
Do You Trust Your Device? Open Challenges in IoT Security Analysis

Lorenzo Binosi1, Pietro Mazzini2, Alessandro Sanna3, Michele Carminati1, Giorgio Giacinto3,
Riccardo Lazzeretti2, Stefano Zanero1, Mario Polino1, Emilio Coppa4 and Davide Maiorca3

1Politecnico of Milan, Italy
2Sapienza University, Italy

3University of Cagliari, Italy
4LUISS University, Italy

Keywords: Firmware Analysis, IoT, Security Evaluation.

Abstract: Several critical contexts, such as healthcare, smart cities, drones, transportation, and agriculture, nowadays
rely on IoT, or more in general embedded, devices that require comprehensive security analysis to ensure
their integrity before deployment. Security concerns are often related to vulnerabilities that result from inad-
equate coding or undocumented features that may create significant privacy issues for users and companies.
Current analysis methods, albeit dependent on complex tools, may lead to superficial assessments due to
compatibility issues, while authoritative entities struggle with specifying feasible firmware analysis requests
for manufacturers within operational contexts. This paper urges the scientific community to collaborate with
stakeholders—manufacturers, vendors, security analysts, and experts—to forge a cooperative model that clari-
fies manufacturer contributions and aligns analysis demands with operational constraints. Aiming at a modular
approach, this paper highlights the crucial need to refine security analysis, ensuring more precise requirements,
balanced expectations, and stronger partnerships between vendors and analysts. To achieve this, we propose a
threat model based on the feasible interactions of actors involved in the security evaluation of a device, with a
particular emphasis on the responsibilities and necessities of all entities involved.

1 INTRODUCTION

IoT devices are progressively becoming part of our
everyday lives, as they are widely used in various crit-
ical contexts, such as healthcare, smart cities, trans-
portation, agriculture, and several others (European
Cyber Security Organisation - ECSO, 2022). Conse-
quently, third-party manufacturers working on such
devices are significantly larger than in other tradi-
tional computing markets (servers, laptops, and desk-
top workstations).

This variety leads to the development of differ-
ent hardware and software platforms for devices with
the same goals, typically featuring firmware charac-
terized by various levels of complexity (depending
on the target application and the architecture). Un-
fortunately, to keep their products economically com-
petitive, manufacturers need to integrate new features
quickly. They may omit rigorous testing of their plat-
forms, thus possibly ignoring well-established soft-
ware security best practices and leaving undocu-

mented privacy-sensitive functionalities.
This aspect poses a significant security concern:

can we trust devices we did not analyze? In particu-
lar, these devices can either embed vulnerabilities that
miscreants can exploit to execute, e.g., unauthorized
code, or they can even hide privacy-breaking func-
tionalities to gather information about users. From
this respect, we can imagine two categories of ven-
dors: (i) benign vendors, who can unintentionally pro-
duce vulnerable code due to the time-the-market pres-
sure; (ii) malicious vendors, whose goal is to embed
hidden functionalities or vulnerabilities deliberately.

Unsurprisingly, analyzing such devices following
standard security evaluation methodologies that rely
on popular reverse engineering techniques is trouble-
some due to the custom platforms used by the devices,
making most state-of-the-art tools fail to provide, in
some cases, even basic information. Hence, a major
question emerges: what do we need to analyze IoT
devices effectively?

This paper considers the scenario where an institu-
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tional or industrial entity needs to perform a security
evaluation of a device before deploying it in produc-
tion. In particular, we identify two significant aspects:

• The investigation of the complex dynamics im-
pacting IoT security evaluations. In particular,
the device manufacturer may adopt anti-analyses
techniques to protect its intellectual property from
competitors and complicate the actions of exter-
nal attackers interested in exploiting the device.
However, such strategies can also make traditional
security evaluation methodologies ineffective and
could be thus seen as hostile practices by a secu-
rity evaluator. In this complex scenario, a signif-
icant research problem is what the manufacturers
could reasonably provide to permit effective se-
curity evaluations while considering their needs.
Reasoning on the minimum requirements for ef-
fective security evaluations is inevitably tied with
the design of state-of-the-art analysis tools.

• The development of novel security evaluation ap-
proaches. First, security evaluators should be
aware of the possible anti-analysis practices a
manufacturer may adopt. Hence, we need to de-
vise tools to detect the adoption of such tech-
niques. Second, assuming the partial cooperation
of a manufacturer (motivated by the economic
incentive of selling its own device), we believe
there is a need to rethink existing security eval-
uation frameworks, making them extensible with
minimal building blocks that could be reasonably
asked the manufacturer when carrying out an IoT
security evaluation.

This paper explores these two significant research
directions in more detail. More specifically, our con-
tributions are the following:

• We describe the actors involved in a security eval-
uation of a device, thus considering the vendors,
the manufacturers, the attackers, the security eval-
uator, and the relationship between them.

• We describe a general workflow to conduct a secu-
rity evaluation of a device, pinpointing some anti-
analysis techniques that could be adopted by de-
vice manufacturers and may impact the effective-
ness of the security evaluations.

• We sketch open challenges and future research di-
rections that impose significant research efforts by
the scientific community.

We believe that our work can be helpful to the sci-
entific community in orienting future research works
and inspiring new ideas to secure the IoT devices
landscape.
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Figure 1: Actors that play a role in a security evaluation of a
device. Solid edges (A and B) represent direct interactions,
while dotted edges (C, D, and E) are indirect relationships.

2 IoT SECURITY ANALYSIS:
CONTEXT

IoT, and more in general embedded devices, pose sev-
eral security concerns that historically were less per-
ceived when considering traditional systems. Indeed,
such devices may come with heavily customized
hardware and software platforms developed by dif-
ferent device manufacturers, making it quite hard
to assess their security level using standard security
methodologies and tools. In this heterogeneous land-
scape, several institutional and private entities need to
verify the security of these devices before deploying
them in potentially critical production environments.

In this section, we describe the actors that have a
direct or indirect role in this scenario, the workflow
that could be followed during the security evaluation
of the device, and the several issues that could emerge
when carrying out the evaluation.

2.1 Involved Actors

As exemplified by Figure 1, we can identify at least
four major actors with a direct or indirect role in the
security evaluation of an embedded device.
Security Evaluator. This actor is the entity in charge
of performing the security evaluation on behalf of
the device buyer. It directly interacts with the de-
vice vendor (edge A in Figure 1) and, in several cases,
can pose some requirements about the device and the
technical material (documentation, software artifacts,
etc.) needed by the evaluator to test the device. In-
directly, it also interacts with the device manufacturer
(edge E) since the device crucially depends on this ac-
tor. Finally, the security evaluator should often verify
whether the device may contain vulnerabilities (e.g.,
outdated and vulnerable libraries) that could be ex-
ploited by an external attacker (edge D).
Device Vendor. This entity commercially offers a de-
vice in the market. It directly interacts with the manu-
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facturer to obtain the device (edge B) and with the se-
curity evaluator when selling the device (edge A). Un-
fortunately, the device vendor does not always have
full knowledge about the internals of a device. Hence,
its cooperation may not be sufficient to have an ac-
curate view of a device. This situation implies that
a vendor could not satisfy some requirements from
the security evaluator, even when cooperation is gen-
uinely offered.
Device Manufacturer. This entity produces the de-
vice and is expected to have full knowledge of the
device’s internals. Notice that, in many cases, the
device manufacturer may rely on other manufactur-
ers (e.g., the System-On-Chip manufacturer). How-
ever, we expect it to be aware of the relevant internal
details of the third-party components. The manufac-
turer may adopt any strategy to protect its own intel-
lectual rights, including making choices or adopting
anti-analysis techniques that may hinder, or at least
slow down, reverse engineering attacks. Moreover,
such anti-analysis techniques could also be adopted to
protect end users since they may slow down external
attackers (edge C) interested in exploiting the device.
However, to keep their product economically compet-
itive, manufacturers often have to quickly integrate
innovative features in response to consumer pressure,
possibly skipping proper testing due to the need to re-
duce production costs. Moreover, such vendors may
reside in quite different countries with respect to the
nationality of the final consumers, possibly inducing
a mismatch between regulations and strategic national
interests. Therefore, they could rely on anti-analysis
techniques to protect poorly tested code and hide un-
documented functionalities.
External Attacker. This entity may be interested in
finding and exploiting a vulnerability on the device.
Such exploitation concerns both the security evaluator
(edge D), which would like to detect any easy-to-spot
flaw, and the device manufacturer (edge C), which can
experience significant reputation damage, potentially
harming its business in the long run.

2.2 Security Evaluation Workflow

The security evaluation of an embedded device is
a challenging task that may require different ap-
proaches and methodologies depending on the de-
vice under analysis and the level of cooperation with
the device vendor. Various factors significantly in-
fluence the evaluation strategy, such as the manufac-
turer’s transparency in sharing firmware and source
code or using obfuscation and security features to pro-
tect the device. Despite these variations, we identify
three major steps to approach the security evaluation

of embedded devices (Nadir et al., 2022). For the sake
of simplicity, in this paper, we do not consider the
steps of analysis aimed at reverse engineering the de-
vice hardware internals since such evaluation would
most likely be out of reach for most security evalu-
ators. Nonetheless, evaluators indirectly validate the
hardware behaviour by checking the device execution
through dynamic analyses.
Firmware Extraction. The security analysis begins
with acquiring the embedded device’s firmware. No-
tice that this process is performed even when the
source code is available since the evaluator may need
to check whether the firmware binary is consistent
with the released source code. In some instances,
manufacturers facilitate the firmware acquisition pro-
cess by providing the plaintext binary directly on their
websites or enabling access via remote interfaces such
as SSH or Telnet, allowing complete firmware re-
trieval. However, as stated in the previous section,
this may not always be true. Manufacturers may want
to protect intellectual properties and only provide the
device, making it necessary to extract the firmware
from the device. Typically, this process involves ex-
tracting the firmware by dumping the flash memory or
disk storage – depending on the firmware’s location –
via a debug interface like JTAG or UART, which are
standard in such scenarios. For instance, a common
tool utilized for exploiting this interface is the JTAG-
ulator1, a hardware tool by Grand Idea Studio used to
identify the usually hidden JTAG interface. However,
mechanisms like Readout Protection (RDP), Secure
Boot, and encryption may complicate the extraction
process, often requiring cooperation with the manu-
facturer to access the firmware successfully. Readout
Protection, for instance, may be used to disable the
JTAG interface altogether, preventing the device from
being reprogrammed without a manual reflash.
Static Analysis. This technique involves the analysis
of the source code (when available) and the assem-
bly code of the firmware to identify potential security
flaws without running the program itself (Costin et al.,
2014; David et al., 2018). Since the availability of the
full source code is quite rare in most scenarios, we fo-
cus our discussion on techniques that operate on the
binary code.

Static analysis of the firmware begins with dis-
assembling the binary image to distinguish between
code and data and to identify further assembly refer-
ences, function boundaries, data structures, etc. This
initial step is fundamental for the success of static
analysis; a partial or erroneous disassembly process

1https://grandideastudio.com/portfolio/security/
jtagulator
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may lead to an inconclusive analysis. It is then pos-
sible to leverage static analysis techniques such as
Value-Set Analysis (Balakrishnan and Reps, 2004;
Balakrishnan et al., 2005) or Taint analysis (Schwartz
et al., 2010) to identify memory corruption vulnera-
bilities such as buffer overflows. Over the years, many
state-of-the-art approaches have adopted heuristics to
identify vulnerabilities in the firmware of embedded
devices (Neshenko et al., 2019). Some of them are
collected in frameworks, such as FACT (Fraunhofer
FKIE-CAD, 2017), or EMBA (Secure Firmware,
2022), to perform several analyses simultaneously.
For instance, the CVE Lookup analysis tries to match
publicly disclosed vulnerabilities with binaries within
the firmware. However, this analysis does consider
single binaries and does not consider the whole pic-
ture of the firmware. Even if there are already known
vulnerabilities in a few firmware binaries, they might
not represent real vulnerabilities, especially when the
vulnerable binaries are never executed or the vulnera-
ble functionalities are never used. This happens often
in embedded devices, and simple analysis may pro-
duce false positives. Moreover, vendors usually patch
vulnerabilities on the spot without updating the entire
code base; this choice is mainly due to the adoption of
old toolchains, which do not always support updated
binaries/libraries (Yu et al., 2022). Hence, more ad-
vanced techniques are required. To reduce the num-
ber of false positives, KARONTE (Redini et al., 2020)
leverages multi-binary taint analysis to detect vulner-
abilities following the data flow of relevant firmware
applications. Moreover, KARONTE considers all
the flows generated via Inter-Process Communication
(IPC) techniques such as fork(), execve(), shared
mmap(), etc. With this approach, KARONTE de-
tected 46 zero-days over 53 firmware, showing that it
scales regardless of the firmware size. Albeit promis-
ing, taint analysis has well-known limitations, and it
cannot detect complex vulnerabilities.

Another approach, not only designed for embed-
ded devices, tries to identify function clones (Hu
et al., 2017). This approach is used for both reverse
engineering and vulnerability detection; if a known
vulnerable function is detected, then the application
might be vulnerable.

Finally, other approaches rely on heuristics and
Machine Learning models (Nicolao et al., 2018;
Remigio et al., 2023; Thomas et al., 2017). ELISA
and its extension (Nicolao et al., 2018; Remigio et al.,
2023) present a supervised machine learning frame-
work designed for code discovery in header-less bi-
nary files, aiding static analysis and reverse engineer-
ing by distinguishing executable instructions from
firmware without metadata. They use a two-step pro-

cess: first identifying the Instruction Set Architec-
ture (ISA) using logistic regression, and then delineat-
ing code boundaries and identifying data within those
boundaries using Conditional Random Fields (CRFs)
in (Nicolao et al., 2018) and lstm-based with heuris-
tics in (Remigio et al., 2023). HumIDIfy (Thomas
et al., 2017) is a system developed to identify un-
documented functionality and authentication bypass
vulnerabilities in firmware. It utilizes machine learn-
ing by creating profiles of expected firmware behavior
using a Binary Functionality Description Language.
These profiles are then compared to the actual behav-
ior of the firmware in real-time. Significant deviations
suggest the presence of hidden functionalities.
Dynamic Analysis. A significant limitation of static
analysis is the inability to test and exploit systems
without physical access to the device. Unlike static
analysis, which involves dissecting and reading code,
dynamic analysis allows for the execution of code and
observation of its behavior without detailed knowl-
edge of the program’s internals. Testing the firmware
on the physical device, from one side, allows the eval-
uator to validate the actual behavior of the device, but,
from the other side, often offers limited inspection ca-
pabilities (e.g., to check the internal execution state)
and does not scale well when only a limited number of
devices is available. Hence, the research community
has often suggested relying on device emulators, such
as QEMU (Bellard, 2005), to run the firmware im-
ages, making it easier to parallelize the analysis and
integrate advanced vulnerability detection techniques,
such as software fuzzing and symbolic execution. Dy-
namic analysis, however, requires metadata to emu-
late firmware accurately, which necessitates some un-
derstanding of the firmware’s architecture. In addi-
tion, dynamic analysis has scalability issues due to
the complex and varied configuration setups needed
for different devices.

Introduced in 2014, Avatar (Zaddach et al., 2014)
is a framework designed for dynamic analysis of em-
bedded devices’ firmware. It emulates firmware in-
structions on an external machine while directing I/O
operations to the actual device hardware. Avatar
has been utilized in security applications such as re-
verse engineering, vulnerability discovery, and back-
door detection. It has been tested on diverse hard-
ware types, including a GSM phone, a hard disk boot-
loader, and a wireless sensor node, using QEMU (Bel-
lard, 2005) for firmware emulation and KLEE (Cadar
et al., 2008) to explore firmware paths for vulnera-
bilities. However, Avatar’s reliance on real hardware
for vulnerability discovery and the slow execution of
its processes from emulation to hardware interaction
limit its scalability.

Do You Trust Your Device? Open Challenges in IoT Security Analysis

571



In February 2016, Chen et al. introduced Firma-
dyne (Chen et al., 2016), an automatic dynamic anal-
ysis system targeting Linux-based firmware vulnera-
bilities in network-connected devices. Firmadyne an-
alyzed 23,035 firmware images, confirming vulner-
abilities in 887 of them. The system automatically
collects firmware images and metadata from vendor
websites using scripts. It employs a customized ver-
sion of Binwalk for kernel extraction and uses QEMU
to emulate a Linux kernel tailored to each firmware
image. Firmadyne performs dynamic analyses to de-
tect and exploit vulnerabilities, utilizing the Metas-
ploit framework2 for exploitation. Potential improve-
ments for Firmadyne include expanding its analysis
capabilities to non-Linux systems like RTOS and en-
hancing firmware extraction methods to handle obfus-
cated and encrypted images.

In 2016, Costin (Costin et al., 2016) developed
a fully automated dynamic firmware analysis frame-
work that employs full system emulation via QEMU,
without needing actual hardware. The framework fo-
cuses on identifying vulnerabilities in Linux-based
systems, especially within embedded web interfaces,
using tools like Arachni, Zed Attack Proxy (ZAP),
and w3af, with additional capabilities for using scan-
ning and exploitation tools such as Nmap, Nessus,
and Metasploit. Despite discovering 225 new vulner-
abilities across 45 firmware images, improvements in
tool efficacy and emulation accuracy were noted as ar-
eas for enhancement due to inherent automation chal-
lenges in dynamic analysis.

In 2017, Palavicini (Palavicini Jr. et al., 2017)
advanced the analysis of firmware vulnerabilities in
Industrial Internet of Things devices, particularly
targeting industrial control systems. Employing a
suite of tools including binary analysis tools like
ANGR (Shoshitaishvili et al., 2016) and American
Fuzzy Lop (AFL)3, and virtualization tools like Open-
PLC, Firmadyne (Chen et al., 2016), and QEMU, the
analysis process was divided into three phases: ex-
traction of firmware for emulation, emulation of ex-
tracted code, and vulnerability analysis using tech-
niques like fuzzing and symbolic execution. This
approach uncovered backdoors, information leakage,
and botnet-capable code.

In 2019, a framework named FIoT (Zhu et al.,
2019) was introduced to address memory corruption
issues in constrained IoT devices. FIoT applies sym-
bolic execution to specifically test slices of firmware
that may be prone to buffer overflows, highlighting
the resource-intensive nature of symbolic execution
and its unsuitability for large firmware images. This

2https://www.metasploit.com/
3https://github.com/google/AFL

led to the discovery of 35 zero-day memory corrup-
tion vulnerabilities in 115 lightweight IoT devices.

In 2022, the framework OFRAK (Red Balloon Se-
curity, 2022) was published by Red Balloon Secu-
rity. Presented at Summercon 2022, OFRAK facili-
tates firmware patching. This technique modifies the
firmware and observes its behavior when re-flashes
inside the device, either via JTAG interface or by des-
oldering the memory and performing a manual flash.
For instance, in Linux-based firmware, an analyzer
may introduce custom code inside /etc/init.d,
which will be run with sudo privileges.

2.3 Breaking Security Evaluations

Both static and dynamic analyses can be thwarted by
various strategies. In the context of embedded de-
vices, one may for example focus on custom or un-
known architectures that are not recognized by mod-
ern disassemblers and decompilers. A typical chal-
lenge in this respect is emulating the firmware behav-
ior, which would require an in-depth understanding of
the processor architecture and memory management.
The problem is further worsened by the adoption of
unknown formats and undocumented hardware, mak-
ing the detection of executable sections difficult.

Other security measures can directly target the se-
mantics of the code and are directly inspired by mod-
ern anti-analysis techniques in X86-64 or ARM ar-
chitectures. For example, typical static obfuscation
techniques involve removing the symbols from the bi-
nary (i.e., binary stripping) or flattening the control
flow graph. Other techniques that prevent static anal-
ysis include dynamic code loading, where most of the
executable content is de-compressed or decrypted at
runtime, making static analysis inefficient.

Dynamic analysis can also be hindered by eva-
sive techniques (Galloro et al., 2022), e.g., strategies
aimed at (among others) delaying the execution of the
binary (a simple example is the use of the sleep func-
tion) or preventing the execution of debuggers (with
the combined use of fork and ptrace). Other strate-
gies are often seen in Portable Executable (PE) mal-
ware, such as the adoption of TLS callbacks.

Anti-fuzzing techniques (Jung et al., 2019) com-
plicate automated vulnerability detection through
fuzzing. Methods such as checksum validations en-
sure only properly formatted inputs are processed,
thwarting random or malformed data typical of
fuzzing. Timing checks prevent rapid input se-
quences, halting potential fuzzing attempts. Addition-
ally, adaptive context-aware responses obscure sys-
tem logic, making it difficult for fuzzers to predict
outcomes based on inputs. These strategies collec-

SECRYPT 2024 - 21st International Conference on Security and Cryptography

572



tively hinder the effectiveness of fuzzing tools in dis-
covering software vulnerabilities.

3 IoT SECURITY ANALYSIS:
OPEN CHALLENGES

As highlighted in the previous section, IoT and other
embedded devices present unique security challenges
not as evident in traditional systems due to their cus-
tomized hardware and software from various manu-
facturers. Assessing their security with standard tools
is difficult. Consequently, both institutional and pri-
vate entities must rigorously evaluate the security of
these devices before using them in critical environ-
ments. We now review four research directions that
we believe were not already deeply investigated in the
past by the community and are worth consideration.
Devising a Threat Model for IoT Security Evalua-
tion Landscape. As detailed in Section 2, different
key players have a crucial role when considering the
security evaluation of an embedded device, including
the manufacturer, the vendor, the security evaluator,
and any external attacker. To systematically evaluate
the complex dynamics emerging among such play-
ers, we believe that the scientific community should
propose a threat model able to capture the capabili-
ties of these players, taking into account and putting
into perspective their respective constraints and ob-
jectives. Indeed, different from traditional systems,
several public and private institutions may start to per-
ceive the device manufacturer of an embedded system
as an attacker who may have adopted strategies to
hinder security analysis to hide scarcely tested code
or undocumented functionalities. At the same time,
manufacturers have the right to protect their intellec-
tual property from competitors and adopt any defense
that could thwart external attackers interested in ex-
ploiting the devices. Hence, it would be interesting
to model the capabilities of a device manufacturer by
identifying in more detail the specific anti-analysis
strategies that could be adopted, the levels at which
such strategies would operate (hardware, software, a
mix of the two), and their consequences from differ-
ent points of view (economical, practical, technolog-
ical, strategic). Investigating such research direction
could help the community determine the right trade-
off between the manufacturers’ needs and the security
evaluators’ needs.
Investigation of Granular but Actionable Security
Analysis Requirements. Several public and private
institutions may have the commercial or legal power
to impose some security analysis requirements when

a vendor proposes a device. For instance, such in-
stitutions may require that, during a security evalua-
tion, the vendor should cooperate by providing tech-
nical documentation, the source code, the compiler
toolchain, a disassembler, a device emulator, and sev-
eral other analysis or reversing tools. However, it
could be unlikely, or even completely unrealistic, to
believe that any security evaluator can impose any
kind of requirement on any vendor. Indeed, manu-
facturers hardly want to disclose technical informa-
tion about their devices or provide their internal de-
velopment tools. Moreover, they are both unable
and unwilling to invest effort in devising tools for re-
versing tasks when their internal workflow does not
need them. Finally, since the security evaluators may
not directly interact with manufacturers, imposing re-
quests that vendors cannot satisfy could be unrealistic.

In this scenario, we believe that the scientific com-
munity should consider three orthogonal aspects:

1. the requirements of the state-of-the-art ap-
proaches for security evaluations;

2. the constraints of the vendor and the needs of the
manufacturer;

3. the operational context of the device, i.e., how
sensitive and critical is the environment where the
device will be deployed.

In particular, the community should evaluate and pro-
vide some clear insights on what could be asked to the
vendor in order to make effective some of the state-of-
the-art tools for security analyses while keeping into
account the operational context of the device. For in-
stance, if a device is deployed into a critical environ-
ment, then it could be reasonable to require the source
code of the software executed by the device, since the
availability of the source code would allow the use of
a large number of powerful state-of-the-art tools. In
contrast, when a device is deployed in a less critical
environment, the request for the source code may be
unrealistic but then it should be clear what other min-
imum requirements could be imposed by a security
evaluator to allow a significant security evaluation.

While devising such guidelines would not typi-
cally be the job of the scientific community, it could
be argued that security analysis requirements are
strictly connected with the state-of-the-art security
analysis approaches. Therefore, the scientific com-
munity should explore different analysis strategies de-
pending on the requirements that could be realistically
imposed in the real world of security evaluations.
Hence, the definition of realistic security analysis re-
quirements and the development of security analysis
approaches should be carried out simultaneously.
Devising Modular Security Analysis Frameworks.
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A crucial limitation of several existing state-of-the-
art analysis tools for security evaluations is that they
are often not modular and extensible. For instance,
it is still quite hard and expensive for a manufac-
turer to support open source emulators required for
running dynamic analyses, such as software fuzzing
and taint analysis, or to support heavyweight analysis
techniques, such as symbolic execution. This exces-
sive cost results in a barrier that could be exploited
by manufacturers to justify their lack of cooperation.
We thus believe that the scientific community should
investigate how to make existing security analysis
frameworks, such as KARONTE (Redini et al., 2020),
ELISA (Nicolao et al., 2018), AVATAR (Zaddach
et al., 2014), and Firmadyne (Chen et al., 2016), ex-
tremely modular and extensible, minimizing as much
as possible the effort needed to develop and maintain
the low-level building blocks required by such tools,
thus lowering the bar for device manufacturers.
Reversible Anti-Analysis Techniques. The manu-
facturer should be allowed to integrate anti-analysis
techniques that are targeted at hindering the reversing
tasks carried out by competitors and external attack-
ers. To still allow effective security evaluations from
selected actors, such as a security evaluator, the re-
search community could explore the idea of reversible
anti-analysis techniques that, as their name suggests,
could allow a selected party to make ineffective the
anti-analysis strategies when the manufacturer is will-
ing to (partially) cooperate (possibly, under the re-
quest of a vendor). For instance, in a scenario where
the manufacturer integrates anti-fuzzing techniques
into its code as protection against the fuzzing per-
formed by external attackers, the security evaluator
may ask to the vendor to provide the technical bits
needed to bypass such anti-analysis approach during
the security evaluation. Hence, anti-analysis tech-
niques could be conceived as trapdoor functions that
are easy to reverse when the trapdoor is provided.

4 CONCLUSIONS

This paper highlighted the challenges that may
emerge when carrying out a security evaluation of an
IoT device. Specifically, we believe there is a need
to systematically analyze security contexts by high-
lighting the involved actors and the technical secu-
rity evaluation workflow. Indeed, complex dynam-
ics arise when considering the needs and constraints
of the device manufacturers, the external attackers,
and the security evaluators. For instance, manufac-
turers may adopt anti-analyses techniques to protect
their own devices from competitors and external at-

tackers. However, at the same time, by adopting such
practices, manufacturers may hinder security evalu-
ations, making it unclear whether they are trying to
hide poorly tested code, that may lead to easy ex-
ploitation from an external attacker, or conceal undoc-
umented privacy-risk functionalities. Unfortunately,
existing state-of-the-art security tools do not yet take
into the complexity of such a landscape and often
fall short by either posing unreasonable requirements
(e.g., availability of the source code) or cannot be
easily extended with minimal effort, thus imposing
a strong barrier for manufacturers that are willing to
(partially) cooperate with a security evaluator. We be-
lieve that our work can be a starting point to inspire
further research in this field, fostering cooperation be-
tween the scientific community and device manufac-
turers to secure our device landscape.
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