models are also highlighted. To the
best of our knowledge, this is the first work that ex-
plores the capabilities of different transformer-based
models for malware classification on both image and
sequence inputs.

The rest of the paper is organized as follows. Sec-
tion 2 provides details of how Android applications
can be converted into images and sequences and the
manner in which images can be obtained from IoT
traffic traces. Section 3 outlines the models consid-
ered and the experimental setup. In Section 4, we
present the details of the datasets that we have used
for our experimental analysis. Section 5 presents the
detailed experimental results and the corresponding
analysis providing insights into the relative perfor-
mances of the different models. Finally, Section 6
concludes the paper.

2 PRELIMINARIES

This section describes the approaches for generat-
ing images and sequences from Android applications
(APKs), which are the main inputs for our malware
detection and analysis models. Additionally, we illus-
trate how we transform IoT traffic data into images,
which can capture the patterns and anomalies of the
network activities of the different connected devices.
Android Application to Image: One way to visu-
alize the internal structure of a binary file is to con-
vert it into an array of 8-bit unsigned integers, where
each array element represents a byte value from 0 to
255. This array can then be displayed as a grayscale
image, where darker pixels correspond to lower byte
values and lighter pixels represent higher byte values.
This image representation of a binary file is called a
byteplot and it reveals the patterns and features that
reflect the file’s content and format. Byteplot was first
proposed by Conti et al. (Conti et al., 2008) as a tool
to analyze and compare binary files. Later, Nataraj
et al. (Nataraj et al., 2011) used byteplot to transform
malware samples into images and classify them using
image processing techniques. In this work, we use
byteplot to convert APK files into images and extract
features from them for malware classification.
Android Application to Sequences: To obtain se-
quences of API invocations from an APK, we first
need to extract the function call graph (FCG) of the
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APK. FCG represents the possible paths of execution
among the methods in the APK, and the API invoca-
tions are the calls to the methods provided by the An-
droid framework or other libraries. We then apply dif-
ferent graph traversal algorithms on the FCG to gen-
erate sequences that capture the relative order of API
invocations as proposed in (Cannarile et al., 2022) in
different scenarios. These sequences are called API
sequences and they can be used to characterize the
behavior and functionality of the APK.
IoT Traffic Data to Image: One of the most com-
mon sources of IoT malware analysis is pcap files,
which are a standard format for storing network pack-
ets captured by packet sniffing tools. These tools can
monitor network traffic on a specific interface, either
in real-time or based on predefined filters and set-
tings. Each packet contains information like the IP
addresses for source and destination, protocols, port
numbers, and payload data. The packets are the ba-
sic units of data transmission over a network. By
analysing pcap files, we can examine the communi-
cation patterns, anomalies, and potentially malicious
activities within IoT networks, as malware often ex-
hibits distinctive network behaviour, like using un-
usual protocols, generating high traffic volume, or
connecting to suspicious IP addresses. We can also
use pcap files for behavioural analysis of IoT devices
based on how they interact with the network and other
devices using flow or session data. A flow is a se-
quence of packets that have common attributes, such
as the source and destination IP or port pairs and the
protocol type (e.g., TCP, UDP). A session is a bi-
directional flow, i.e., the source and destination IP or
port pairs are interchangeable. To generate images
from pcap files, we use SplitCap, an open-source tool
that can split a pcap file into multiple pcap files based
on a given criterion, such as splitting per flow or per
session. We also use SplitCap to select whether to ex-
tract only the application layer data (the 7th layer in
the OSI model) or the whole packet. After splitting,
we either trim the files or pad the files with 0s until
they reach a uniform size that can be reshaped into an
NxN image, for example, 784 bytes for a 28x28 im-
age. We then read the files byte-wise and append the
values to an array, where each value represents the
pixel intensity. We reshape the array to the desired
size, resulting in an NxN image.

3 METHODOLOGIES

To explore the potential and performance of different
transformer-based models for malware classification,
we conduct experiments using Android APKs and IoT

traffic traces. We choose data corresponding to the
Android and IoT platforms because they are widely
used and are vulnerable to various types of malware
attacks. We design two types of inputs for our mod-
els: images and sequences, which capture different
aspects of malware features.

For image-based malware analysis, we transform
the raw bytes of Android APKs and IoT traffic
into grayscale images (as described in Section 2).
We adopt several CNN based models, which are
commonly used for image recognition tasks, and
enhance them with transformer layers, which can
learn global dependencies and attention among im-
age patches. Specifically, we compare the follow-
ing models: ResNet-50 (He et al., 2015), which uses
residual connections and deep layers to achieve high
accuracy; MobilenetV2 (Sandler et al., 2018), which
uses depth wise separable convolutions and inverted
residuals to reduce the computational cost and model
size; and LCNN (Yuan et al., 2022), which uses lo-
cal convolutional layers to capture local features and
reduce the number of parameters. We also append a
transformer encoder and a classification head on top
of these CNN models, and examine how the trans-
former layers affect the classification performance
and the model complexity. Furthermore, we evaluate
a pure transformer model, namely Vision Transformer
(ViT) (Dosovitskiy et al., 2020). ViT does not em-
ploy any CNN layers and directly processes the image
patches. This model relies on the transformer encoder
and the classification head to encode and classify the
malware images.

API call sequences imbibe the high-level interac-
tions between Android apps and the system. Such
sequences can be inspected to classify malware. To
analyze malware based on their API call sequences,
we employ a transformer model architecture, namely
BERT (Devlin et al., 2018), that can encode and
comprehend natural language sequences. We train
BERT from scratch on our malware dataset, and use
its output embeddings and a classification head to
distinguish the API call sequences. We experiment
with two methods for initializing the embeddings of
the APIs. In one method, we assign a unique 128-
dimensional embedding to each API in the dataset,
and learn them using a linear projection layer. In
another method, we use a Skip-gram model similar
to Word2Vec (Mikolov et al., 2013) to generate vec-
tor representations for the API calls. The Skip-gram
model is adapted from natural language processing
to learn embeddings from large corpora of Android
APKs. It processes pairs of API calls that occur
within the same method, and assigns a unique index
to each API call in the vocabulary. The model iterates
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through batches of API-API pairs from both benign
and malicious APKs during training.

4 DATASET

In this section, we describe the datasets that we have
considered for our experiments.
AndroZoo: The AndroZoo dataset was first pub-
lished in (Allix et al., 2016). Since then, the dataset
has been continuously augmented. In its current
form, AndroZoo consists of 24,470,628 APKs
collected from various sources, including the Google
Play app market and is possibly the largest malware
dataset. These APKs are analyzed by numerous
anti-virus tools to identify malicious and benign
contents. Androzoo uses a vt detection (Allix et al.,
2016) mechanism which is the number of virus total
engines that detected an APK as malicious. For the
set of APKs that we have considered, we have used
a criterion that an APK is considered as malicious
if it is identified as malicious by a minimum of 5
engines, otherwise the APK is considered as benign.
We randomly chose APKs such that the total size
of the APKs is not more than 150 GB. Thus, we
considered 1,23,880 malicious APKs and 3,23,095
benign APKs.
MALNET-IMAGE and MALNET-IMAGE TINY
Datasets: The MALNET-IMAGE dataset (Freitas
et al., 2022) consists of 12,62,024 images from APKs
in the Androzoo dataset, which spans 47 types and
696 families of malware. The MALNET-IMAGE
Tiny dataset is a reduced version of MALNET-
IMAGE that removes the four most common
malware types in the original dataset. In the rest of
the paper, we will refer to MALNET-IMAGE-Tiny
dataset as MALNET-Tiny. Freitas et al. generated
images from APKs by extracting the DEX file from
each APK and converting it into a byte sequence,
which correspond to a 1D array of pixel values
between 0 and 255. They then converted the 1D array
into a 2D array using linear plotting with the size
parameters recommended in (Nataraj et al., 2011),
thereby creating a grayscale image. They resized the
image to 256x256 and assigned a colour to each byte
based on its position in the DEX file by adopting the
approach in (Gennissen and Blasco, 2017).
Drebin: Drebin (Arp et al., 2014) is a public dataset
for Android malware family classification, consisting
of 1,29,013 applications collected from various
sources over two years (August 2010 - October
2012). Among them, 5,560 are malicious, belonging
to 179 families, some of which are still active in the
market. The malicious applications have been identi-

fied by at least two of the ten anti-virus scanners used.
The dataset is highly imbalanced in terms of malware
family distribution. Therefore, we focus on the top
20 malware families for our experiments. Drebin
is one of the largest and most widely used datasets
for Android malware classification and provides a
valuable resource for testing and developing malware
identification algorithms.
CICAndMal2017: CICAndMal2017 (Lashkari
et al., 2018) is a collection of Android applications
with different security labels, obtained from various
sources. The dataset consists of 5,491 Android appli-
cations, out of which 426 applications are malware
and 5,065 applications are benign. The malware
samples belong to four categories: Ransomware,
Adware, SMS Malware and Scareware.
IoT dataset (USTC-TFC2016): The USTC-
TFC2016 dataset (Wang et al., 2017) is a collection
of 20 raw network traffic capture files (pcap) that
represent 20 different classes of traffic. Out of
the 20 classes, 10 are malicious and the remaining
10 are benign. The malicious traffic classes were
obtained from public sources by Stratosphere Re-
search Laboratory, and these classes include various
types of malware and botnet activities. Due to the
large sizes of some of the malicious traffic files,
only segments of them were used for the analysis,
while smaller files that were generated by the same
applications were merged together. The benign traffic
classes were generated by IXIA BPS, a professional
network traffic simulation tool that can emulate
realistic network scenarios. The benign traffic classes
cover eight common application categories, such as
MySQL, Facetime, and others and reflect typical
network usage patterns.

5 RESULTS AND DISCUSSION

Table 1 shows the performance of different image-
based models for Android malware classification on
four datasets: MALNET-Tiny (Freitas et al., 2022),
Drebin Top 10, Drebin Top 20 (Arp et al., 2014), and
CICAndMal2017 (Lashkari et al., 2018). The met-
rics used to evaluate the models are Accuracy (Acc)
and F1-score (F1-s), which is the harmonic mean of
precision and recall. The models include ResNet-
50 (He et al., 2015), MobileNetV2 (Sandler et al.,
2018), and LCNN (0.25) (Yuan et al., 2022). These
are all convolutional neural networks (CNNs) with
different architectures and complexities. The table
also shows the variants of these models with one or
two transformer layers (1T or 2T) attached after the
CNN feature extraction. The rationale behind us-

Malware Analysis Using Transformer Based Models: An Empirical Study

861



Table 1: Results for Android Malware Classification using CNN and Transformer based Models on 4 datasets: MALNET-Tiny
(43 malware classes), Drebin Top 10 (top 10 malware classes), Drebin Top 20 (top 20 malware classes), and CICAndMal2017
(1 benign, and 4 malware classes). Acc represents Accuracy and F1-s denotes F1-score. NA values indicate that pretaining
has been done on the respective dataset. For a dataset, values in boldface correspond to the best performing model. The gray
colored cells represent the best performance across a model and its two variations for a specific dataset.

MALNET-Tiny Drebin Top 10 Drebin Top 20 CICAndMal2017Model Acc F1-s Acc F1-s Acc F1-s Acc F1-s
ResNet-50 70.05 70.95 90.56 90.60 86.88 86.99 75.00 75.05
ResNet-50-1T 74.23 75.48 87.95 88.64 84.84 86.10 64.21 63.94
ResNet-50-2T 72.01 72.66 89.56 89.70 80.86 82.50 60.78 61.21
MobileNetV2 74.54 75.11 87.45 87.65 84.62 85.14 69.61 69.64
MobileNetV2-1T 72.29 73.19 81.12 81.77 75.91 77.42 66.18 67.01
MobileNetV2-2T 71.30 72.72 75.78 77.00 74.73 77.03 66.18 61.80
LCNN (0.25) 70.68 71.52 90.56 90.63 84.30 86.59 77.94 78.22
LCNN (0.25)-1T 71.27 72.20 88.57 89.38 82.69 84.01 74.51 70.81
LCNN (0.25)-2T 68.91 69.76 85.22 85.51 77.63 79.93 67.64 67.85
ViT 70.77 70.26 66.83 68.06 64.19 63.66 58.33 58.30
ViT-PreMALNET-Tiny NA NA 70.65 71.23 61.74 56.99 68.89 66.27
ViT-PreMALNET NA NA 60.41 59.52 49.42 41.55 61.24 62.71

ing transformer layers is that they are expected to
capture the global dependencies and long-range in-
teractions among the image pixels. Table 1 also in-
cludes results for the visual image transformer model,
ViT (Dosovitskiy et al., 2020). ViT is the model that
uses only transformer layers for feature extraction and
classification, without any convolutional layers. Ad-
ditionally, the table shows the results for ViT mod-
els pretrained on MALNET-Tiny (model name ViT-
PreMALNET-Tiny) and MALNET (model name ViT-
PreMALNET) datasets, which are larger and more di-
verse than the target datasets. From the table, we can
observe the following:

• ResNet-50 is the best performing CNN model
on Drebin Top 10 and CICAndMal2017 datasets,
achieving the highest Accuracies and F1-scores
among all the models. However, it is outper-
formed by MobileNetV2 and LCNN (0.25) on
MALNET-Tiny dataset, and by LCNN (0.25) on
Drebin Top 20 dataset. This suggests that ResNet-
50 is more effective on datasets with fewer classes
and more balanced samples, but may suffer from
overfitting or complexity issues on datasets with
more classes and imbalanced samples.

• Adding one or two transformer layers after CNN
feature extraction generally reduces the perfor-
mance of the models on all the datasets, except for
LCNN (0.25)-1T on MALNET-Tiny dataset. This
indicates that the transformer layers may not be
beneficial for the Android malware image classi-
fication task, as they may introduce more parame-
ters, noise, or redundancy into the models. Alter-
natively, the transformer layers may require more
data or fine-tuning to adapt to the task.

• MobileNetV2 and LCNN (0.25) are the best per-
forming lightweight CNN models on the datasets.
These two models achieve comparable or bet-
ter results than ResNet-50 on MALNET-Tiny and
Drebin Top 20 datasets, and exhibit slightly lower
performance on Drebin Top 10 and CICAnd-
Mal2017 datasets. These models have fewer
parameters and lower computational cost than
ResNet-50, and may be more suitable for mobile
or resource-constrained devices.

• ViT is the worst performing model on all the
datasets, achieving the lowest accuracy and F1-
score values among all the models. This suggests
that ViT is not well suited for image-based An-
droid malware classification. The reason for this
can be because ViT may not be able to capture the
semantic or structural features of the images, or
may require more data or fine-tuning to adapt to
the task.

• Pretraining ViT on MALNET-Tiny or MALNET-
IMAGE datasets slightly improves the perfor-
mance of ViT on some of the datasets, but not
on others. For example, ViT-PreMALNET-Tiny
achieves higher accuracies and F1-scores than
ViT on Drebin Top 10 and CICAndMal2017
datasets, but lower metric values on Drebin Top
20 dataset. ViT-PreMALNET achieves higher
accuracy and F1-score than ViT on CICAnd-
Mal2017 dataset, but lower scores on Drebin Top
10 and Drebin Top 20 datasets. This indicates that
the pretraining data may not be representative or
sufficient for the target datasets, or that the trans-
fer learning may not be effective for the task.

Table 2 shows the results of using BERT to clas-
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Table 2: Results for Android Malware Classification
through API Sequence Classification using BERT on three
datasets: Androzoo (benign and malware classes), Drebin
Top 20 (top 20 malware classes) and CICAndMal2017 (4
malware classes). The upper half of the table presents re-
sults where APIs are initialized with linear projection and
the lower half shows results where APIs are initialized with
Skip-gram. Acc represents Accuracy and F1-s denotes F1-
score. For a dataset, values in boldface correspond to the
best performing model.

API initialized with Linear Projection
Dataset Acc Precision Recall F1-s

Androzoo 70.75 70.23 74.01 72.07
Drebin Top 20 69.27 02.99 03.70 03.19
CICAndMal2017 63.53 16.05 15.68 15.80

API initialized with Skip-gram
Dataset Acc Precision Recall F1-s

Androzoo 84.00 85.10 82.56 83.81
Drebin Top 20 79.42 05.56 05.65 05.52
CICAndMal2017 63.53 16.75 16.12 16.18

sify Android malware based on API sequences, with
two different ways of initializing the API embed-
dings: Linear Projection and Skip-gram. Skip-gram is
a method of learning API embeddings from the con-
text of the API corpus, which can capture the seman-
tic and syntactic similarities of the APIs. The table
reports the accuracy, precision, recall and F1-score of
the models on each dataset. The results are reported
on three datasets: Androzoo, Drebin Top 20 and CI-
CAndMal2017, which vary in size, diversity and im-
balance of malware classes. Some of the key findings
from the analysis are:

• BERT with Skip-gram consistently outperforms
BERT with linear projection on all three datasets,
achieving higher accuracy, precision, recall and
F1-score. This suggests that Skip-gram is a better
way of initializing the APIs for BERT, as it pre-
serves the semantic and syntactic information of
the APIs, which may be useful for malware clas-
sification.

• BERT with Skip-gram achieves the highest per-
formance on Androzoo, a large and balanced
dataset of benign and malicious Android applica-
tions. The model achieves an accuracy of 84.00%,
a precision of 85.10%, a recall of 82.56% and an
F1-score of 83.81%, indicating that it can effec-
tively distinguish between benign and malicious
applications based on their API sequences. This
also shows that BERT can handle long and com-
plex API sequences, as Androzoo contains appli-
cations with varying lengths and complexities of
API sequences.

• BERT with Skip-gram performs poorly on Drebin
Top 20 and CICAndMal2017, two smaller and

imbalanced datasets of Android malware sam-
ples across different malware classes. The model
achieves low accuracy, precision, recall and F1-
score on both datasets, indicating that it cannot
capture the subtle differences between different
malware classes based on their API sequences.
This may be due to the lack of sufficient train-
ing data, high class imbalance, or the high simi-
larity of API sequences among different malware
classes.

Table 3: IoT Malware classification Results on USTC-
TFC2016 dataset. Acc represents Accuracy and F1-s de-
notes F1-score. For a dataset, values in boldface correspond
to the best performing model. The gray colored cells repre-
sent the best performance across a model and its two varia-
tions for a specific dataset.

Model Acc Precision Recall F1-s
ResNet-50 99.81 99.83 99.76 99.79
ResNet-50-1T 99.67 99.24 99.71 99.45
MobileNetV2 99.79 99.69 99.70 99.69
MobileNetV2-1T 99.58 99.55 99.47 99.51
LCNN (0.25) 99.20 99.38 99.17 99.27
LCNN (0.25)-1T 98.34 97.77 97.75 97.74
ViT 82.67 76.41 72.83 72.45

Table 3 shows the performance of different im-
age classification models on the IoT dataset, USTC-
TFC2016 (Wang et al., 2017). This dataset consists of
20 traffic classes that are commonly found in the IoT
domain. The models include ResNet-50 (He et al.,
2015) MobileNetV2 (Sandler et al., 2018), LCNN
(0.25) (Yuan et al., 2022), and ViT (Dosovitskiy et al.,
2020), as well as their variants with one transformer
layer (1T) added after the convolutional feature ex-
traction. The metrics used to evaluate the models are
Accuracy, Precision, Recall, and F1-score. From Ta-
ble 3, we observe the following:

• ResNet-50 achieves the highest performance
among all the models, with an accuracy of
99.81%, a precision of 99.83%, a recall of
99.76%, and an F1-score of 99.79%. This indi-
cates that ResNet-50 is very effective at recogniz-
ing the classes in the IoT dataset, with high accu-
racy and balanced precision and recall. ResNet-
50 is a deep residual network that uses skip con-
nections to overcome the degradation problem of
deep networks. ResNet-50 has 50 layers and is
widely used for various computer vision tasks.

• Adding one transformer layer to ResNet-50
slightly degrades its performance, as shown by
ResNet-50-1T, which has an accuracy of 99.67%,
a precision of 99.24%, a recall of 99.71%, and an
F1-score of 99.45%. The transformer layer is a
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self-attention mechanism that can capture long-
range dependencies and semantic relations among
the features. However, in this case, the trans-
former layer may introduce some noise or redun-
dancy which in turn reduces the precision of the
model, while maintaining a high recall.

• MobileNetV2 is another high-performing model,
with an accuracy of 99.79%, a precision of
99.69%, a recall of 99.70%, and an F1-score of
99.69%. MobileNetV2 is a lightweight and ef-
ficient network that uses inverted residual blocks
and depth wise separable convolutions to reduce
the computational cost and parameter size. Mo-
bileNetV2 is suitable for mobile and embedded
devices as well as IoT applications.

• Similar to ResNet-50, adding one transformer
layer to MobileNetV2 also lowers its perfor-
mance, as shown by MobileNetV2-1T, which has
an accuracy of 99.58%, a precision of 99.55%, a
recall of 99.47%, and an F1-score of 99.51%. The
transformer layer may not bring much benefit to
the already compact and powerful MobileNetV2,
and may instead introduce some overhead or com-
plexity that affects the precision and recall of the
model.

• LCNN (0.25) is a low-complexity network that
uses a fraction of the parameters and operations
of standard CNNs by applying a low-rank decom-
position to the convolutional filters. LCNN (0.25)
has an accuracy of 99.20%, a precision of 99.38%,
a recall of 99.17%, and an F1-score of 99.27%.
This shows that LCNN (0.25) can achieve com-
parable performance to the other models, while
reducing the computational and memory require-
ments. LCNN (0.25) is also suitable for resource-
constrained IoT devices.

• However, adding one transformer layer to LCNN
(0.25) significantly lowers its performance, as
shown by LCNN (0.25)-1T, which has an accu-
racy of 98.34%, a precision of 97.77%, a recall of
97.75%, and an F1-score of 97.74%. The trans-
former layer may not be compatible with the low-
rank structure of LCNN (0.25), and may instead
degrade the quality and efficiency of the model.
The transformer layer may also increase the pa-
rameter size and computational cost of the model,
which defeats the purpose of using LCNN (0.25).

• ViT is a visual image transformer model that
uses only transformer layers to process the images
without any convolutional layers. ViT has an ac-
curacy of 82.67%, a precision of 76.41%, a recall
of 72.83%, and an F1-score of 72.45%. This indi-
cates that ViT performs poorly on the IoT dataset,

compared to the other models. ViT is not able to
capture the fine-grained and local features of the
IoT data, and may suffer from the low resolution
and diversity of the images. ViT may also require
more data and training to achieve optimal perfor-
mance, as it is a data-hungry and complex model.
Thus, ViT may not be suitable for IoT applications
as it has a large parameter size and computational
cost.

6 CONCLUSIONS

In this paper, we have investigated the applicability
and effectiveness of different transformer-based mod-
els for classifying malware targeting Android applica-
tions and IoT devices. We have performed two types
of malware analysis - image-based and sequence-
based. For image-based malware analysis, we have
converted Android APKs and IoT traffic into fixed
size images, and have compared various CNN archi-
tectures with and without transformer layers, and a
pure transformer model to classify the converted im-
ages. For sequence-based malware analysis, we ex-
tracted the API call sequences from Android APKs,
and applied a transformer model to encode and clas-
sify them. We have also explored the effect of pre-
training and embedding initialization on the trans-
former models.

Our experiments demonstrate the advantages and
limitations of using transformer-based models for
malware categorization, and provide insights into the
training strategies of these models. The main findings
of our study can be summarized as follows:

• For image-based malware analysis, CNN based
models in general, have outperformed the
transformer-based models on all the datasets.
ResNet-50 is the best performing CNN model on
datasets with fewer classes and more balanced
samples, while MobileNetV2 and LCNN (0.25)
are the best performing lightweight CNN mod-
els on datasets with more classes and imbalanced
samples.

• Adding transformer layers after the CNN feature
extraction generally reduces the performance of
the lightweight CNN models.

• ViT is the worst performing model on all the
datasets, and pretraining ViT on larger and more
diverse datasets slightly improves its performance
on some of the datasets, but not on others. These
results suggest that the transformer-based models
may not be beneficial or suitable for the image-
based malware analysis task, as they may intro-
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duce more parameters, noise, or redundancy to the
models, or may require more data or fine-tuning to
adapt to the task.

• For sequence-based malware analysis, BERT is an
effective model for encoding and classifying the
API call sequences extracted from Android APKs.
Initializing the API embeddings with Skip-gram,
an API2vec technique, significantly improves the
performance of BERT. These results suggest that
the Skip-gram embeddings capture more seman-
tic and syntactic information about the API se-
quences than the linear projection, and that they
help BERT to learn better representations and
classifications of the malware families. However,
the Skip-gram embeddings may fail to capture the
diversities of the API sequences across different
malware and benign families. Moreover, BERT
may need higher volume of data or more sophis-
ticated methods to achieve higher performance
on dataset containing a large number of malware
families.

Our study provides a comprehensive and system-
atic comparison of different transformer-based mod-
els for malware analysis on image and sequence in-
puts, and has revealed the strengths and weaknesses
of these models. Our study has also highlighted the
challenges and opportunities for future research on
applying transformer-based models for accurate mal-
ware analysis and related tasks.
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