
Readability of Domain-Specific Languages: A Controlled Experiment
Comparing (Declarative) Inference Rules with (Imperative) Java Source

Code in Programming Language Design

Kai Klanten1, Stefan Hanenberg1 a, Stefan Gries2 and Volker Gruhn1 b

1University of Duisburg–Essen, Essen, Germany
2codecentric AG, 42697 Solingen, Germany

Keywords: Domain-Specific Languages, Empirical Study, User Study.

Abstract: Domain-specific languages (DSLs) play a large role in computer science: languages from formal grammars up
to SQL are integral part of education as well as industrial applications. However, to what extent such languages
have a positive impact on the resulting code, respectively on the activity of writing and reading code, mostly
remains unclear. The focus of the present work is on the notation of inference rules as they are applied in
programming language education and research. A controlled experiment is introduced where given type rules
are either defined using a corresponding DSL or the general-purpose language Java. Thereto, a repeated N-
of-1 experiment was executed on 12 undergraduate students in computer science, where the participants had
to select for a randomly generated typing rule and a randomly generated term from a list of possible types
the correct one. Although the formal notation of inference rules is typically considered as non-trivial (in
comparison to code in general–purpose languages), it turned out that the students were able to detect the type
of a given expression significantly faster than using Java (p < .001, η2

p = .439): on average, the response
times using Java were almost twice as much as the response times using inference rules (MJava

Min f erence
= 1.914).

Furthermore, the participants did less errors using inference rules (p = .023). We conclude from that the use
of inference rules in programming language design also improves the readability of such rules.

1 INTRODUCTION

It is quite widespread to use different notations for
different programming related tasks. Such notations
are commonly called domain-specific languages
(DSL, cf. (Mernik et al., 2005)). Examples for
DSLs that are often taught and applied are markup
languages (such as XML, HTML, Latex, etc.), query
languages (such as SQL) or grammar languages (such
as BNF). However, among the list of typical domain-
specific languages, there is one kind of language
that is often not mentioned despite its central role in
education and research: the notation used for defining
programming language semantics and types.

In programming language design, it is common
to define the semantics of a language (and its type
system) using inference rules. Such rules are based

a https://orcid.org/0000-0001-5936-2143
b https://orcid.org/0000-0003-3841-2548

on a notation that has its foundation in natural
deduction that originates from the work by Gentzen
from 1935 (Gentzen, 1935). Gentzen defined natural
deduction in a way where premise and conclusion
were graphically separated by a horizontal line. In
programming language design, such notation was
adapted to define the semantics and the type system
of programming languages in a similar way. The
resulting notation by Wright and Felleisen was not
only used to describe the semantics and type system,
but also to perform type system proofs on them
(Wright and Felleisen, 1994). In the following, we
will call this notation (declarative) inference rules.

Actually, despite the fact that inference rules are
standard in teaching and research, it is also standard
to translate these rules into source code. For example,
Pierce’s book “Types and Programming Languages”
(Pierce, 2002), that is widespread in teaching,
uses inference rules to describe programming
languages and then describes how these rules can be

492
Klanten, K., Hanenberg, S., Gries, S. and Gruhn, V.
Readability of Domain-Specific Languages: A Controlled Experiment Comparing (Declarative) Inference Rules with (Imperative) Java Source Code in Programming Language Design.
DOI: 10.5220/0012857800003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 492-503
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

implemented using a given programming language.
The reason for this translation is quite plausible: in
the end a programming language is designed and
one wants to experience how this language works by
executing programs.1 However, it is also noteworthy
that the inference rules are the core of Pierce’s book:
it is not the case that the implementations of these
rules play the same role as the formal descriptions.

From a teaching perspective one needs to ask
whether it is necessary to introduce two different
notations, both describing the same phenomenon,
because it is questionable whether learners get an
additional benefit from one or the other notation
(respectively from both in combination). The
implementation language – i.e., the language into
which the inference rules are translated – does not
seem to be a candidate to be removed in teaching,
because this language permits in the end to execute
the final product. However, whether declarative
inference rules should play such a central role in
is unclear. Asked in a more provocative manner:
“Wouldn’t it be more helpful to describe a language
only using an imperative general-purpose language?”

Answering this question has a practical
implication for the authors of the present paper.
We teach programming language design at our
institute in the traditional way using (declarative)
inference rules. At the same time, our students
implement the defined language in Java (in an
imperative style). And we often get feedback from
our students that the inference rules are unnecessarily
complex and rather decrease their progress in learning
(instead of promoting it).

We think our question could be even generalized:
Under the assumption that the often-heard objection
is correct, one should ask, whether the massive use of
inference rules at programming language conferences
(such as PLDI, ICFP, POPL, etc.) helps researchers
and reader of papers or whether the use of such
notations is counterproductive.

Considering that inference rules in programming
language design are not new, one would expect
that the effect of that notation on the readability
is well-known and corresponding empirical studies
can be easily found. However, this is not the case.
Instead, it is a well-documented phenomenon that
in programming language research empirical studies
play hardly any role. According to the study by
Kaijanaho, the number of human-centered studies
using randomized controlled trials (RCTs) in the field

1Actually, there are other reasons for such transforming:
one wants to proof language characteristics with the aid
of proof-assistant systems (see for example (Dubois, 2000;
Grewe et al., 2015)).

of programming language design up to 2012 was just
22 (Kaijanaho, 2015, p. 133). This low number
was confirmed by Buse et al. (Buse et al., 2011),
and even a broader view on the field of software
construction in general does not lead to a substantial
higher number of studies (see for example (Ko et al.,
2015; Vegas et al., 2016)). Hence, taking into
account that empirical studies play only a subordinate
role in programming language research, it is quite
understandable that not much empirical evidence
exists on the effect of using the notation of declarative
typing rules.

One could consider our question from a slightly
different angle: instead of concretely referring to the
notation of (declarative) inference rules, one could
ask what evidence exists on the use of imperative
instead of declarative languages. Although one can
find some smaller studies on that topic, the results are
far from being conclusive.

To answer the question whether the use of
declarative typing rules have a measurable benefit in
comparison to imperative typing rules, the present
work introduces a controlled experiment executed on
12 students. In the experiment, 64 tasks were given,
and participants had to determine the type of a given
expression. As a measurement we used response
times and correctness. It turned out that the students
required for the Java-based notation almost twice the
time compared to the inference rules (p < .001, η2

p =
.443, MJava

Min f erence
= 1.922). With respect to correctness,

the Java source code increased the number of errors.

2 DECLARATIVE VERSUS
IMPERATIVE LANGUAGE
DEFINITIONS

In order to explain the motivation for the present
work, we explain two ways to define the semantics
and the type system of a programming language:
the declarative way and the imperative way. The
underlying programming language in this section is
the lambda calculus which is a basic programming
language that is typically taught in courses such
as “foundations of programming languages”. To
describe such languages, it is necessary to describe its
syntax and its semantics. While for syntax definitions
languages such as regular expressions and grammars
are used (see for example (Aho et al., 1986, part I
and II)), the semantics of such languages is typically
described using declarative inference rules.

Readability of Domain-Specific Languages: A Controlled Experiment Comparing (Declarative) Inference Rules with (Imperative) Java
Source Code in Programming Language Design

493

2.1 Declarative Language Definition

In order to define the semantics of a programming
languages and (in case it is statically typed) its type
system, it is widespread to use inference rules. Figure
1 contains the application such inference rules. The
rules are taken from the teaching book by Pierce
(Pierce, 2002, p. 103) but the same rules – especially
those ones for type checking – can be found elsewhere
as well (see, e.g., (Bruce, 2002, p. 126)).

(E-App1) t1→t ′1
t1 t2→t ′1 t2

...
(T-App) Γ ⊢ t1:T11→T12 Γ ⊢ t2:T11

Γ ⊢ t1 t2:T12
...

(T-if) Γ ⊢ c:Bool Γ⊢ t1:T Γ ⊢ t2:T
Γ⊢ i f (c) then t1 else t2:T

Figure 1: Example evaluation and typing rules (taken from
(Pierce, 2002, p. 103) for the statically typed lambda
calculus. The evaluation and typing rules are described in a
declarative style based on natural deduction.

The first rule E-App1 describes parts of lambda’s
semantics. It is part of the semantics of the so-called
application, where a term t2 is applied to a term t1
(which corresponds to a function call). It expresses
that in case t1 can be reduced to a term t ′1 (because t1 is
possibly a function call itself), the term t1 t2 is reduced
to a term t ′1 t2 (i.e., the left-hand side is reduced).2

The second rule T-App describes the typing
rule for an application. It says that (for a given
environment Γ) the application t1 t2 has the term T12
if the term t1 has the function type T11 → T12 (i.e., a
type T11 can be applied to the function and the result
type of that function is T12) and if the term t2 has the
required type T11.

In order to exemplify how a typing rule for a new
language construct is described, Figure 1 contains
the typing rule for the language construct if where
the term in the condition is required to be of type
Boolean and the type of the then and else branch
need to be the same (which finally is the type of the
if expression).

2.2 Imperative Language Definition

Although the rules from Figure 1 are rather trivial for
people trained in programming language design, their
meaning is not obvious for people who are not trained
in such notations. However, it is not hard to translate
the rules into imperative languages.

2The whole semantics for applications require some
more rules, but the goal here is only to introduce into the

1 class Application implements LambdaTerm {

2 LambdaTerm left , right;

3 ...

4 LambdaTerm reduce() {

5 if(left.isReducible()) {

6 return new Application(

7 left.reduce(),

8 right.clone()

9);

10 }

11 ...

12 }

13
14 Type typeOf(Environment e) {

15 FunctionType f_type

16 = (FunctionType) left.typeOf(e);

17 Type right_type = right.typeOf(e);

18 if(f_type.left().equals(right_type)) {

19 return f_type.right();

20 } else {

21 throw ...;

22 }

23 }

24 }

Figure 2: Possible translation of the declarative evaluation
and typing rule using the programming language Java.
Method reduce is the translation of the reduction rule,
typeOf is the translation of the typing rule.

Figure 2 contains one possible way to describe
the rules for applications from Figure 1 in an
imperative style in Java. The language construct
application is defined by a class and the methods
reduce() , respectively typeOf(Environment)
represent the imperative translation of the
declarative rules. In order to execute the code,
it is necessary to provide a corresponding API
(such as an interface LambdaExpression with
declared methods reduce(), isReducible(),
typeOf(Environment), clone() as well as an
interface Type with a sub-interface FunctionType
with the methods left() and right()).

There are obviously multiple ways to implement
reduction and typing rules using languages such
as Java. The here proposed approach is based
on an object-oriented design (each language
construct has its own class) with overridden
methods (such as reduce(), isReducible(),
typeOf(Environment)). However, the code in the
methods correspond to the typical imperative style.
For example, method typeOf(Environment) stores
the intermediate results in local variables where a
follow-up condition operates on such variables.

The imperative code contains fragments that are
not directly contained in the declarative notation.
For example, typeOf(Environment) in Figure 2

use of inference rules.

ICSOFT 2024 - 19th International Conference on Software Technologies

494

contains a type cast to type FunctionType. In
case this cast fails, the term has no valid type.3 In
the declarative description, this is expressed by the
absence of a typing rule where the precondition is
fulfilled.

2.3 Pros and Cons of Both Notations
from the Readability Perspective

Again, we should emphasize that the notation for
declarative inference rules originate from a different
purpose, namely the execution of type proofs on the
language. However, our motivation comes from a
different angle, namely the readability of the rules.

Obviously, the inference rules are much shorter:
just comparing for example the rule E-App1
from Figure 1 and the code snippet in method
reduce() makes this obvious – and it should be
emphasized that not even the other methods (such as
is_reducible()) are contained. Hence, one could
simply state that “being shorter” is the reason why
inference rules should outperform the source code.

However, it is possibly harder to read the inference
rules, because such rules possibly require from
the reader to handle a permanent change in the
reading direction. In the imperative style, it is
clear that the code can be read top to bottom4.
For example, when someone reads the typing rule
(method type_of(Environment)), one sees that first
the type of field left is determined (which has to
be of type FunctionType, see line 16), then the
type of field right left is determined. In case the
input type of the function type matches the type of
the latter expression (line 18), the function type’s
output type is returned (line 19). For the declarative
notation (typing rule T-App in Figure 1), one probably
starts with the conclusion and sees that a type T12 is
returned. Possibly, one starts searching for this type
in the condition (and sees that it is the right-hand side
of a function type). Possibly, one then looks at the
term t1 that has this function type and one possibly
looks again in the conclusion where this term appears.
Then, one possibly reads the second condition and
sees that t2 needs to have a certain type T11 Then,
possibly one checks where in the other condition T11
appears.

3In a practical implementation, one would catch an
exception to make explicit that there is a type error in the
term with some understandable error messages.

4We are aware that in general source code is not read
from top to bottom as shown by Busjahn et al. (Busjahn
et al., 2015). However, we still think that the here used
imperative code is read top to bottom, because just one
single method needs to be understood.

Hence, we think it is possible that readers are
confronted with the problem that it is not clear where
to look first and where to look next. And finally, we
think that there is some cognitive effort to match the
multiple occurrences of the different identifiers (such
as the type T11). Altogether, we do think that it is
not obvious whether the imperative or the declarative
notation is more readable.

3 RELATED WORK

As argued in the introduction, the present work can
be considered from two different perspectives. The
first one is on the effect of a specific domain-specific
language on the readability of code, the second
perspective is on the possible difference between
declarative and imperative languages with respect to
usability or readability. Hence, we consider in the
following works as related, where empirical evidence
is given either on domain-specific languages or on the
comparison of declarative and imperative languages.5

3.1 Controlled Experiments on
Domain-Specific Languages

Kosar et al studied in 2010 the possible effect of
using the DSL XAML in comparison to C# Forms
(Kosar et al., 2010). 35 programmers answered 11
questions on a given code fragment (defined either via
XAML or C# Forms) that created a GUI element. It
turned out that on average all questions (except one)
had a higher success rate when code was represented
via XAML and the overall mean success rate using
XAML was 37.62% higher than for C# Forms.

In 2012, the same approach as the previous study
was followed but now applied to two more domain-
specific languages (i.e., altogether applied to three
different domains, each with its own domain-specific
language) (Kosar et al., 2012): features diagrams
(FDL as DSL versus a FD library in Java as GPL)
and graphical descriptions (DOT as DSL versus a GD
library in C as GPL). Again, it turned out that for

5One could argue that the here studied inference
notation is also a graphical notation (because of the
graphical separation of condition and conclusion) and in
that context, additional works could be mentioned that
study the effect of graphical notations (see for example
(Shneiderman et al., 1977; Hollmann and Hanenberg, 2017)
just to mention a few). However, we do not think that the
inference notation should be considered as a graphical one,
because in the end the horizontal line is the only graphical
element in the notation.

Readability of Domain-Specific Languages: A Controlled Experiment Comparing (Declarative) Inference Rules with (Imperative) Java
Source Code in Programming Language Design

495

all DSLs the average success rate of participants was
higher than for the GPL counterparts.

In 2017, Johanson and Hasselbring studied the
effect of the Sprat Ecosystem DSL, a DSL in the
domain of marine ecosystems, in comparison to
C++ code (Johanson and Hasselbring, 2017). 40
participants participated in an experiment where
(among others) the correctness in comprehension
tasks and the time spent on comprehension tasks was
measured. The DSL lead to higher correctness (on
average an increase by 61%) and required less time
(31%) in comparison to the application of the GPL.

In 2022, Hoffman et al. studied the effect of
the DSL Athos – a DSL from the domain of traffic
and transportation simulation and optimization – in
comparison to the use of the Java-based library JSpirit
(Hoffmann et al., 2022). The study, which was
designed as a crossover-trial, was conducted among
two groups consisting of altogether 159 participants.
The general outcome of the study was that the
DSL led to a higher efficiency.6 Additionally, the
participants showed a higher user satisfaction using
the DSL.

3.2 Declarative versus Imperative
Language Constructs

As soon we speak about possible differences between
declarative and imperative constructs, it turns out
that such studies are mainly in the domain of
programming, with a special focus on lambda-
expressions – a traditional declarative language
construct that was integrated in imperative languages
over the last decades.

Uesbeck et al. (Uesbeck et al., 2016) compared,
whether lambda expressions in C++ (in comparison
to loops) had an effect on 58 participants: it was the
participants’ task to create source code that iterated
over a given data structure. The main result of
the study was, that lambda expressions required
significantly more time. Additionally, the study
analyzed error fixing times. Again, the study revealed
a positive effect of traditional loops.

A similar study, but applied to a very specific
Java API (Java Stream API) was performed by
Mehlhorn et al. (Mehlhorn and Hanenberg, 2022)
where the Stream API (that uses lambda expressions)
was compared to traditional loops. The experiment
measured the time required by 20 participants to
detect the result of collection-processing operators on

6The study disinguishes between what language has
been used by the participants first – and it turned out that
there was a larger carry-over effect between the groups
starting with the DSL or the GPL.

collections. The result was in contrast to the result of
the previous study: it required participants less time
to identify the result if the (declarative) Stream API
was used.

Another study that also had lambda expressions in
its focus was performed by Lucas et al. (Lucas et al.,
2019) where code that was changed from imperative
constructs to lambda expressions was evaluated by
developers. It turned out that about half of the
developers considered the introduction of lambda
expressions as an improvement of the code. Most
interestingly – when compared to the two previously
mentioned studies – developers perceived some code
migrations towards lambda expressions negatively
when for-loops were replaced.

A study that is not too closely related to
programming is the ones by Pichler et al. (Pichler
et al., 2011). The authors studied the difference
between declarative and imperative business model
languages. Students were given two types of tasks
and four questions per task7 on models that were
formulated either using a declarative or an imperative
language. The dependent variables response time
and correctness were influenced by the choice of the
language.

Davulcu et al. studied the effect of introducing
an imperative language feature into the declarative
database query language SQL (Davulcu et al., 2023):
a sequence operator was added to SQL that permitted
to define SQL statements in a stepwise manner. A
study on 24 participants revealed that the introduction
of the imperative feature reduced the time participants
required to define an SQL statement for a given task:
participants required only 52% of the time required
for the same task using regular SQL.

4 EXPERIMENT DESCRIPTION

4.1 Initial Considerations and Design
Decisions

The goal is to measure the readability of rules either
defined as declarative inference rules or using an
imperative general–purpose language. Hence, we
need to define the GPL to be used, the rules be
used in an experiment, what task should be given
to participants, how participants can respond to
these tasks, and what should be measured in the
experiment.

7From the paper, it cannot be derived what questions
were asked or to what extent the questions were related to
the declarative or imperative nature of the given model.

ICSOFT 2024 - 19th International Conference on Software Technologies

496

The first step was to define the GPL. We chose
Java for practical reasons: Java is taught at our
university and hence, we assume that the participants
– we assumed that these participants would be
students from our university – are familiar with the
language.

Next, we decided to use typing rules in the
experiment. The reason for this is rather trivial: if
some simple typing rules are given, it is easy to define
a new typing rule. For example, if it is known that
true is of type Bool, and 1 is of type Num, one can
easily determine that a term construct true 1 (in
conjunction with a typing rule Γ ⊢ t1:Bool Γ⊢ t2:T

Γ⊢ construct t1 t2: T→ T)
has the type Num→Num. Furthermore, it is easy to
determine that a term construct 1 1 has no valid
type, because 1 has not the type Bool). However, in
order to have no trial typing rules, we still see the
need to have typing rules for some other language
constructs. We decided to generate typing rules
for given language constructs in the following way:
we selected arbitrary identifiers from a dictionary
and generated a typing rule for them consisting of
function types Bool and Num (i.e., the identifiers
become literals in the language). Figure 3 illustrates
three of such typing rules for the words Couch, Book,
and Number. In order to not confuse participants,
we used the same set of generated typing rules
throughout the experiment.

Next, we generated typing rules (as tasks)
consisting of four or five terms. In order to not
confuse participants with additional identifiers, we
decided to define such a rule without any additional
identifiers. Instead, a term consisting of (for example)
four literals is given and the rule simply consists of
these four elements. For example, the term in Figure
3 consists of four literals Couch Book 18 Couch and
the typing rule consists of four terms as well (t1 to t4).

In order to give participants the ability to give
a quick feedback, we decided to generate possible
answers. We generated six answers and gave
additionally the ability to express “Error” or “None”.

We need to take into account that in case a term
has no valid type, that the effort for determining such
error might be less than determining a valid type
of an expression. Because of that, we determine
for each type rule (and type expression) how many
terms need to be read. For example, if the term
true Book 18 Couch would have been given in
Figure 3, the reader just needs to read the first
precondition (which requires that the first literal needs
to have a function type) in order to determine that the
term has no valid type.

In order to take this difference in effort into
account, we see the need to consider the terms that

need to be read in the experiment definition as a
separate variable.

Next, we also need to decide how the Java source
code should be represented in the experiment. We
decided to use the same representation as shown in
Figure 2: a method is shown where the types of
each field are assigned to local variables. Then, an
if-statement checks the preconditions, and a return
statement determines the resulting type.

With respect to the measurements, we decided
to measure the response times, i.e., the time it took
for a participant to answer, and the correctness of a
response. The time measurement starts when a task
is shown to the participant. It stops when a response
button was pressed.

A general design decision for the experiment
is, to run the experiment as a repeated N-of-1
experiment (see (Hanenberg and Mehlhorn, 2021)),
where a participant receives all (randomly ordered)
treatment combinations (with multiple repetitions).
The benefit of this experiment design is that relatively
few participants are required – and that a statistical
analysis of the results is even possible on one single
participant. In order to not confuse participants with
frequently changing notations, we decided to define
block of tasks, each with the same used notation.

4.2 Experiment Layout

The experiment was designed as a repeated N-of-
1 experiment where all subjects received 64 typing
rules. The experiment layout is as follows.

• Dependent Variables:
– Response Time: The time until an answer was

given. The measurement starts, when a rule
is shown to the participant. The moment an
answer was given, the time is stopped.

– Correctness: Whether or not the given answer
was correct (yes / no),

• Independent Variables:
– Notation: With the treatments inference rules

or Java code.
– Terms to Read: The number of terms that need

to be read (2–5).
– Valid Term: Whether or not the term has a

valid type (yes/no).

• Fixed Variable:
– Repetitions: Altogether, there were four

repetitions per treatment combination. I.e.,
64 (=2x4x2x4) typing rules (and terms) were
shown to the participants.

Readability of Domain-Specific Languages: A Controlled Experiment Comparing (Declarative) Inference Rules with (Imperative) Java
Source Code in Programming Language Design

497

Figure 3: Screenshot from the experiment environment (for the inference rules). For illustration purposes, we put four
response boxes in one line. In the experiment, all response boxes appeared next to each other. The illustrated term has no
valid type and two terms need to be read in order to determine the valid answer “Error”.

– Ordering: All participants received a block
of 8 tasks per notation (starting with Java
code), then, the notation was switched. I.e.,
the participants received the following order of
tasks: (8 Java, 8 inference, 8 Java, 8 inference,
8 Java, 8 inference, 8 Java, 8 inference).

– Randomization: In all blocks, 4 terms had
valid types and 4 terms had invalid types.
The terms to read were randomly assigned to
the blocks. This randomization was initially
done (before the experiment execution) and all
participants received the same tasks in the same
order.

• Task: “Determine the type for the given
expression.”

4.3 Experiment Environment

We developed an application for the experiment that
permitted on the one hand participants to practice the
experiment before running it. Additionally, the same
application was used for the experiment itself.

Figure 3 illustrates a screenshot of the
environment given to the participants. The window
on the right-hand side shows the typing rule (top)
and the task (bottom), the windows on the left hand
side describe additional typing rules required for the
task. The term, whose type should be determined, is
Couch Book 18 Couch.

In order to solve the task, one has to find
out that the first parameter Couch has the type
Num→Book→Num. The second parameter Book has
the type Bool→Num. The typing rule expresses, that
the second parameter’s input type must match the
first parameter’s input type. Since this is not the

case, the participant does not need to read any further,
because this contradiction implies that the resulting
term has no valid type. I.e., in order to answer the
task correctly, the participant has to click “Error”.

The experiment environment also does the
measurements. A timer is started once a typing rule
is shown and stopped when the participants click on
an answer button. After the experiment is finished,
a csv file is generated that contains for each task the
measured time (and whether the participant gave the
correct answer).

4.4 Experiment Execution

For the experiment 12 undergraduate students (6th
semester of below) were recruited. Each participant
received a training video of 10 minutes that explained
the type rules and the experiment in addition to
the experiment environment. Additionally, the
participants were given a handout of typing rules for
terms that appear in the experiment, but which were
not defined by the given typing rule.

The experiment was executed on the participants’
personal machines. Participants were told upfront that
they require a display with a resolution of at least
2560x1600.

The participants were asked to train themselves.
Thereto, participants could start the experiment
environment with different seed values (where this
value is responsible for generating tasks and task
ordering in a quasi-random way). In order to start
the experiment, the participants did not have to enter
a seed (in that case, the experiment was started for all
participants with the same seed).

After the csv file was generated, the participants
were asked to submit this file to the experimenter.

ICSOFT 2024 - 19th International Conference on Software Technologies

498

5 ANALYSIS AND RESULTS

All statistical tests were executed using the statistics
package Jamovi 2.3.19. Since two different
dependent variables were measured, we report the
analysis of the effects of the independent variables on
the dependent variables in separate sections, starting
with the correctness.

5.1 Analysis of Correctness

In order to analyze the correctness of responses we
performed a χ2-Test on the (independent) variable
notation and (the dependent variable) correctness.

It turned out that altogether relative few errors
were done: among the 768 responses, only 20 were
incorrect (error rate = 2.6%). However, it turned out
that the errors were not equally distributed among the
notations: 15 errors were done when Java code was
shown (error rate = 3.9%) while only 5 errors were
done when inference rules were shown (error rate =
1.3%). This difference was statistically significant (p
= .023, see Table 1).

A closer look into each participant’s results
revealed that only one participant did no error, while
the maximum number of errors per participant was
4. Running the χ2-Test on each participant did
not lead to any significant difference. Hence, a
difference in the number of errors could be detected
on all participants (where the Java code leads to more
errors), while such difference was not observable on
individual participants.

Table 1: χ2-Test on the independent variable correctness
(and the dependent variable notation).

Variable df χ2 p Ntotal Kind Answer N

Notation 1 5.13 .023
384 Java Code Correct 369

Errors 15

384 Inference Correct 379
Errors 5

5.2 Analysis of Reponse Times

We analyzed the time measurements using an
ANOVA on the dependent variables notation,
participant, terms to read, and valid term. It turned
out that all main variables were significant with p <
.001 (see Table 2).

The main variable notation has a strong and large
effect (p < .001, η2

p = .439) and on average, it required
participants 92% more time to answer if the typing
rule was defined using Java instead of a declarative
inference rule (MJava

Min f erence
= 67.0

35 = 1.914). However, it
also turned out that this mean ratio was influence by
other factors as well.

First, notation interacts with the variable terms
to read (N * T, p < .001, η2

p = .382) and the ratio
MJava

Min f erence
gets larger the more terms are required to

determine the type for the given term (
MJava2

Min f erence2
=

29.9
22.0 = 1.360,

MJava3
Min f erence3

= 44.2
28.3 = 1.562,

MJava4
Min f erence4

=

65.3
36.7 = 1.780,

MJava5
Min f erence5

= 129
52.9 = 2.439)8. And it

is worth emphasizing how large the ratio is for 5
terms to read, where Java requires 143.9% more time
to read. Additionally, there is a strong (but small)
interaction effect between notation and valid term (p
< .001, η2

p = .030). Hence, the effect of the notation
should not be interpreted alone, but it should be taken
into account how many terms need to be read in order
to determine the type of an expression.

The effect that has an even stronger effect on
the ratio of means between Java and inference is the
participant. The variable participant has a strong
and large effect in the experiment (p < .001, η2

p
= .506) – which simply states that participants do
largely vary in their response times.9 However, it
is more interesting how it interacts with the variable
notation: the interaction between participant and
notation is strong and large (p < .001, η2

p = .160),
i.e., the notation effect works different on different
participants. While the variable participant interacts
with the other variables as well, we think that the
interaction N * P is worth to be studied in more detail
(taking into account that the main goal of the present
study is to study the effect of the notation).

Table 3 describes for each participants whether the
participant was reactive on the variable notation (p-
value), how large the effect was (in terms of the effect
size η2

p) and how large the ratio MJava
Min f erence

was for each
participant. It turned out that two participants (row 11
and 12) were not reactive to the model (at least, the
number of data points per subject was not sufficient to
detect a significant difference between the notations),
but the ratio MJava

Min f erence
still suggests that Java code

required more time to read - but in those cases the
ratios were not impressive (1.369, respectively 1.283,
i.e. Java required 36.9% and 28.3% more time to
read). At the same time, 7

12 participants showed a
ratio MJava

Min f erence
> 2: in those cases, Java took twice as

8The numerical index in the ratios describes the terms
to read. For example, MJava3 describes the mean value for
Java with three terms to read.

9A large variation of participant times is something that
can be already found in the literature under the term 10x
problem (see for example (McConnell, 2011)), although it
should be mentioned that there is not much evidence for
concrete factor (see (Bossavit, 2015, p. 36)).

Readability of Domain-Specific Languages: A Controlled Experiment Comparing (Declarative) Inference Rules with (Imperative) Java
Source Code in Programming Language Design

499

Table 2: Experiment Results for the measured times – Confidence intervals (CI) and means (M) are given in rounded seconds.
N describes the number of datasets per treatment(-combination).

df F p η2
p Treatment N CI95% M

Notation (N) 1 451.407 <.001 .439 Java Code 384 61.1; 72.9 67.0
Inference 384 32.8; 37.1 35.0

Participant (P) 11 53.61 <.001 .506 see Table 3

Terms to Read (T) 3 365.27 <.001 .655

2 192 23.7; 28.2 25.9
3 192 33.3; 39.2 36.3
4 192 45.9; 56.1 51.0
5 192 81.1; 100.0 90.7

Valid Term (V) 1 56.70 <.001 .090 Valid (V) 384 48.1; 59.1 53.5
Invalid (I) 384 44.6; 52.1 48.4

N * T 3 118.779 <.001 .382

Inference / 2 96 19.8; 24.1 22.0
Java / 2 96 26.2; 33.7 29.9

Inference / 3 96 25.4; 31.2 28.3
Java / 3 96 39.5; 48.9 44.2

Inference / 4 96 32.4; 41.1 36.7
Java / 4 96 57.0; 73.5 65.3

Inference / 5 96 48.2; 57.6 52.9
Java / 5 96 113; 144 129

N * V 1 17.551 <.001 .030

Inference / I 192 29.8; 35.2 32.5
Java / I 192 57.9; 70.6 64.2

Inference / V 192 34.1; 40.8 37.4
Java / V 192 59.7; 79.8 69.8

T * V 3 48.306 <.001 .201 ommited due to large number of rows
P * N 11 9.965 <.001 .160 ommited due to large number of rows
P * T 33 5.146 <.001 .228 ommited due to large number of rows
P * V 11 4.367 <.001 .077 ommited due to large number of rows
N * P * T 33 2.921 <.001 .143 ommited due to large number of rows
N * P * V 33 1.865 .041 .034 ommited due to large number of rows
N * T * C 3 34.014 <.001 .150 ommited due to large number of rows
N * P * T * C 33 .787 .798 .043 ommited due to insignificance

Table 3: Experiment Results for each participant (only p-
values, η2

p, and ratios for the variable notation), participants
ordered by ratio MJava

Min f erence
.

Rank p η2
p

MJava
Min f erence

1 .002 .151 38.8
18.2 = 2.132

2 <.001 .214 55.7
26.4 = 2.110

3 <.001 .190 95.1
46.1 = 2.063

4 <.001 .196 93
45.5 = 2.044

5 <.001 .181 106
51.9 = 2.042

6 <.001 .185 74.9
36.7 = 2.041

7 <.001 .190 101
49.6 = 2.036

8 <.001 .183 83.3
42.3 = 1.970

9 .011 .099 42.7
23.3 = 1.833

10 .004 .125 37.8
21.9 = 1.726

11 .106 .042 32.3
23.6 = 1.369

12 .228 .023 44
34.3 = 1.283

long as the inference rules.
Despite the large differences between the

participants, it is worth pointing out that it is not
the point that the fastest participants got most
from the inference rules, nor can we state the
opposite. Although there is some tendency that
those participants who read the Java code fast in the
experiment do not get as much from the inference
rules as those participants who rather slowly read

the Java code, this effect was not significant in the
experiment.

Hence, we can conclude that the effect of notation
is strong and large in general, but this effect
is much influenced by other factors (namely the
terms to read and the validity of the term): the
larger the number of terms to read, the larger the
positive effect of the declarative inference notation
on typing rules. However, a strong influence on
the difference between inference notation and Java
code is the participant and while there were in the
experiment participants with a ratio MJava

Min f erence
> 2 (with

a significant effect of the variable notation), there
were two participants who did not reveal a significant
effect of the variable notation.

6 THREATS TO VALIDITY

Participants: The present study used students as
participants and possibly this influenced the results.
It is an often-articulated claim that experiments in
software engineering should be mainly executed on
professionals. However, we need to emphasize that
the distinction between students and professionals is
probably too coarse grained as a distinction criterion.

ICSOFT 2024 - 19th International Conference on Software Technologies

500

In fact, we have to accept that there is not much
evidence on selection criterion of participants and
their possible performance in experiments (see for
example (Siegmund et al., 2014)). Having said this,
we are aware that probably the choice of participants
has an effect on the experiment’s results.
Terms to Read: The study shows a large effect of
the variable terms to read on the time measurements
and an interaction effect on the difference between
Java code and inference rules. The experiment used
between two terms to read up to five terms to read
– and the overall effect of notation is determined
by this choice. It is unclear to us, what a realistic
number for the terms to read is, because it depends
on two different characteristics. The first one is the
rule itself: if there are five terms to read, it means that
a rule’s precondition consists of five terms. Taking
a look into text books such as the one by Pierce
(Pierce, 2002) gives the impression that two to three
preconditions are a more realistic scenario for the
there mentioned language constructs – but it remains
unclear what the average number of preconditions for
a typing rule is. Furthermore, the effect depends
on the term to be checked: even if there is a
larger number of preconditions, it is possible that an
incorrect type can be already determined by reading
the first precondition. Hence, the general question
is, how often one is confronted with incorrect types
– i.e., how many terms need to be read in general.
Such a question cannot be answered by looking into
textbooks or code repositories.
Reading Direction: Our notion of terms to read
is much influence by our perspective on how terms
are read – and we assume that even the inference
rules are read from left to right, from top to bottom.
Actually, there is evidence in the literature that
reading directions are possibly different. Not only in
general, but by certain participants (see for example
(Busjahn et al., 2015)). One could argue that a more
fined grained measurement technique such as the use
of eye trackers could solve this problem. However,
one should keep in mind that in case it turns out
that participants have different reading strategies and
different reading directions, it becomes even harder
to define a controlled experiment: in such a case, it
is probably necessary to determine upfront from a
participant what the reading strategy and direction is.
Measurement Technique and Choice of Answers:
Obviously, the experiment is influenced by the choice
of answers given to participants. If, for example,
the possible answers are “absurd enough” so that is
becomes clear for a participant that none of them
(except “Error”) can match, the choice of the answers
would become a major factor for the experiment. In

the present experiment, the provided answers were
from our perspective plausible, but until now we are
not aware how evidence for such a plausibility can be
given.
Choice of Typing Rules: The terms were chosen in
a way that a typing rule already expresses that in case
a term has a function type A→B, that this is already
explicitly defined in the typing rule. As an alternative,
one could have chosen typing rules in a way that
for example one type T appears, where a latter rule
refines this (for example, by a function type A→B).
We are aware that this possibly has an influence on the
absolute measurements in the experiment (because in
such a case one needs to keep in mind all constraints
of a type), but we are not aware whether this has an
effect on the difference between inference rules and
Java source code.
Reading Versus Writing: The here introduced
experiment focusses on reading time (and errors).
Hence, we cannot state whether the notations have an
effect on how the rules are written.
Source Code Representation: We are aware that
the way how typing rules are expressed in Java has
(probably) an effect on the readability of the code.
However, we are not yet aware of readability metrics
for source code that express (with strong evidence)
whether a code presentation is better than the other.10

7 SUMMARY, DISCUSSION AND
CONCLUSION

The present paper studies the effect of one specific
domain-specific language (declarative inference
rules) in comparison to a general-purpose language
(imperative Java source code) on the readability of
typing rules in programming language design.

The work was motivated by the fact that
in programming language design two different
languages are typically applied: one DSL for
giving the formal definition of a language (inference
rules) and one GPL for implementing the formal
definition. From our personal, subjective background
we are often confronted with the statement (typically
by students) that inference rules are unnecessarily
complex (and could be or even should be completely
replaced by code written in a general-purpose
language).

10We are aware of the existence of code metrics such
as McCabe’s cyclomatic complexity (see (McCabe, 1976)),
but we also aware that not much evidence exists that such
metrics correlate with the readability of source code (see for
example (Jay et al., 2009) among many others).

Readability of Domain-Specific Languages: A Controlled Experiment Comparing (Declarative) Inference Rules with (Imperative) Java
Source Code in Programming Language Design

501

12 students participated in an experiment where a
term was given in addition to a typing rule (described
either by an inference rule or by Java source code).
The participants’ task was to choose among a list of
eight possible answers the correct one. It turned out
that on average the response times for Java source
code took 91% more time (MJava

Min f erence
= 1.914): the

experiment result was even the opposite of what we
initially expected. However, it also turned out that
this mean ratio is influenced by several additional
parameters and the most noteworthy ones are the
terms to be read and the participant. Concerning the
terms to be read, the experiment gave strong evidence
that the more terms are required to read, the larger
is the positive effect of the inference notation: with
5 terms to read, the Java notation already required
143.9% more time than the use of inference rules.
Concerning the participant, it turned out that while
there are participants who require (significantly)
113% more time to read for the Java code, there are
others who (non-significantly) require only 28% more
to read (for the Java code). Additionally, it turned out
that the use of inference rules reduced the number of
errors in responses.

In addition to the concrete DSL (and the concrete
GPL), the present work also contributes to the
question, to what extent declarative or imperative
languages are more readable – with the result that
the declarative language was more readable for the
participants.

Based on the present study, we feel confident
that inference rules should be used in teaching and
research, but we are aware that the present study
can only be considered as a starting point of such
studies and should not be considered as a definitive
answer. And we are aware that typing rules can be
more complex than those ones used in the present
experiment.

One characteristics of the present study is, that it is
designed as a repeated N-of-1 experiment where each
participant can be analyzed in separation: without
such design it would be impossible to determine
the effect of individuals on the dependent variables.
Actually, it turned out that only two of the twelve
participants were not reactive to the experiment,
i.e., for two participants no significant effect of
the notation was detected. We think that such
experimental design could help in general to give
single participants the chance to rerun a study (which
is also a very cheap way to replicate a study). Due
to the generative nature of the experiment, it is even
possible to select more data on one single participants
without the need to rediscuss possible new tasks.

In general, we think that computer science too

quickly applies new languages – which is not only a
question of the DSLs, but a question of languages in
general. The here introduced experiment could help
other researchers to do such studies in order to find
out whether a given language (that might or might
not be a DSL) should replace a different language.
And we think that the approach of generating tasks
(and answers) is not only helpful for researchers to
find answers to their research questions, but also for
people who doubt in the results of a given study
and who want to rerun a study on their own (with
themselves possibly as the only participant).

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers:
principles, techniques, and tools. Addison-Wesley
Longman Publishing Co., Inc., USA.

Bossavit, L. (2015). The Leprechauns of Software
Engineering. Laurent Bossavit.

Bruce, K. B. (2002). Foundations of object-oriented
languages: types and semantics. MIT Press,
Cambridge, MA, USA.

Buse, R. P., Sadowski, C., and Weimer, W. (2011).
Benefits and barriers of user evaluation in software
engineering research. In Proceedings of the 2011
ACM International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’11, pages 643–656, New York, NY, USA.
Association for Computing Machinery.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson,
J. H., Schulte, C., Sharif, B., and Tamm, S.
(2015). Eye movements in code reading: relaxing
the linear order. In Proceedings of the 2015
IEEE 23rd International Conference on Program
Comprehension, ICPC ’15, pages 255–265. IEEE
Press.

Davulcu, S., Hanenberg, S., Werger, O., and Gruhn,
V. (2023). An empirical study on the possible
positive effect of imperative constructs in declarative
languages: The case with SQL. In Fill, H., Mayo, F.
J. D., van Sinderen, M., and Maciaszek, L. A., editors,
Proceedings of the 18th International Conference on
Software Technologies, ICSOFT 2023, Rome, Italy,
July 10-12, 2023, pages 428–437. SCITEPRESS.

Dubois, C. (2000). Proving ml type soundness within coq.
In Proceedings of the 13th International Conference
on Theorem Proving in Higher Order Logics,
TPHOLs ’00, pages 126–144, Berlin, Heidelberg.
Springer-Verlag.

Gentzen, G. (1935). Untersuchungen über das logische
schließen. i. Mathematische Zeitschrift, 39(1):176–
210.

Grewe, S., Erdweg, S., Wittmann, P., and Mezini, M.
(2015). Type systems for the masses: deriving
soundness proofs and efficient checkers. In 2015
ACM International Symposium on New Ideas, New

ICSOFT 2024 - 19th International Conference on Software Technologies

502

Paradigms, and Reflections on Programming and
Software (Onward!), Onward! 2015, pages 137–150,
New York, NY, USA. Association for Computing
Machinery.

Hanenberg, S. and Mehlhorn, N. (2021). Two n-of-1 self-
trials on readability differences between anonymous
inner classes (aics) and lambda expressions (les) on
java code snippets. Empirical Software Engineering,
27(2):33.

Hoffmann, B., Urquhart, N., Chalmers, K., and Guckert,
M. (2022). An empirical evaluation of a novel
domain-specific language – modelling vehicle routing
problems with athos. Empirical Softw. Engg., 27(7).

Hollmann, N. and Hanenberg, S. (2017). An empirical
study on the readability of regular expressions:
Textual versus graphical. In IEEE Working
Conference on Software Visualization, VISSOFT
2017, Shanghai, China, September 18-19, 2017,
pages 74–84. IEEE.

Jay, G., Hale, J. E., Smith, R. K., Hale, D. P., Kraft, N. A.,
and Ward, C. (2009). Cyclomatic complexity and
lines of code: Empirical evidence of a stable linear
relationship. JSEA, 2(3):137–143.

Johanson, A. N. and Hasselbring, W. (2017). Effectiveness
and efficiency of a domain-specific language for
high-performance marine ecosystem simulation: a
controlled experiment. Empirical Softw. Engg.,
22(4):2206–2236.

Kaijanaho, A.-J. (2015). Evidence-based programming
language design: a philosophical and methodological
exploration. University of Jyväskylä, Finnland.

Ko, A. J., Latoza, T. D., and Burnett, M. M. (2015). A
practical guide to controlled experiments of software
engineering tools with human participants. Empirical
Softw. Engg., 20(1):110–141.

Kosar, T., Mernik, M., and Carver, J. C. (2012). Program
comprehension of domain-specific and general-
purpose languages: comparison using a family of
experiments. Empirical Softw. Engg., 17(3):276–304.

Kosar, T., Oliveira, N., Mernik, M., JoÃ£o, M., Pereira,
M., RepinÅ¡ek, M., Cruz, D., and Rangel Henriques,
P. (2010). Comparing general-purpose and domain-
specific languages: An empirical study. Computer
Science and Information Systems, 438.

Lucas, W., Bonifácio, R., Canedo, E. D., Marcílio, D., and
Lima, F. (2019). Does the introduction of lambda
expressions improve the comprehension of java
programs? In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, SBES 2019,
pages 187–196, New York, NY, USA. Association for
Computing Machinery.

McCabe, T. J. (1976). A complexity measure. In
Proceedings of the 2nd International Conference
on Software Engineering, ICSE ’76, page 407,
Washington, DC, USA. IEEE Computer Society
Press.

McConnell, S. (2011). What does 10x mean? measuring
variations in programmer productivity. In Oram, A.
and Wilson, G., editors, Making Software - What
Really Works, and Why We Believe It, Theory in
practice, pages 567–574. O’Reilly.

Mehlhorn, N. and Hanenberg, S. (2022). Imperative
versus declarative collection processing: an rct on
the understandability of traditional loops versus the
stream api in java. In Proceedings of the 44th
International Conference on Software Engineering,
ICSE ’22, pages 1157–1168, New York, NY, USA.
Association for Computing Machinery.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling,
J., and Reijers, H. A. (2011). Imperative versus
declarative process modeling languages: An empirical
investigation. In Daniel, F., Barkaoui, K., and Dustdar,
S., editors, Business Process Management Workshops
- BPM 2011 International Workshops, Clermont-
Ferrand, France, August 29, 2011, Revised Selected
Papers, Part I, volume 99 of Lecture Notes in Business
Information Processing, pages 383–394. Springer.

Pierce, B. C. (2002). Types and Programming Languages.
The MIT Press, 1st edition.

Shneiderman, B., Mayer, R., McKay, D., and Heller, P.
(1977). Experimental investigations of the utility of
detailed flowcharts in programming. Commun. ACM,
20(6):373–381.

Siegmund, J., Kästner, C., Liebig, J., Apel, S., and
Hanenberg, S. (2014). Measuring and modeling
programming experience. Empirical Software
Engineering, 19(5):1299–1334.

Uesbeck, P. M., Stefik, A., Hanenberg, S., Pedersen, J.,
and Daleiden, P. (2016). An empirical study on the
impact of c++ lambdas and programmer experience.
In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016, pages 760–771.

Vegas, S., Apa, C., and Juristo, N. (2016). Crossover
designs in software engineering experiments: Benefits
and perils. IEEE Transactions on Software
Engineering, 42(2):120–135.

Wright, A. and Felleisen, M. (1994). A syntactic approach
to type soundness. Inf. Comput., 115(1):38–94.

Readability of Domain-Specific Languages: A Controlled Experiment Comparing (Declarative) Inference Rules with (Imperative) Java
Source Code in Programming Language Design

503

