
Design of Adaptable and Secure Connectors for Software Architectures

Juan Marcelo Gutierrez Carballo1, Michael Shin1 and Hassan Gomaa2
1Department of Computer Science, Texas Tech University, Lubbock, TX, U.S.A.

2Department of Computer Science, George Mason University, Fairfax, VA, U.S.A.

Keywords: Adaptable Connector, Secure Connector, Adaptable Secure Software Architecture, Component-Based
Software Architecture, Asynchronous Message Communication.

Abstract: This paper describes the design of adaptable and secure (AS) connectors that encapsulate security concerns
and their adaptation concerns in the interaction between application components in secure software
architectures. The security concerns in software architectures need to be dynamically adaptable to changing
security requirements so that the architectures respond to evolving security risks. This paper describes the
design of AS connectors that dynamically adapt security concerns over changing security risks in software
architectures. The AS connectors can reduce the complexity of adaptation separately from application
concerns. To validate this research, we designed and implemented the AS connectors for asynchronous
message communication (AMC), which would adapt security concerns for secure software architectures to
changing security risks.

1 INTRODUCTION

Secure software architectures are fundamental
structures for secure applications. Increasingly,
secure software architectures have been designed to
develop secure application software. Secure software
architectures address security and application
concerns. However, the designs of these architectures
typically mixes security and application concerns,
which increases the complexity of the architectures.
To cope with this, secure connectors (Shin et al.,
2016a, 2016b, 2017, 2018, 2019, 2021) were
designed to separate security concerns for
interactions between application components from
application concerns to decrease the complexity of
secure software architectures.

However, the secure connectors (Shin et al.,
2016a, 2016b, 2017, 2018, 2019, 2021) do not
address the adaptation of security concerns between
application components in secure software
architectures. The security concerns for secure
software architectures need to be adapted at runtime
so that the architectures respond to evolving security
risks. Dynamic adaptation of security concerns in
software architectures makes the architectures more
complex. The current secure connectors do not enable
secure software architectures to evolve to changing
security requirements. Therefore, it is necessary for

an approach to designing secure connectors that are
adaptable to evolving security in secure software
architectures, which can reduce the complexity of
dynamic adaptation for the architectures.

This paper designs adaptable and secure (AS)
connectors that evolve secure software architectures
adaptable to changing security requirements. AS
connectors encapsulate security concerns for the
interaction between application components as well
as the adaptation logic of the security concerns. AS
connectors enable secure software architecture to
evolve security at runtime for message
communication between application components. AS
connectors are designed by extending secure
connectors (Shin et al., 2016a, 2016b, 2017, 2018,
2019, 2021) to adaptable connectors.

The structure of this paper is as follows. Section 2
describes related work. Section 3 presents secure
connectors. Section 4 describes the design of AS
connectors, followed by validation of this research in
section 5. Section 6 concludes this paper with future
research.

2 RELATED WORK

Related work explores existing literature and
methodologies related to the adaptability of software

Gutierrez Carballo, J., Shin, M. and Gomaa, H.
Design of Adaptable and Secure Connectors for Software Architectures.
DOI: 10.5220/0012856900003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 185-192
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

185

systems aligning with changing requirements
including security.

The study (Gottschalk, Yigitbas, and Engels,
2022) presents a model-driven framework for
continuous experimentation on component-based
software architectures, emphasizing dynamic
adaptability but not security. The study (Vogel, 2018)
introduces mRUBiS, a framework for model-based
self-adaptation and optimization. The author (Huynh,
2019) discusses the importance of state transfer
management in adaptive software for maintaining
consistency during dynamic adaptation.

Authors (Gao et al., 2021) propose a service-
oriented dynamic and adaptive software architecture,
focusing on service component reuse and
optimization. The study (Mutanu and Kotonya, 2019)
delves into runtime adaptation in service-oriented
systems but lacks a focus on security adaptation. The
authors (De Sanctis, Bucchiarone, and Marconi,
2020) advocate for adaptivity from the earliest stages
of service-based applications, supporting continuous
integration of new services.

The research (De Sanctis, Muccini, and
Vaidhyanathan, 2020) explores the intricacies of
data-driven adaptation in microservice-based IoT
architectures, managing adaptation in resource-
constrained environments. The study (Shin, Nejati,
Sabetzadeh, Briand, Arora, and Zimmer, 2020)
introduces a dynamic adaptive congestion control
algorithm for software-defined networks (SDNs) in
IoT systems, enhancing performance and reliability.

The authors (Philip et al., 2020) propose a
composite software architectural style for flexibility
and dynamic adaptation but do not address security
concerns. The study (Mayrhofer et al., 2019) assesses
adaptability in software architectures for Cyber-
Physical Production Systems, emphasizing runtime
adaptability in manufacturing.

The research (Chen, 2019) explores retrained
versus incremental machine learning models for
performance prediction in adaptable systems,
providing insights into flexibility and accuracy. Our
approach embeds adaptive security measures within
connectors. The research (Kaya et al., 2019) discusses
runtime adaptability in Ambient Intelligence systems
using a component-oriented approach.

The research (Shin et al., 2016a, 2016b, 2017,
2018, 2019, 2021) designs secure connectors for
distributed component-based software architectures,
integrating communication and security patterns. Our
research in this paper focuses on runtime security
adaptation with AS connectors. A co-author of this
paper studied software adaptation for service-
oriented systems (Gomaa et al., 2010; Gomaa and

Hashimoto, 2012), dynamically adapting service-
oriented architectures using adaptation connectors.
Compared to the study, our research proposes
adaptable and secure connectors to adapt the software
architectures to changing security requirements.

Authors (Porter and Albassam, 2020) investigate
decentralized architecture-based self-protection for
adaptable security systems.

3 SECURE CONNECTORS

A secure connector is a distributed connector
consisting of a secure sender connector and a secure
receiver connector that communicate with each other.
A secure sender or receiver connector is designed
with a security coordinator, zero or more security
pattern components (SPCs), and one or more
communication pattern components (CPCs).

3.1 Security Pattern Components

A security pattern addresses a solution to recurring
security problems using a security mechanism against
a security threat. A security pattern is designed with
security pattern components (SPCs), as depicted in
Fig. 1. For instance, confidentiality can be realized
using the symmetric encryption security pattern (Fig.
1a) composed of the symmetric encryption encryptor
and decryptor SPCs with their interfaces. The digital
signature (Fig. 1b) is designed as the digital signature
signer and digital signature verifier SPCs. Each port
of a component is defined in terms of provided and/or
required interfaces (Gomaa, 2011). Each security
pattern component (Fig. 1) has a provided port
through which the component provides security
services to other components. Fig. 1c depicts the
interfaces provided by the ports of the SPCs.

3.2 Communication Pattern
Components

Each communication pattern is designed as a sender
communication pattern component (CPC) and a
receiver communication pattern component (CPC),
which are encapsulated in a secure sender connector
and a secure receiver connector, respectively. Fig. 2a
depicts the asynchronous message communication
(AMC) sender and receiver CPCs for the secure AMC
connector. The AMC sender CPC (Fig. 2a) has the
provided PAMCSenderService port through which it
receives from the security sender coordinator
component a message to be sent to the AMC receiver
CPC via the required RNetwork port. Similarly, the

ICSOFT 2024 - 19th International Conference on Software Technologies

186

AMC receiver CPC (Fig. 2a) has the required
RSecurityService port and provided PNetwork port.
Fig. 2b depicts the interfaces provided by each port of
the AMC sender and receiver CPCs.

Figure 1: Security pattern components and their interfaces.

Figure 2: Asynchronous Message Communication Sender
and Receiver Communication Pattern Components and
their Interfaces.

3.3 Security Coordinator Components

A security coordinator, which is either a security
sender coordinator or a security receiver coordinator,
is designed to integrate the communication patterns
and security patterns selected for a secure connector.
The security sender and receiver coordinators need to
be designed for each secure connector whenever one
or more CPCs and zero or more SPCs are selected for
the connector. A template (Shin et al., 2018, 2019) for
the high-level security coordinator can be designed
for each communication pattern. The template is
customized for each secure connector based on the
security pattern(s) selected.

4 DESIGN OF ADAPTABLE AND
SECURE CONNECTORS

Adaptable and secure (AS) connectors are designed
to adapt the SPCs encapsulated in the connectors as
well as provide security services to application
components. The AS connectors can be adapted at
runtime by adding, removing, or replacing SPCs with
others, according to changing security requirements.

The AS connectors are designed by extending
secure connectors to adaptation. Figure 3 shows a
high-level state machine view of an AS Connector.
An AS connector works like a secure connector in an
Active state (Fig. 3). Whereas, in an adaptation state
(Fig. 3), it adapts security patterns at runtime
according to changing security requirements. To
prepare the adaptation of an AS connector, the Active
state transitions to the Adaptation state (Fig. 3), which
then transitions back to the Active state to reactivate
the connector after adaptation (Fig. 3). The detailed
statecharts for the AMC Sender Connector and the
AMC Receiver Connector are depicted in Figures 6
and 7 below.

Figure 3: Statechart for Security Coordinator in Adaptable
and Secure Connector.

An AS connector is designed as an AS sender
connector and an AS receiver connector, each with
zero or more security pattern components (SPCs), one
or more communication pattern components (CPCs),
and a security coordinator. Fig. 4a depicts an AS
asynchronous message communication (AMC)
sender connector with a symmetric encryption
encryptor SPC, which sends a message from one
application component to another. The AS AMC
sender connector (Fig. 4a) is designed as a composite
component. The security sender coordinator
component (Fig. 4b) is designed with ports to
integrate the Symmetric Encryption Encryptor SPC,
Key SPC, and AMC sender CPC, allowing it to
receive a message or adaptation command. An
application component sends a message to the
Security Sender Coordinator through the provided
PSecAsyncSenderService port. The message is
encrypted by the Symmetric Encryption Encryptor

«interface»
ISEEncryptor

encrypt (in message, in key, out
encryptedMessage)

«interface»
ISEDecryptor

decrypt (in encryptedMessage, in
key, out message)

«interface»
IDSSigner

sign (in message, in key, out
signature)

«interface»
IDSVerifier

verify (in message&signature, in
key, out result)

«security pattern»
Symmetric
Encryption
Encryptor

ISEEncryptor

PSEEncryptor

ISEDecryptor

PSEDecryptor

a) Symmetric Encryption Security Pattern

«security pattern»
Symmetric
Encryption
Decryptor

«security pattern»
Digital

Signature
Signer

IDSSigner

PDSSigner

«security pattern»
Digital

Signature
Verifier

IDSVerifier

PDSVerifier

b) Digital Signature Security Pattern

c) Interfaces of Security Pattern Components

INetwork
RNetwork«communication pattern»

AMC
Sender

PAMCSenderService

IAMCSenderService

ISecurityService

RSecurityService

PNetwork
INetwork

«communication pattern»
AMC

Receiver

a) Asynchronous Message Communication Sender and Receiver
Communication Pattern Components

b) Interfaces of Asynchronous Message Communication Sender and
Receiver Communication Pattern Components

«interface»
IAMCSenderService

sendSecAsync (in messageName, in
messageContent)

«interface»
ISecurityService

sendSecAsync (in messageName, in
messageContent)

«interface»
INetwork

sendSecAsync (in messageName, in
messageContent)

Passivate [Processing Message]

Passivate [Idle]

Reactivate

Active Adaptation

Generalized State Machine for
Adaptation of AS Connector

Design of Adaptable and Secure Connectors for Software Architectures

187

SPC using the key retrieved from the Key SPC and
sent by the AMC sender CPC to an AS AMC receiver
connector through the required RNetwork port. Fig.
4b also shows the interfaces of the security sender
coordinator component.

Figure 4: Adaptable and Secure Asynchronous Message
Communication Sender Connector and Security Sender
Coordinator and its interfaces.

Figure 5: Adaptable and Secure Asynchronous Message
Communication Receiver Connector and Security Receiver
Coordinator and its interfaces.

An AS asynchronous message communication
(AMC) receiver connector (Fig. 5a) is designed to
receive a message for a receiver application
component from an AS AMC sender connector (Fig.
4a). The security receiver coordinator component
(Fig. 5b) in the AS AMC receiver connector (Fig. 5a)
is designed with the required RSEDecryptor port to
request the Symmetric Encryption Decryptor SPC to
decrypt an encrypted message, the required RKey
port to read a key from the Key SPC, and the required
RSecAsynReceiverService port to forward a message

to an application component. Fig. 5b depicts the
interfaces of the security receiver coordinator
component.

Adaptation of AS connectors is designed with
security sender and receiver coordinator components.
Fig. 6 depicts the design of the security sender
coordinator (Fig. 4b) of the AS AMC sender
connector (Fig. 4a) using the state machine, where the
active composite state is composed of the Waiting For
Message state that waits for the application
component’s message, the Retrieving Secret Key
state that reads a secret key from the Key SPC (Fig.
4a), and the Encrypting state in which the Symmetric
Encryption Encryptor (Fig. 4a) encrypts the message.

In the active composite state (Fig. 6), a message
arrived at the security sender coordinator in the
Waiting For Message state (Fig. 6) causes a transition
to either the Retrieving Secret Key state (Fig. 6) if the
secret key is unavailable or the Encrypting state if the
key is available. As a message arrives, the message
queue increases by one on those state transitions,
which is modeled with q1++. An additional message
arrival also increases the message queue by one while
the state machine is either in the Retrieving Secret
Key or Encrypting state, in which the queue increase
is modeled as a self-transition with “Message/ q1++”
(Fig. 6). The coordinator continues to encrypt
messages in the Encrypting state while the messages
are available (i.e., q1>1 in Fig. 6), decreasing the
number of messages in the queue one by one (i.e., q1-
- in Fig. 6). When the last message stored in the
message queue (i.e., q1=1 in Fig. 6) is encrypted and
sent to the AS AMC receiver connector, the state
machine makes a transition to the Waiting For
Message state.

The AS AMC sender connector makes a transition
from the active state composite to the adaptation
composite state, where the security sender
coordinator is passivated and then becomes quiescent
(Kramer and Magee, 1990). The adaptation state (Fig.
6) consists of the Passivating state (Kramer and
Magee, 1990) completely sending the ongoing
message to the AS AMC receiver connector for
adaptation, and the Quiescent state (Kramer and
Magee, 1990, 2007) adapting the SPCs. The
Passivating state ensures that the ongoing message is
delivered to the AS AMC receiver connector before
the start of adaptation. The Passivating state is to
maintain the consistency of connectors before and
after the adaptation. The security sender connector
(Fig. 4) completes retrieving a secret key or
encrypting the ongoing message while its security
sender coordinator is passivating.

«security pattern»
SymmetricEncryption

Encryptor

a) Adaptable and Secure Asynchronous Message Communication Sender Connector

«security coordinator»
SecuritySender

Coordinator

«AS connector»
AS AMC

SenderConnector
«communication pattern»

AMC
Sender

PSecAsyncSenderService

PSecAsyncSenderService

PSEEncryptor

RSEEncryptor

RNetwork

RNetworkPAMCSenderService

RAMCSenderService

ISEEncryptor

«security
coordinator»

SecuritySender
Coordinator

RAMCSenderService

IAMCSenderService

PSecAsyncSenderService

ISecAsyncSenderService

b) Security Sender Coordinator and its Interface

RSEEncryptor

PAdaptation

IAdaptation

PAdaptation
passivate (out notification)
reactivate (out notification)
add (in securityPattern, out result)
remove (in securityPattern, out result)

«interface»
IAdaptation

«interface»
ISecAsyncSenderService

sendSecAsync (in messageName, in messageContent)

PAdaptation

«security pattern»
Key

RKey
PKey

RKey

IKey

«communication pattern»
AMC

Receiver

a) Adaptable and Secure Asynchronous Message Communication Receiver Connector

«security pattern»
SymmetricEncryption

Decryptor
«security coordinator»

SecurityReceiver
Coordinator

«AS connector»
AS AMC

ReceiverConnector

PSEDecryptor
RSEDecryptor

PNetwork
PNetwork

RSecurityService

PSecurityService

RSecAsyncReceiverService
RSecAsyncReceiverService

ISEDecryptor

ISecurityService

PSecurityService «security
coordinator»

SecurityReceiver
Coordinator

RSecAsyncReceiverService

ISecAsyncReceiverService

b) Security Receiver Coordinator and Interface Specification

RSEDecryptor

PAdaptationSRC

PAdaptationSRC

PAdaptationSRC

IAdaptationSRC

«interface»
ISecurityService

sendSecAsync (in messageName, in
messageContent)

«security pattern»
Key PKey RKey

passivate (out notification)
reactivate (out notification)
add (in securityPattern, out result)
remove (in securityPattern, out result)

«interface»
IAdaptationSRC

IKey

RKey

ICSOFT 2024 - 19th International Conference on Software Technologies

188

In the adaptation composite state (Fig. 6), only the
ongoing message is completely encrypted, and the
encrypted message is sent to the AS AMC receiver
connector. Whereas incoming messages are stored in
the queue, which is modeled with a self-transition to
the adaptation composite state (i.e., Message/ q1++ in
Fig. 6). The incoming messages are not encrypted and
stored in the queue, whereas encrypted messages are
sent to the AS AMC receiver connector to keep
consistency before and after adaptation. The
messages stored in the queue are processed when the
AS AMC sender coordinator is reactivated.

Similar to the security sender coordinator (Fig.
4b), The security receiver coordinator (Fig. 5b) of the
AS AMC receiver connector (Fig. 5a) is modeled
with active and adaptation composite states using the
state machine (Fig. 7). The Active composite state is
composed of the Waiting For Encrypted Message
state waiting encrypted messages from the AMC
receiver CPC, the Retrieving Secret Key state reading
a secret key from the Key SPC, and the Decrypting
state decrypting an encrypted message using the
secret key. The adaptation composite state is modeled
with the Passivating (Fig. 7) and Quiescent states for
adapting SCPs.

In the Active composite state (Fig. 7), when a new
encrypted message arrives in the Waiting For
Encrypted Message state, the state machine (Fig. 7)
transitions to either the Retrieving Secret Key state if
the security receiver coordinator has a secret key or
the Decrypting state if the key is available. q2++ in
these state transitions means that the number of

incoming encrypted messages increases by one as a
new encrypted message arrives. Also, the number of
encrypted messages increases by one for an additional
encrypted message arrival while the state machine is
either in the Retrieving Secret Key or Decrypting
state. That is modeled as a self-transition with
“Encrypted Message/ q2++” at the states (Fig. 7). The
encrypted messages sent by the AS AMC sender
connector is stored in a queue in the AS AMC
receiver connector because this is asynchronous
message communication. The coordinator continues
to decrypt the encrypted messages in the Decrypting
state if the encrypted messages are available (i.e.,
q2>1 in Fig. 7), decreasing the number of encrypted
messages one by one (i.e., q2-- in Fig. 7). If the
ongoing encrypted message is the last one (i.e., q2=1
in Fig. 7), the state machine transitions to the Waiting
For Encrypted Message state. For adapting the AS
AMC receiver connector, the security receiver
coordinator is passivated by transitioning from the
active composite state to the composite adaptation
state.

The adaptation is performed to add to or remove
SPCs from the AS sender and receiver connector
when the security sender and receiver coordinators
are in a Quiescent state. When the security
coordinators are in a Quiescent state, the message
delivery between application components is stopped
temporarily until an adaptation has been completed.
The security sender and receiver coordinators resume
sending or receiving the messages when they are
reactivated.

Figure 6: Security Sender Coordinator Statechart for AS AMC Sender Connector with Symmetric Encryption Encryptor
Security Pattern Component.

Waiting For
Message Passivating

Passivate
Quiescent

Passivate / Send Quiescent Notification To Adaptation Control

Reactivate / Send Active Notification To Adaptation Control

Active

Security Sender Coordinator Statechart in AS
AMC Sender Connector

Encrypting

Encrypted Message
[q1=1] /
Send Encrypted
Message, q1--

Encrypted Message /
Send Encrypted Message,
Send Quiescent Notification To
Adaptation Controller

Adaptation

Retrieving
Secret Key Secret Key /

Encrypt Message
& Secret Key

Message [key
unavailable] /
Request Secret
Key, q1++

Passivate

Secret Key /
Encrypt Message &
Secret Key

Message [key
available] / Encrypt
Message & Secret
Key, q1++

Message / q1++

Encrypted Message
[q1>1] /
Send Encrypted
Message, q1--

Message /
q1++

Message
/ q1++

exit/ q1 = 0

Design of Adaptable and Secure Connectors for Software Architectures

189

Figure 7: Security Receiver Coordinator Statechart for AS AMC Receiver Connector with Symmetric Encryption Decryptor
Security Pattern Component.

5 VALIDATION

5.1 Adaptation Architecture

The adaptation architecture is designed to implement
the AS AMC connectors to validate this research. The
adaptation architecture consists of the adaptation
layer and the application layer. The adaptation layer
controls the AS AMC connectors by sending
adaptation commands (i.e., passivate or reactivate).
The adaptation control component receives an
adaptation request from an administrator (message
sequence A0 in Fig. 8) and takes the necessary actions
to align AS AMC connectors with the request. The
application layer contains AS AMC connectors that
securely communicate messages and adapt security
patterns (Fig. 8).

Fig. 8 depicts the passivation, adaptation, and
reactivation for adapting security pattern components
in AS AMC connectors. The adaptation control
initiates passivation, sending passivate commands to
the security sender and receiver coordinators. When
the AS sender and receiver connectors are quiescent,
the adaptation control sends adaptation commands
with SPC information to change existing SPCs
encapsulated in the connectors. While adaptation is in
progress, the message delivery requests from the
sender component are queued until the connectors are
reactivated. Upon reactivation, the AS AMC sender
connector processes and sends the queued messages

to the receiver component through the AS AMC
receiver connector.

Figure 8: Adaptation Architecture for Adapting AS Sender
and Receiver Connectors.

5.2 Implementation of Adaptable and
Secure Connectors

The AS AMC sender and receiver connectors have
been implemented in Java using multithread
programming. Message queues were used to interact
between the AS sender and receiver connectors in AS
asynchronous message communication (AMC). Each
connector uses multi-threads to send messages from
the sender to the receiver component, with security
sender and receiver coordinators invoking security
pattern components (SPCs) to secure messages.
Communication pattern components (CPCs) handle

Waiting For
Encrypted Message

Secret Key /
Decrypt
Encrypted
Message &
Secret Key

Passivating Quiescent

Passivate
Secret Key

Passivate /
Send Quiescent Notification To Adaptation Control

exit/ q2 = 0

Reactivate /
Send Active Notification To Adaptation Control

Security Receiver Coordinator
Statechart in AS AMC Receiver
Connector

Retrieving
Secret Key

Decrypting

Active

Decrypted
Message [q2 = 1] /
Forward
Decrypted
Message, q2--

Encrypted
Message / q2++

Decrypted Message [q2 = 1] /
Forward Decrypted Message, q2--,
Send Quiescent Notification To
Adaptation Controller

Encrypted Message [key
unavailable] / q2++,
Request Secret Key

Decrypted Message [q2 > 1] /
Forward Decrypted Message, q2--

Adaptation

Passivate
Message

Encrypted Message
[key available] / q2++,
Decrypt Encrypted
Message & Secret Key

Encrypted
Message /
q2++

Encrypted
Message /
q2++

«control»
:Adaptation

Control

«AS connector»
:aSecureAMC

SenderConnector

Administrator

A0: Adaptation Input

A1: Passivate
A2: Adapt SPC
A3.2: Reactivate A1.1: Quiescent

A2.1: SPC Adapted
A3.3: Reactivated

A1.2: Passivate
A2.2: Adapt SPC
A3: Reactivate A1.3: Quiescent

A2.3: SPC Adapted
A3.1: Reactivated

«AS connector»
:aSecureAMC

ReceiverConnector

A3.4: Adaption Done

a) Adaptation Layer

b) Application Layer

«component»
:Sender

Component

«component»
:Receiver

Component

B1:
Message B1.1:

Message

B1.2:
Message

ICSOFT 2024 - 19th International Conference on Software Technologies

190

message transmission and reception. A listener thread
awaits user input, invoking functions for adaptation
control or modifying a global variable to control
connector adaptation. A global flag variable is used to
ensure that the connectors have completed their tasks
before entering the quiescent state. The adaptation
control sends SPC instances to the connectors.
Removal of security patterns sends a null instance to
decouple SPCs.

5.3 Testing AS Connectors

Various security pattern components were adapted to
test AS AMC connectors while communicating
messages. The sender application component sent
messages every five seconds, and the receiver
application component received them.

5.3.1 Initialization and Execution for Testing

• Initial Setup: The sender and receiver
components are declared, and the queue sizes are
set up to mimic real-world scenarios.

• Message Simulation: The sender component sent
messages at fixed intervals to the AS AMC
sender connector, and the sent messages were
stored in a queue if the connector was in a
passivating or quiescent state.

• Adaptation Control Logic: An input thread
within the adaptation control awaited user input
for passivating, adapting, or reactivating the AS
AMC connectors.

5.3.2 Adapting AS Connectors and
Observing Changes

• Passivation and Activation: Commands such as
‘pas’ (passivate) and ‘act’ (activate) controlled
the connectors’ operational state.

• Adding or Removing Security Pattern
Components: SPCs were dynamically added or
removed using the commands starting with ‘add’
or ‘rem’. For instance, adding ‘ee’ activated the
Symmetric Encryption Encryptor SPC in the AS
AMC sender connector and the Symmetric
Encryption Decryptor SPC in the AS AMC
receiver connector.

• Runtime Monitoring: All adaptation steps were
displayed on the adaptation commands to verify
the design of the AS AMC connectors.

6 CONCLUSIONS AND FUTURE
WORK

This paper has described the design of adaptable and
secure (AS) connectors that encapsulate security
concerns and their adaptation concerns in the
interaction between application components in secure
software architectures. To adapt the security concerns
dynamically to changing security risks, we designed
AS connectors using the state machines, which
modeled the AS sender and receiver connectors with
active and adaptation states. The AS sender and
receiver connectors have been adapted only at
quiescent states to maintain consistency before and
after adaptation. To validate this research, we
implemented the AS AMC connector and tested the
adaptability of the connector at runtime.

We leave several future works to extend this
research. This research could be extended with
additional validation by implementing secure
software architectures for Web-based or App-based
applications with AS connectors. We can also
develop a prototype tool that automatically generates
the code for AS connectors to save the effort to
implement each AS connector for different
communication patterns. As another direction, we
could integrate this research with a recovery
mechanism to assist in the recovery of secure
software systems from security failures. In addition,
we could investigate developing an adaptation and
recovery framework (Albassam, 2017) for secure
software architectures designed with AS connectors.

REFERENCES

Albassam, E., Gomaa, H., Menasce, D., and Porter, P.
(2017). DARE: A Distributed Adaptation and Failure
Recovery Framework for Software Architectures.
Proceedings 14th IEEE International Conference on
Autonomic Computing and Communications (ICAC),
Columbus, Ohio.

Chen, T. (2019). All Versus One: An Empirical
Comparison on Retrained and Incremental Machine
Learning for Modeling Performance of Adaptable
Software. In SEAMS '19, Proceedings of the 14th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE Press, pp.
157–168.

De Sanctis, M., Bucchiarone, A., Marconi, A. (2020).
Dynamic Adaptation of Service-Based Applications: A
Design for Adaptation Approach. In J Internet Serv
Appl, vol. 11, no. 2.

De Sanctis, M., Muccini, H., Vaidhyanathan, K. (2020).
Data-driven Adaptation in Microservice-based IoT

Design of Adaptable and Secure Connectors for Software Architectures

191

Architectures. In ICSA-C 2020, IEEE International
Conference on Software Architecture Companion.
IEEE, Salvador, Brazil.

Gao, R. et al. (2021). Research on a Service-oriented
Dynamic Adaptive Software Architecture. In ICCSE
2021, 16th International Conf. on Computer Science &
Education. IEEE, Lancaster, United Kingdom.

Gomaa, H., Hashimoto, K., Kim, M., Malek, Menascé, D.
A. (2010). Software Adaptation Patterns for Service-
Oriented Architectures. Proceedings of ACM
Symposium on Applied Computing (SAC). Sierre,
Switzerland.

Gomaa, H. (2011). Software Modeling and design: UML,
use cases, patterns, and software architectures.
Cambridge University Press.

Gomaa, H., Hashimoto, K. (2012). Dynamic Self-
Adaptation for Distributed Service-Oriented
Transactions. Proc. ACM/IEEE 7th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). Zurich, Switzerland.

Gottschalk, S., Yigitbas, E., Engels, G. (2022). Model-
driven Continuous Experimentation on Component-
based Software Architectures. In ICSA-C 2022, IEEE
19th International Conference on Software
Architecture Companion. IEEE, Honolulu, HI, USA.

Huynh, N.-T. (2019). State Transfer Management in
Adaptive Software: An Approach from Design to
Runtime. In RIVF 2019, IEEE-RIVF International
Conference on Computing and Communication
Technologies. IEEE, Danang, Vietnam.

Kaya, M.C., Eroglu, A., Karamanlioglu, A., Onur, E.,
Tekinerdogan, B., Dogru, A.H. (2019). Runtime
Adaptability of Ambient Intelligence Systems Based on
Component-Oriented Approach. In Mahmood, Z. (Ed.),
Guide to Ambient Intelligence in the IoT Environment,
Computer Communications and Networks. Springer,
Cham.

Kramer, J., Magee, J. (1990). The evolving philosophers'
problem: dynamic change management. In IEEE
Transactions on Software Engineering, vol. 16, no. 11.
pp. 1293-1306. Nov. 1990.

Kramer, J., Magee, J. (2007). Self-Managed Systems: an
Architectural Challenge. In FOSE '07, Future of
Software Engineering. IEEE, Minneapolis, MN, USA.

Mayrhofer, M., Mayr-Dorn, C., Zoitl, A., Guiza, O.,
Weichhart, G., Egyed, A. (2019). Assessing
Adaptability of Software Architectures for Cyber-
Physical Production Systems. In ECSA 2019, Lecture
Notes in Computer Science, vol. 11681. Springer,
Cham.

Mutanu, L., Kotonya, G. (2019). State of Runtime
Adaptation in Service-Oriented Systems: What, Where,
when, How and Right. In IET Software, vol. 13, pp.14-
24.

Philip, M.M., Natarajan, K., Ramanathan, A., Balakrishnan,
V. (2020). Composite Pattern to Handle Variation
Points in Software Architectural Design of Evolving
Application Systems. In IET Software, vol. 14, pp. 98-
105.

Porter, J., Albassam, E. (2020). A Decentralized Approach
to Architecture-Based Self-Protecting Software
Systems. In CCWC 2020, 10th Annual Computing and
Communication Workshop and Conf. IEEE, Las Vegas,
NV, USA.

Shin, M. E., Gomaa, H., Pathirage, D., Baker, C., Malhotra,
B. (2016). Design of Secure Software Architectures
with Secure Connectors. In International Journal of
Software Engineering and Knowledge Engineering,
vol. 26, no. 05. pp. 769-805.

Shin, M., Gomaa, H., Pathirage, D. (2016). Reusable
Secure Connectors for Secure Software Architecture. In
International Conference on Software Reuse. Springer,
Limassol, Cyprus.

Shin, M., Gomaa, H., Pathirage, D. (2017). Model-based
Design of Reusable Secure Connectors. In ModComp
2017, 4th International Workshop on Interplay of
Model-Driven and Component-Based Software
Engineering. Austin, USA.

Shin, M., Gomaa, H., Pathirage, D. (2018). A Software
Product Line Approach for Feature Modeling and
Design of Secure Connectors. In ICSOFT 2018, 13th
International Conference on Software Technologies.
SCITEPRESS, Porto, Portugal.

Shin, M., Gomaa, H., Pathirage, D. (2019). A Software
Product Line Approach to Design Secure Connectors in
Component-Based Software Architectures. In CCIS,
Volume 1077, Communications in Computer and
Information Science.

Shin, M., Kang, T., Gomaa, H. (2021). Design of Secure
Connectors for Complex Message Communications in
Software Architecture. In ESSE '21, Proceedings of the
2021 European Symposium on Software Engineering.
ACM, pp. 21–28.

Shin, S.Y., Nejati, S., Sabetzadeh, M., Briand, L.C., Arora,
C., Zimmer, F. (2020). Dynamic Adaptation of
Software-Defined Networks for IoT Systems: A
Search-Based Approach. In SEAMS '20, Proceedings of
the IEEE/ACM 15th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems. ACM, New York, NY, USA, pp. 137-148.

Vogel, T. (2018). MRUBiS: An Exemplar for Model-Based
Architectural Self-Healing and Self-Optimization. In
SEAMS '18, Proceedings of the 13th International
Conference on Software Engineering for Adaptive and
Self-Managing Systems. ACM, New York, NY, USA,
pp. 101–107.

ICSOFT 2024 - 19th International Conference on Software Technologies

192

