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Abstract: This paper describes the design of adaptable and secure (AS) connectors that encapsulate security concerns 
and their adaptation concerns in the interaction between application components in secure software 
architectures. The security concerns in software architectures need to be dynamically adaptable to changing 
security requirements so that the architectures respond to evolving security risks. This paper describes the 
design of AS connectors that dynamically adapt security concerns over changing security risks in software 
architectures. The AS connectors can reduce the complexity of adaptation separately from application 
concerns. To validate this research, we designed and implemented the AS connectors for asynchronous 
message communication (AMC), which would adapt security concerns for secure software architectures to 
changing security risks. 

1 INTRODUCTION 

Secure software architectures are fundamental 
structures for secure applications. Increasingly, 
secure software architectures have been designed to 
develop secure application software. Secure software 
architectures address security and application 
concerns. However, the designs of these architectures 
typically mixes security and application concerns, 
which increases the complexity of the architectures. 
To cope with this, secure connectors (Shin et al., 
2016a, 2016b, 2017, 2018, 2019, 2021) were 
designed to separate security concerns for 
interactions between application components from 
application concerns to decrease the complexity of 
secure software architectures.  

However, the secure connectors (Shin et al., 
2016a, 2016b, 2017, 2018, 2019, 2021) do not 
address the adaptation of security concerns between 
application components in secure software 
architectures. The security concerns for secure 
software architectures need to be adapted at runtime 
so that the architectures respond to evolving security 
risks. Dynamic adaptation of security concerns in 
software architectures makes the architectures more 
complex. The current secure connectors do not enable 
secure software architectures to evolve to changing 
security requirements. Therefore, it is necessary for 

an approach to designing secure connectors that are 
adaptable to evolving security in secure software 
architectures, which can reduce the complexity of 
dynamic adaptation for the architectures.  

This paper designs adaptable and secure (AS) 
connectors that evolve secure software architectures 
adaptable to changing security requirements. AS 
connectors encapsulate security concerns for the 
interaction between application components as well 
as the adaptation logic of the security concerns. AS 
connectors enable secure software architecture to 
evolve security at runtime for message 
communication between application components. AS 
connectors are designed by extending secure 
connectors (Shin et al., 2016a, 2016b, 2017, 2018, 
2019, 2021) to adaptable connectors. 

The structure of this paper is as follows. Section 2 
describes related work. Section 3 presents secure 
connectors. Section 4 describes the design of AS 
connectors, followed by validation of this research in 
section 5. Section 6 concludes this paper with future 
research. 

2 RELATED WORK 

Related work explores existing literature and 
methodologies related to the adaptability of software 
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systems aligning with changing requirements 
including security. 

The study (Gottschalk, Yigitbas, and Engels, 
2022) presents a model-driven framework for 
continuous experimentation on component-based 
software architectures, emphasizing dynamic 
adaptability but not security. The study (Vogel, 2018) 
introduces mRUBiS, a framework for model-based 
self-adaptation and optimization. The author (Huynh, 
2019) discusses the importance of state transfer 
management in adaptive software for maintaining 
consistency during dynamic adaptation.  

Authors (Gao et al., 2021) propose a service-
oriented dynamic and adaptive software architecture, 
focusing on service component reuse and 
optimization. The study (Mutanu and Kotonya, 2019) 
delves into runtime adaptation in service-oriented 
systems but lacks a focus on security adaptation. The 
authors (De Sanctis, Bucchiarone, and Marconi, 
2020) advocate for adaptivity from the earliest stages 
of service-based applications, supporting continuous 
integration of new services.  

The research (De Sanctis, Muccini, and 
Vaidhyanathan, 2020) explores the intricacies of 
data-driven adaptation in microservice-based IoT 
architectures, managing adaptation in resource-
constrained environments. The study (Shin, Nejati, 
Sabetzadeh, Briand, Arora, and Zimmer, 2020) 
introduces a dynamic adaptive congestion control 
algorithm for software-defined networks (SDNs) in 
IoT systems, enhancing performance and reliability. 

The authors (Philip et al., 2020) propose a 
composite software architectural style for flexibility 
and dynamic adaptation but do not address security 
concerns. The study (Mayrhofer et al., 2019) assesses 
adaptability in software architectures for Cyber-
Physical Production Systems, emphasizing runtime 
adaptability in manufacturing. 

The research (Chen, 2019) explores retrained 
versus incremental machine learning models for 
performance prediction in adaptable systems, 
providing insights into flexibility and accuracy. Our 
approach embeds adaptive security measures within 
connectors. The research (Kaya et al., 2019) discusses 
runtime adaptability in Ambient Intelligence systems 
using a component-oriented approach.  

The research (Shin et al., 2016a, 2016b, 2017, 
2018, 2019, 2021) designs secure connectors for 
distributed component-based software architectures, 
integrating communication and security patterns. Our 
research in this paper focuses on runtime security 
adaptation with AS connectors. A co-author of this 
paper studied software adaptation for service-
oriented systems (Gomaa et al., 2010; Gomaa and 

Hashimoto, 2012), dynamically adapting service-
oriented architectures using adaptation connectors. 
Compared to the study, our research proposes 
adaptable and secure connectors to adapt the software 
architectures to changing security requirements.  

Authors (Porter and Albassam, 2020) investigate 
decentralized architecture-based self-protection for 
adaptable security systems. 

3 SECURE CONNECTORS 

A secure connector is a distributed connector 
consisting of a secure sender connector and a secure 
receiver connector that communicate with each other. 
A secure sender or receiver connector is designed 
with a security coordinator, zero or more security 
pattern components (SPCs), and one or more 
communication pattern components (CPCs).  

3.1 Security Pattern Components 

A security pattern addresses a solution to recurring 
security problems using a security mechanism against 
a security threat. A security pattern is designed with 
security pattern components (SPCs), as depicted in 
Fig. 1. For instance, confidentiality can be realized 
using the symmetric encryption security pattern (Fig. 
1a) composed of the symmetric encryption encryptor 
and decryptor SPCs with their interfaces. The digital 
signature (Fig. 1b) is designed as the digital signature 
signer and digital signature verifier SPCs. Each port 
of a component is defined in terms of provided and/or 
required interfaces (Gomaa, 2011). Each security 
pattern component (Fig. 1) has a provided port 
through which the component provides security 
services to other components. Fig. 1c depicts the 
interfaces provided by the ports of the SPCs. 

3.2 Communication Pattern 
Components 

Each communication pattern is designed as a sender 
communication pattern component (CPC) and a 
receiver communication pattern component (CPC), 
which are encapsulated in a secure sender connector 
and a secure receiver connector, respectively.  Fig. 2a 
depicts the asynchronous message communication 
(AMC) sender and receiver CPCs for the secure AMC 
connector. The AMC sender CPC (Fig. 2a) has the 
provided PAMCSenderService port through which it 
receives from the security sender coordinator 
component a message to be sent to the AMC receiver 
CPC via the required RNetwork port. Similarly, the 
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AMC receiver CPC (Fig. 2a) has the required 
RSecurityService port and provided PNetwork port. 
Fig. 2b depicts the interfaces provided by each port of 
the AMC sender and receiver CPCs. 

 
Figure 1: Security pattern components and their interfaces. 

 
Figure 2: Asynchronous Message Communication Sender 
and Receiver Communication Pattern Components and 
their Interfaces. 

3.3 Security Coordinator Components 

A security coordinator, which is either a security 
sender coordinator or a security receiver coordinator, 
is designed to integrate the communication patterns 
and security patterns selected for a secure connector. 
The security sender and receiver coordinators need to 
be designed for each secure connector whenever one 
or more CPCs and zero or more SPCs are selected for 
the connector. A template (Shin et al., 2018, 2019) for 
the high-level security coordinator can be designed 
for each communication pattern. The template is 
customized for each secure connector based on the 
security pattern(s) selected. 

4 DESIGN OF ADAPTABLE AND 
SECURE CONNECTORS 

Adaptable and secure (AS) connectors are designed 
to adapt the SPCs encapsulated in the connectors as 
well as provide security services to application 
components. The AS connectors can be adapted at 
runtime by adding, removing, or replacing SPCs with 
others, according to changing security requirements.  

The AS connectors are designed by extending 
secure connectors to adaptation. Figure 3 shows a 
high-level state machine view of an AS Connector. 
An AS connector works like a secure connector in an 
Active state (Fig. 3). Whereas, in an adaptation state 
(Fig. 3), it adapts security patterns at runtime 
according to changing security requirements. To 
prepare the adaptation of an AS connector, the Active 
state transitions to the Adaptation state (Fig. 3), which 
then transitions back to the Active state to reactivate 
the connector after adaptation (Fig. 3). The detailed 
statecharts for the AMC Sender Connector and the 
AMC Receiver Connector are depicted in Figures 6 
and 7 below.  

 

 
Figure 3: Statechart for Security Coordinator in Adaptable 
and Secure Connector. 

An AS connector is designed as an AS sender 
connector and an AS receiver connector, each with 
zero or more security pattern components (SPCs), one 
or more communication pattern components (CPCs), 
and a security coordinator. Fig. 4a depicts an AS 
asynchronous message communication (AMC) 
sender connector with a symmetric encryption 
encryptor SPC, which sends a message from one 
application component to another. The AS AMC 
sender connector (Fig. 4a) is designed as a composite 
component. The security sender coordinator 
component (Fig. 4b) is designed with ports to 
integrate the Symmetric Encryption Encryptor SPC, 
Key SPC, and AMC sender CPC, allowing it to 
receive a message or adaptation command. An 
application component sends a message to the 
Security Sender Coordinator through the provided 
PSecAsyncSenderService port. The message is 
encrypted by the Symmetric Encryption Encryptor 
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SPC using the key retrieved from the Key SPC and 
sent by the AMC sender CPC to an AS AMC receiver 
connector through the required RNetwork port. Fig. 
4b also shows the interfaces of the security sender 
coordinator component. 

 
Figure 4: Adaptable and Secure Asynchronous Message 
Communication Sender Connector and Security Sender 
Coordinator and its interfaces. 

 
Figure 5: Adaptable and Secure Asynchronous Message 
Communication Receiver Connector and Security Receiver 
Coordinator and its interfaces. 

An AS asynchronous message communication 
(AMC) receiver connector (Fig. 5a) is designed to 
receive a message for a receiver application 
component from an AS AMC sender connector (Fig. 
4a). The security receiver coordinator component 
(Fig. 5b) in the AS AMC receiver connector (Fig. 5a) 
is designed with the required RSEDecryptor port to 
request the Symmetric Encryption Decryptor SPC  to 
decrypt an encrypted message, the required RKey 
port to read a key from the Key SPC, and the required 
RSecAsynReceiverService port to forward a message 

to an application component. Fig. 5b depicts the 
interfaces of the security receiver coordinator 
component. 

Adaptation of AS connectors is designed with 
security sender and receiver coordinator components. 
Fig. 6 depicts the design of the security sender 
coordinator (Fig. 4b) of the AS AMC sender 
connector (Fig. 4a) using the state machine, where the 
active composite state is composed of the Waiting For 
Message state that waits for the application 
component’s message, the Retrieving Secret Key 
state that reads a secret key from the Key SPC (Fig. 
4a), and the Encrypting state in which the Symmetric 
Encryption Encryptor (Fig. 4a) encrypts the message.  

In the active composite state (Fig. 6), a message 
arrived at the security sender coordinator in the 
Waiting For Message state (Fig. 6) causes a transition 
to either the Retrieving Secret Key state (Fig. 6) if the 
secret key is unavailable or the Encrypting state if the 
key is available. As a message arrives, the message 
queue increases by one on those state transitions, 
which is modeled with q1++. An additional message 
arrival also increases the message queue by one while 
the state machine is either in the Retrieving Secret 
Key or Encrypting state, in which the queue increase 
is modeled as a self-transition with “Message/ q1++” 
(Fig. 6). The coordinator continues to encrypt 
messages in the Encrypting state while the messages 
are available (i.e., q1>1 in Fig. 6), decreasing the 
number of messages in the queue one by one (i.e., q1-
- in Fig. 6). When the last message stored in the 
message queue (i.e., q1=1 in Fig. 6) is encrypted and 
sent to the AS AMC receiver connector, the state 
machine makes a transition to the Waiting For 
Message state.  

The AS AMC sender connector makes a transition 
from the active state composite to the adaptation 
composite state, where the security sender 
coordinator is passivated and then becomes quiescent 
(Kramer and Magee, 1990). The adaptation state (Fig. 
6) consists of the Passivating state (Kramer and 
Magee, 1990) completely sending the ongoing 
message to the AS AMC receiver connector for 
adaptation, and the Quiescent state (Kramer and 
Magee, 1990, 2007) adapting the SPCs. The 
Passivating state ensures that the ongoing message is 
delivered to the AS AMC receiver connector before 
the start of adaptation. The Passivating state is to 
maintain the consistency of connectors before and 
after the adaptation. The security sender connector 
(Fig. 4) completes retrieving a secret key or 
encrypting the ongoing message while its security 
sender coordinator is passivating. 
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In the adaptation composite state (Fig. 6), only the 
ongoing message is completely encrypted, and the 
encrypted message is sent to the AS AMC receiver 
connector. Whereas incoming messages are stored in 
the queue, which is modeled with a self-transition to 
the adaptation composite state (i.e., Message/ q1++ in 
Fig. 6). The incoming messages are not encrypted and 
stored in the queue, whereas encrypted messages are 
sent to the AS AMC receiver connector to keep 
consistency before and after adaptation. The 
messages stored in the queue are processed when the 
AS AMC sender coordinator is reactivated. 

Similar to the security sender coordinator (Fig. 
4b), The security receiver coordinator (Fig. 5b) of the 
AS AMC receiver connector (Fig. 5a) is modeled 
with active and adaptation composite states using the 
state machine (Fig. 7). The Active composite state is 
composed of the Waiting For Encrypted Message 
state waiting encrypted messages from the AMC 
receiver CPC, the Retrieving Secret Key state reading 
a secret key from the Key SPC, and the Decrypting 
state decrypting an encrypted message using the 
secret key. The adaptation composite state is modeled 
with the Passivating (Fig. 7) and Quiescent states for 
adapting SCPs. 

In the Active composite state (Fig. 7), when a new 
encrypted message arrives in the Waiting For 
Encrypted Message state, the state machine (Fig. 7) 
transitions to either the Retrieving Secret Key state if 
the security receiver coordinator has a secret key or 
the Decrypting state if the key is available. q2++ in 
these state transitions means that the number of 

incoming encrypted messages increases by one as a 
new encrypted message arrives. Also, the number of 
encrypted messages increases by one for an additional 
encrypted message arrival while the state machine is 
either in the Retrieving Secret Key or Decrypting 
state. That is modeled as a self-transition with 
“Encrypted Message/ q2++” at the states (Fig. 7). The 
encrypted messages sent by the AS AMC sender 
connector is stored in a queue in the AS AMC 
receiver connector because this is asynchronous 
message communication. The coordinator continues 
to decrypt the encrypted messages in the Decrypting 
state if the encrypted messages are available (i.e., 
q2>1 in Fig. 7), decreasing the number of encrypted 
messages one by one (i.e., q2-- in Fig. 7). If the 
ongoing encrypted message is the last one (i.e., q2=1 
in Fig. 7), the state machine transitions to the Waiting 
For Encrypted Message state. For adapting the AS 
AMC receiver connector, the security receiver 
coordinator is passivated by transitioning from the 
active composite state to the composite adaptation 
state.  

The adaptation is performed to add to or remove 
SPCs from the AS sender and receiver connector 
when the security sender and receiver coordinators 
are in a Quiescent state. When the security 
coordinators are in a Quiescent state, the message 
delivery between application components is stopped 
temporarily until an adaptation has been completed. 
The security sender and receiver coordinators resume 
sending or receiving the messages when they are 
reactivated. 

 
Figure 6: Security Sender Coordinator Statechart for AS AMC Sender Connector with Symmetric Encryption Encryptor 
Security Pattern Component.
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Figure 7: Security Receiver Coordinator Statechart for AS AMC Receiver Connector with Symmetric Encryption Decryptor 
Security Pattern Component.

5 VALIDATION 

5.1 Adaptation Architecture 

The adaptation architecture is designed to implement 
the AS AMC connectors to validate this research. The 
adaptation architecture consists of the adaptation 
layer and the application layer. The adaptation layer 
controls the AS AMC connectors by sending 
adaptation commands (i.e., passivate or reactivate). 
The adaptation control component receives an 
adaptation request from an administrator (message 
sequence A0 in Fig. 8) and takes the necessary actions 
to align AS AMC connectors with the request. The 
application layer contains AS AMC connectors that 
securely communicate messages and adapt security 
patterns (Fig. 8).  

Fig. 8 depicts the passivation, adaptation, and 
reactivation for adapting security pattern components 
in AS AMC connectors. The adaptation control 
initiates passivation, sending passivate commands to 
the security sender and receiver coordinators. When 
the AS sender and receiver connectors are quiescent, 
the adaptation control sends adaptation commands 
with SPC information to change existing SPCs 
encapsulated in the connectors. While adaptation is in 
progress, the message delivery requests from the 
sender component are queued until the connectors are 
reactivated. Upon reactivation, the AS AMC sender 
connector processes and sends the queued messages 

to the receiver component through the AS AMC 
receiver connector. 

 
Figure 8: Adaptation Architecture for Adapting AS Sender 
and Receiver Connectors. 
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message transmission and reception. A listener thread 
awaits user input, invoking functions for adaptation 
control or modifying a global variable to control 
connector adaptation. A global flag variable is used to 
ensure that the connectors have completed their tasks 
before entering the quiescent state.  The adaptation 
control sends SPC instances to the connectors. 
Removal of security patterns sends a null instance to 
decouple SPCs. 

5.3 Testing AS Connectors 

Various security pattern components were adapted to 
test AS AMC connectors while communicating 
messages. The sender application component sent 
messages every five seconds, and the receiver 
application component received them. 

5.3.1 Initialization and Execution for Testing 

• Initial Setup: The sender and receiver 
components are declared, and the queue sizes are 
set up to mimic real-world scenarios. 

• Message Simulation: The sender component sent 
messages at fixed intervals to the AS AMC 
sender connector, and the sent messages were 
stored in a queue if the connector was in a 
passivating or quiescent state. 

• Adaptation Control Logic: An input thread 
within the adaptation control awaited user input 
for passivating, adapting, or reactivating the AS 
AMC connectors. 

5.3.2 Adapting AS Connectors and 
Observing Changes 

• Passivation and Activation: Commands such as 
‘pas’ (passivate) and ‘act’ (activate) controlled 
the connectors’ operational state. 

• Adding or Removing Security Pattern 
Components: SPCs were dynamically added or 
removed using the commands starting with ‘add’ 
or ‘rem’.  For instance, adding ‘ee’ activated the 
Symmetric Encryption Encryptor SPC in the AS 
AMC sender connector and the Symmetric 
Encryption Decryptor SPC in the AS AMC 
receiver connector. 

• Runtime Monitoring: All adaptation steps were 
displayed on the adaptation commands to verify 
the design of the AS AMC connectors. 

6 CONCLUSIONS AND FUTURE 
WORK 

This paper has described the design of adaptable and 
secure (AS) connectors that encapsulate security 
concerns and their adaptation concerns in the 
interaction between application components in secure 
software architectures. To adapt the security concerns 
dynamically to changing security risks, we designed 
AS connectors using the state machines, which 
modeled the AS sender and receiver connectors with 
active and adaptation states. The AS sender and 
receiver connectors have been adapted only at 
quiescent states to maintain consistency before and 
after adaptation. To validate this research, we 
implemented the AS AMC connector and tested the 
adaptability of the connector at runtime. 

We leave several future works to extend this 
research. This research could be extended with 
additional validation by implementing secure 
software architectures for Web-based or App-based 
applications with AS connectors. We can also 
develop a prototype tool that automatically generates 
the code for AS connectors to save the effort to 
implement each AS connector for different 
communication patterns. As another direction, we 
could integrate this research with a recovery 
mechanism to assist in the recovery of secure 
software systems from security failures. In addition, 
we could investigate developing an adaptation and 
recovery framework (Albassam, 2017) for secure 
software architectures designed with AS connectors. 
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