
An ASM-Based Approach for Security Assessment of
Ethereum Smart Contracts∗

C. Braghin a, E. Riccobene b and Simone Valentini c

Department of Computer Science, Università degli Studi di Milano, Italy

Keywords: Blockchain, Smart-Contracts, Exception, Verification, Validation, ASMs, ASMETA.

Abstract: Blockchain-based smart contracts are gaining widespread adoption due to their potential to automate complex
transactions securely and transparently. However, ensuring the correctness and security of smart contracts re-
mains a challenge. This paper proposes a novel approach to modeling and verifying Ethereum smart contracts’
exception-related vulnerabilities using Abstract State Machines (ASMs). ASMs provide a formal modeling
language that enables the precise representation of system behavior and properties. We developed an ASM
model of a Solidity smart contract and demonstrated its use on Unhandled Exception vulnerability identifi-
cation and check contract correctness. Our approach offers a formal framework for smart contract modeling
and verification. It leverages the power of ASM tools to identify vulnerabilities and ensure contract reliability,
contributing to more secure and trustworthy blockchain-based applications.

1 INTRODUCTION

Blockchain was born as a powerful and innovative so-
lution that implements a distributed ledger to man-
age people’s finances without the need for interme-
diaries or trusted third parties. In late 2013, Vi-
talik Buterin introduced Ethereum, a decentralized,
open-source blockchain platform designed to facil-
itate decentralized, trustless, and programmable in-
teractions on the blockchain through smart contracts
(Wood et al., 2014). The Ethereum Virtual Machine
(EVM) serves as the engine behind Ethereum’s smart
contract execution and transaction processing, ensur-
ing decentralized and deterministic operation across
the network. Operating as a distributed state machine,
Ethereum maintains a unified state among its decen-
tralized nodes, empowering the execution of smart

a https://orcid.org/0000-0002-9756-4675
b https://orcid.org/0000-0002-1400-1026
c https://orcid.org/0009-0005-5956-3945
∗This work was supported in part by project SERICS

(PE00000014) under the NRRP MUR program funded by
the EU - NGEU. Views and opinions expressed are how-
ever those of the authors only and do not necessarily reflect
those of the European Union or the Italian MUR. Neither
the European Union nor the Italian MUR can be held re-
sponsible for them.

This work was partially supported by the PRIN project
SAFEST (G53D23002770006).

contracts and decentralized applications with verifi-
able outcomes (Ethereum, 2024).

Since smart contracts are also stored on the
blockchain, they cannot be modified after deploy-
ment. In the past, many attacks on vulnerable smart
contracts proved that a stronger verification and val-
idation phase before the contract’s deployment is re-
quired. For instance, the infamous DAO hack drained
$70 million worth of Ether (Siegel, 2016), and also
the popular King of the Ether Throne (KotET) con-
tract (mis, 2016) had a fatal flaw.

In (Braghin et al., 2024), we explored the applica-
tion of Abstract State Machines (ASMs) for specify-
ing and verifying Ethereum smart contracts written in
Solidity. We formalized the EVM and key language
primitives, enabling the validation of functional cor-
rectness through rigorous proofs. Our approach fa-
cilitates verification of intra-contract properties and
modeling of inter-contract interactions, allowing as-
sessment of a contract’s robustness against potential
attacks.

In this paper we go one step further: we extend
the work presented in (Braghin et al., 2024) by incor-
porating the exception-handling mechanisms. This
enhancement enables us to identify and evaluate an
additional category of potential vulnerabilities due to
exceptions and errors within smart contracts (e.g., ex-
ception disorder or call-stack overflows), thereby en-
hancing the completeness of security assessments.

334
Braghin, C., Riccobene, E. and Valentini, S.
An ASM-Based Approach for Security Assessment of Ethereum Smart Contracts.
DOI: 10.5220/0012858000003767
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 21st International Conference on Security and Cryptography (SECRYPT 2024), pages 334-344
ISBN: 978-989-758-709-2; ISSN: 2184-7711
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

As a proof of concept, we introduce a vulnerable
running example, its corresponding ASM model and
a new attacker model exploiting the exception vul-
nerabilities. Through a comprehensive validation and
verification process applied to the contract model, we
demonstrate the efficacy of our proposed approach.

The paper is structured as follows. Section 2 intro-
duces ASMs as a formal method for system engineer-
ing, explaining the fundamental concepts of ASMs,
including states, locations, update rules, and transi-
tion rules. In Section 3, we provide a background
description of the functioning of smart contracts and
exception handling in Ethereum. Section 4 presents
the detailed modeling of the EVM and Solidity lan-
guage primitives using ASMs. We describe the struc-
ture of an ASM model and demonstrate its ability
to capture the behavior of smart contracts for excep-
tion handling. Section 5 introduces the running case
study consisting of a Solidity auction contract. Sec-
tion 6 describes the validation and verification pro-
cess. We explain how it is possible to define both
intra- and inter-contract properties using invariants
and CTL formulas. Section 7 reviews existing tools
for automated analysis and testing of Ethereum smart
contracts. Section 8 concludes the paper.

2 ABSTRACT STATE MACHINES

Abstract State Machines (Borger et al., 2003) (ASMs)
is a state-based approach to system engineering.
ASMs capture a system’s configuration through states
and articulate its behavior via a sequential series
of state transitions. Compared to Finite Automata,
ASMs are more expressive since they replace the con-
cept of unstructured state with the concept of state as
a mathematical algebra, proving a more expressive
formal language.

System data and operations on data are repre-
sented by domains of elements and functions defined
on them.

State memory units are given as a set of locations;
they are pairs of the form (f (v1, . . . ,vn),v), meaning
that the function f interpreted on parameters v1, ...,vn
has value v (assigned in the function codomain).

State transitions are given by firing well-formed
transition rules, i.e., rules constructed by a given and
fixed number of rule constructors.

The basic transition rule, which allows for up-
dating locations, is the update rule of the form of
f (v1, ...,vn) := d. By firing this rule, in the next
state, the value of the function f (v1, ...ldots,vn) is
updated to d. Update rules are usually embedded in
more complex transition rules. The rule constructors

used for our modeling are those for guarded updates
(if-then, switch-case), parallel updates (par), and
nondeterministic updates (choose).

Depending on whether transition rules update lo-
cations or not, functions are classified in static (never
change value) and dynamic (value updated by rules).
Dynamic functions updated by transition rules are
called controlled, those updated by the environment
are called monitored, and those updated by both are
called shared.

An ASM run is a (finite or infinite) sequence S0,
S1, . . . , Sn, . . . of states. Starting from the initial state
S0, in a computation step (run step) from Sn to Sn+1,
all enabled transition rules are executed in parallel,
leading to simultaneous updates of a number of loca-
tions. In case of an inconsistent update (i.e., the same
location is updated to two different values) or invari-
ant violations (i.e., some property that must be true
in every state is violated), the model execution stops
with error.

Besides different ways to structure the control
flow of functions update (depending on the use of
rule constructors), ASMs can also model different
computational paradigms, ranging from a single agent
executing the whole transition system to distributed
(synchronous or asynchronous) multi-agents working
in parallel, each executing its transition system (or
agent’s program).

2.1 ASMETA Toolset

ASMETA (Gargantini et al., 2008) is an Eclipse-based
set of integrated tools tailored to the ASM formal
method. It offers support across the diverse stages of
system development, from specification to analysis.

It provides a textual user-friendly pseudo-code
format to write ASM models, with an editor and a
syntax checker. An ASMETA model has a well-
formed structure as reported in Listing 1: a model is
composed by an import section that allows the im-
port of external libraries and user-defined models that
provide predefined domains, functions, and rules; a
signature section to declare specific domains and
functions; a definitions section to define specific
static domains and functions, transition rules, state in-
variants, and properties to be verified; it also encom-
passes the main rule, which is the starting point of
the machine computation and that may trigger other
transition rules; in case of multi-agent models, the
main rule can be used to orchestrate the execution of
different agents; finally, the init section defines the
values for the model’s initial state.

A core part of the toolset is the AsmetaS simu-
lator (Gargantini et al., 2007), enabling model vali-

An ASM-Based Approach for Security Assessment of Ethereum Smart Contracts

335

1
2 import ../../Libraries/CTLlibrary
3 import ../../Libraries/StandardLibrary
4
5 signature:
6 /*DOMAINS DEFINITION*/
7 domain Domain subsetof Integer
8 ...
9 /*LOCATIONS DEFINITION*/

10 controlled location : Domain
11 ...
12 definitions:
13 /*TRANSACTION RULES*/
14 rule r_Rule =
15 ...
16 ...
17 /*INVARIANTS */
18 invariant over locations : term
19 ...
20 /*TEMPORAL LOGIC FORMULAS */
21 CTLSPEC ...
22 ...
23 /*MAIN RULE*/
24 main rule r_Main = ...
25
26 default init s0:
27 /*INITIAL STATE DEFINITION*/
28 function location = value
29 ...

Listing 1: ASM model schema.

dation by simulating the execution of ASM models
and verifying adherence of the model to the require-
ments. AsmetaS offers a rich set of functionalities, in-
cluding support for a wide range of validation tasks,
from invariant checking, consistent update checking,
random simulation, to interactive simulation modes.
For more powerful scenario-based validation, the As-
metaV (Carioni et al., 2008) tool uses the AsmetaS
simulator along with the AValLa language to express
scenarios as sequences of actor actions and expected
machine reactions, enabling comprehensive valida-
tion of execution scenarios on ASM models.

Formal verification of ASM models is handled by
the AsmetaSMV (Arcaini et al., 2010) tool, which
translates ASM models into input for the NuSMV
(Cimatti et al., 1999) model checker. AsmetaSMV
supports specifying and checking both linear tem-
poral logic (LTL) and computation tree logic (CTL)
properties.

3 ETHEREUM AND SMART
CONTRACTS

A blockchain is a decentralized, distributed ledger
technology that records transactions across a network

of computers. It is composed of blocks of data,
each containing a set of transactions, a unique cryp-
tographic hash of the previous block and a times-
tamp, thus creating a chain of blocks. This structure
gives the blockchain the characteristic of immutabil-
ity: once recorded, the content of a block cannot be
altered without changing all subsequent blocks, mak-
ing retroactive data tampering virtually impossible.

Ethereum (Wood et al., 2014) is an open-source
blockchain platform that enables developers to build
and deploy decentralized applications: unlike Bitcoin,
which primarily focuses on peer-to-peer electronic
cash transactions, Ethereum provides the EVM, a de-
centralized runtime environment for executing smart
contracts, which are self-executing contracts with the
terms of the agreement directly written into code.
They are written in high-level languages such as So-
lidity and compiled into bytecode that can be executed
by the EVM.

The EVM runs on every node participating in the
Ethereum network, ensuring that smart contracts are
executed in a decentralized manner. It also maintains
the state of the Ethereum blockchain, which includes
account balances, smart contract code, and storage.
There are two types of accounts that have an Ether
(ETH) balance and can interact with the blockchain
by sending transactions on the chain: externally
owned accounts (EOA) and smart contract accounts.
EOA are humans-managed accounts identified by a
public key (used as account address) and controlled
by the corresponding private key that is used to sign
transactions to prove ownership and authorization (by
means of elliptic curve digital signature algorithm).
Contract accounts are special accounts that have asso-
ciated code and data storage, a unique address, but not
private keys. When a transaction involving a smart
contract is initiated, the EVM receives the bytecode
associated with the contract and executes it, modify-
ing the state of the blockchain by updating account
balances or storage values. A special global variable
called msg is employed to capture transaction-related
information, including msg.sender representing the
address that initiated the function call.

Gas is the unit used to measure computational ef-
fort in Ethereum: each operation in the EVM con-
sumes a certain amount of gas, and users must pay
gas fees to execute transactions and smart contracts.

In Solidity, exceptions can broadly be categorized
into two types: built-in exceptions and custom excep-
tions. Out-of-Gas Exceptions are built-in exceptions
that occur when a transaction runs out of gas before
completing its execution and cause the transaction
to revert, i.e., the transaction is terminated, and any
changes made to the blockchain state during the trans-

SECRYPT 2024 - 21st International Conference on Security and Cryptography

336

Figure 1: Diagram representing how the two pointers behave in different situations.

action are rolled back, ensuring that the blockchain
remains in a consistent state and preventing incom-
plete or erroneous transactions from being included in
the blockchain. Custom exceptions are user-defined
exceptions that are triggered by require or revert
statements within a smart contract

Solidity provides various functions to transfer
Ether between contracts or to external addresses, dif-
fering in terms of their behavior, gas management,
and error handling mechanisms. For instance, both
the transfer and send functions automatically for-
ward a fixed amount of gas (currently 2300 gas) along
with the transfer operation, typically sufficient for ba-
sic Ether transfers but potentially insufficient for com-
plex recipient contract operations. In contrast, the
call function allows for custom gas limits to be spec-
ified. Regarding error handling, if a transfer fails due
to exceptions thrown by the recipient or an out-of-gas
exception, both call and transfer functions revert
the transaction, undoing any state changes made be-
fore the call. Instead, in case of failure, the send
function does not revert the transaction but forwards
any remaining gas to the recipient and continues ex-
ecution, returning false, thus enabling the contract to
handle the failure gracefully.

4 MODELING ETHEREUM

In (Braghin et al., 2024), we formalized in ASM
the Ethereum virtual machine and Solidity key prim-
itives. We also developed an approach to systemati-
cally translate Solidity smart contracts into ASMETA
models: for each smart contract there is a correspond-
ing ASMETA model that includes the EVM library
and a transition rule for each Solidity function. The

rule is mainly a switch case with as many cases as
the number of instructions in the function.

The EVM library models the execution stack that
keeps track of the active smart contract functions
and of the global state of the blockchain. The stack
frame represents an element of the stack recording
the account address that initiated the transaction, the
receiver, the amount of ether transferred, the run-
ning function, the current instruction being executed
and the smart contract the function belongs to. The
stack pointer, pointing to the stack frame of the
function currently being executed (i.e., at the top
of the stack), is modeled by the controlled function
current layer.

To manage transactions and the updating of the
stack pointer, two different rules have been devel-
oped: r Transaction, to perform a transaction,
and r Ret, to terminate one. r Transaction rule
models the execution of a transaction by increasing
current layer and storing all the data on the new
execution environment in the stack. It also increments
the caller’s instruction pointer to continue with the
execution left pending once current layer is de-
creased, i.e., when the function returns. r Ret rule
is called when a function ends its execution, the last
stack frame is popped and the stack pointer is decre-
mented. Figure 1 visually illustrates the stack struc-
ture and the dynamics of the r Transaction and
r Ret rules. Specifically, the top row exemplifies a
scenario with an initial function call (i.e., Transac-
tion 1) subsequently invoking another function (i.e.,
Transaction 2). Then, the two functions conclude
(i.e., Return 2 followed by Return 1).

In this paper, we improve the approach and model
exceptions, enabling us to address all potential attacks
stemming from the misuse of exceptions. Indeed, var-

An ASM-Based Approach for Security Assessment of Ethereum Smart Contracts

337

ious attacks exploit vulnerabilities related to excep-
tions, such as exception disorder, a common issue
resulting from Solidity’s inconsistent error handling
during function calls, as well as the call stack overflow
vulnerability, which arises when a program allocates
excessive data on the call stack.

In order to emulate the Ethereum exception-
handling mechanism, we needed to implement the
rollback feature. As explained in Section 3, when
an exception is thrown, a rollback process is per-
formed to revert the blockchain global state to the
point before the exception occurred. To this aim,
we leveraged the inherent nature of ASMs as a state-
based system, encompassing the global state of the
blockchain. As a result, we added a new func-
tion global state layer behaving similarly to the
current layer function, pointing to a snapshot of
the appropriate global state right before potential ex-
ception locations. Then, if an exception happens,
the global state can be easily reset by referencing
global state layer to the data of a previous global
state. The snapshot is performed by the r Save rule,
while the r Throw rule mimicks the throwing of an
exception during execution, such as exceeding the
maximum call stack depth. This rule decrements
global state layer to revert to the previously val-
idated state and then triggers the r Ret rule to update
also the current layer.

Figure 1 provides a visual representation of how
the current layer and global state layer func-
tions behave when a transaction ends normally ver-
sus when it throws an exception. The scenario de-
picted in the top row illustrates the case when Trans-
action 2 naturally concludes with a return state-
ment and no exception is thrown. In this case, the
current layer function is decreased to resume the
execution environment of the previous layer, but the
global state layer remains unchanged to record
the changes in the global state performed by Transac-
tion 2. No rollback occurs because the data generated
in the third layer remains valid.

The scenario in the bottom row of Figure 1 illus-
trates the case of an exception raised during the execu-
tion of Transaction 2. This abnormal termination trig-
gers a rollback, resetting the blockchain global state
to the previously validated data (i.e., the global state
reached after the execution of Transaction 1). As a re-
sult, both current layer and global state layer
functions are decremented: current layer moves
back to the second layer to continue the execution of
Transaction 1 since the execution of Transaction 2 has
failed, while the global state reverts to the state be-
fore the execution of Transaction 2. In the end, when
all transactions conclude either successfully or raise

an exception, current layer is equal to 1. At this
point, the values of the two functions are aligned.

Figure 1 also clarifies the general behavior of the
two functions: during a sequence of nested func-
tion calls, whenever a function concludes success-
fully with a r Ret rule, only current layer is decre-
mented, while global state layer remains point-
ing to the new global state of the blockchain. How-
ever, in the event of an exception, both are decre-
mented.

5 AUCTION CASE STUDY

In this Section, we introduce a running case study,
serving as a proof of concept for our validation and
verification approach concerning vulnerable smart
contracts. The case study is a Solidity Auction con-
tract (Braghin et al., 2020), commonly encountered
in real-world blockchain applications.

1 contract Auction {
2 address currentFrontrunner;
3 uint currentBid;
4
5 function bid() payable {
6 require(msg.value > currentBid);
7
8 if (currentFrontrunner != 0) {
9 require(currentFrontrunner.

send(currentBid));
10 }
11
12 currentFrontrunner = msg.sender;
13 currentBid = msg.value;
14 }
15 }

The contract keeps track of the current highest
bidder (currentFrontrunner) and the highest bid
amount (currentBid). Participants can submit bids
through the bid() function, which takes payment in
Ether. The function requires that (1) the submitted bid
value (msg.value) is greater than the current highest
bid, and (2) that if there is an existing highest bidder
(currentFrontrunner != 0), the contract must re-
fund their bid amount before assigning the new bid.

This contract can reach a Denial of Service (DoS)
state due to an exception disorder vulnerability. In-
deed, a malicious user can design a malicious contract
that (i) proposes the highest bid to become the current
front-runner, and (ii) contains a fallback function
(i.e., the function that is triggered when the address
receiving a transfer does not have a receive func-
tion) containing operations that require more than the
fixed amount of gas of the send function. Then, when
another contract makes a bid higher than the attacker’s

SECRYPT 2024 - 21st International Conference on Security and Cryptography

338

one, the Auction contract tries to refund the bid to the
attacker and an out-of-gas exception is raised, making
the send function returns false (see Section 3). In this
way, also the Auction contract raises an exception
when the require statement receives the false return
value. In this case, the exception triggers a rollback of
the entire bid function execution. As a consequence,
the attacker is able to keep its front-runner position
until the auction is finished since the Auction con-
tract will not be able to accept any new higher bid.

From the contract code, it is possible to specify
the corresponding model1 by following the schema
described in (Braghin et al., 2024). Listing 2 re-
ports the rule r Bid, which is triggered when bid is
the currently executing function in the current layer.
The switch statement of the rule controls the execu-
tion flow based on the value of the instruction pointer
in the current layer. Firstly, (case 0) the rule en-
forces a requirement that the amount specified in the
current layer must be greater than the current bid
stored in the global state layer; then, (case 1) if
the current front runner for the bid is defined, the in-
struction pointer is incremented to proceed to the next
case; otherwise, it jumps to case 4. In case 2, a trans-
action is initiated sending the current bid to the cur-
rent front runner and calling the fallback function. Af-
ter the transaction is performed, case 3 requires that
the response from the previous transaction is success-
ful. The last cases aim to set the current front runner
with the transaction sender and to update the current
bid with the transaction amount.

6 CONTRACT VERIFICATION

Vulnerabilities in smart contracts can lead to secu-
rity breaches, financial losses, and other undesirable
consequences. It is possible to identify two kinds
of vulnerabilities, intra-contract and inter-contract.
Intra-contract vulnerabilities exist within a single
smart contract and can arise from coding errors, de-
sign flaws, or misunderstandings of the underlying
blockchain platform’s functionality. Inter-contract
vulnerabilities are due to unsafe interaction of smart
contracts. They occur when a smart contract inter-
acts with another specific contract containing func-
tions designed to exploit a vulnerability.

In the following, we discuss how intra/inter-
contract vulnerabilities can be detected in ASM mod-
els of smart contracts by using the ASMETA toolset
for validation and verification.

1The model is available at https://github.com/
smart-contract-verification/ethereum-via-asm

Model validation is possible through the use of
AValLa (ASM Validation Language) scenarios, i.e.,
interaction sequences consisting of actions by exter-
nal actors (users) that can set monitored function val-
ues and check the internal machine state, combined
with actions of the machine that performs steps by
executing the model transition rules.

Model verification is possible by using As-
metaSMV, which translates an ASM model into a
NuSMV model and invokes the symbolic model
checker on specified temporal logic properties. In
case a property is false, a full counterexample, i.e.,
a possible run leading to a state where the property
is false, is provided. Such a run can then be trans-
lated into an AValLa scenario (by exploiting other fea-
tures of the ASMETA toolset (Arcaini and Riccobene,
2019)), which can reproduce the same faulty model
execution.

6.1 Checking Intra-Contract
Vulnerabilities

Examples of intra-contract vulnerabilities include in-
teger overflows/underflows, where arithmetic opera-
tions can produce unexpected results due to the lim-
ited range of integer data types, and access control is-
sues, where unauthorized parties can manipulate sen-
sitive contract data or functions. One specific type
of intra-contract vulnerability is the unprotected func-
tion vulnerability. This occurs when a contract ex-
poses sensitive functions without proper access con-
trol mechanisms, allowing unauthorized parties to ex-
ecute them.

In Solidity, a known example of an unprotected
function is the powerful selfdestruct function that
terminates the contract and sends any remaining Ether
in the contract’s balance to a specified address. Usu-
ally, this function is protected so that only the contract
owner can disable the contract. If this function is not
properly protected, an attacker can potentially call it
and force the contract to self-destruct, leading to a de-
nial of service (DoS) state.

Consider the scenario in which the following
destroy function, which uses the selfdestruct
function in an unprotected way, would be added to
the Auction smart contract:

1 function destroy() {
2 selfdestruct(msg.sender);
3 }

When translating the Auction contract extended
with the destroy function into an ASMETA model,
the latter is mapped into the r Destroy rule reported
in Listing 3.

An ASM-Based Approach for Security Assessment of Ethereum Smart Contracts

339

1 rule r_Save ($n in StackLayer) =
2 par
3 currentFrontrunner($n) := currentFrontrunner(global_state_layer)
4 currentBid($n) := currentBid(global_state_layer)
5 endpar
6
7 rule r_Bid =
8 if executing_function(current_layer) = bid then
9 switch instruction_pointer(current_layer)

10 case 0 :
11 r_Require[amount(current_layer) > currentBid(global_state_layer)]
12 case 1 :
13 if isDef(currentFrontrunner(global_state_layer)) then
14 instruction_pointer(current_layer) := instruction_pointer(current_layer) + 1
15 else
16 instruction_pointer(current_layer) := 4
17 endif
18 case 2 :
19 r_Transaction[auction, currentFrontrunner(global_state_layer), currentBid(

global_state_layer), fallback]
20 case 3 :
21 r_Require[call_response(current_layer+1)]
22 case 4 :
23 par
24 currentFrontrunner(global_state_layer) := sender(current_layer)
25 instruction_pointer(current_layer) := instruction_pointer(current_layer) + 1
26 endpar
27 case 5 :
28 par
29 currentBid(global_state_layer) := amount(current_layer)
30 instruction_pointer(current_layer) := instruction_pointer(current_layer) + 1
31 endpar
32 case 6 :
33 r_Ret[]
34 endswitch
35 endif

Listing 2: Model transated from the Auction solidity contract.

1 rule r_Destroy =
2 if executing_function(current_layer) =

destroy then
3 switch instruction_pointer(

current_layer)
4 case 0 :
5 r_Selfdestruct[owner]
6 case 1 :
7 r_Ret[]
8 endswitch
9 endif

Listing 3: The r Destroy rule.

The rule checks if the executing function
is destroy, then, if instruction pointer is 0,
the r Selfdestruct rule is called. The latter
rule (not reported here) behaves like the Solidity
selfdestruct function: it sets to true a predefined
boolean function disabled, defined on the Users do-
main, which specifies whether the provided contract’s
user has been disabled or not.

To ensure that the selfdestruct function is used

securely (i.e., only the contract owner can terminate
the contract), we add the following state invariant into
the contract model that includes the r Destroy rule.
It is specifically designed to ensure the protected in-
vocation of the r Selfdestruct subrule.

1 invariant over sender :
executing_function(current_layer) =
destroy implies sender(current_layer)
= owner(global_state_layer)

It establishes that, if the executing function
value is destroy, then the transaction sender must be
the contract’s owner. Therefore, the invariant would
be violated if the function’s caller is someone differ-
ent from the contract owner.

The simple model simulation is not enough to re-
veal an invariant violation, and we need to use the
model checker to guarantee that the protected func-
tion property is not violated by the behavior of the
r Selfdestruct rule in any possible computation.

During the transaltion of an ASMETA model into

SECRYPT 2024 - 21st International Conference on Security and Cryptography

340

a NuSMV model, a state invariant is automatically
translated into a CTL AG (i.e., always along all paths)
property to guarantee that the property holds in all
possible runs. In the case of a false property, the As-
metaSMV model checker returns a counterexample,
which can be rented as an Avalla scenario.

The following scenario is, for example, obtained
by the proof of the faulty AG property corresponding
to the invariant.

1 load ../Auction.asm
2
3 set random_user := auction;
4 set random_amount := 0;
5 set random_function := destroy;
6
7 step
8 set random_user := auction;
9 set random_amount := 0;

10 set random_function := destroy;
11
12 step
13 step

Executing this scenario leads to an illegal state
where the invariant is broken, and an Invariant
violation message is reported. This feature allows
the designer to have concrete evidence of the vulner-
ability.

6.2 Checking Inter-Contract
Vulnerabilities

Inter-contract vulnerabilities are more complex and
involve interacting smart contracts. Indeed, to dis-
cover these vulnerabilities, we need an attacker con-
tract able to interact with the vulnerable contract and
to exploit the vulnerability.

In (Braghin et al., 2024), we presented how to
model attackers, i.e., specific smart contracts en-
dowed with functions tailored to exploit a vulnerabil-
ity, and how to execute a given model of a smart con-
tract in combination with an attacker. We also started
to build a library of attackers, differing in the capa-
bilities they have and based on well-known vulnera-
bilities. However, these attacker models do not ex-
ploit exception disorder vulnerabilities. Instead, the
approach presented here covers cases of attacks deal-
ing with exceptions.

The contract presented in Section 5 encompasses
an exception disorder vulnerability that allows an at-
tacker to bring the auction contract to a denial of ser-
vice (DoS) state, preventing an honest user from be-
coming the new front-runner.

The attacker model specified to exploit the excep-
tion disorder vulnerability contains two different rules

(see the listing below): the r Attack rule, which al-
lows the attacker to perform a transaction and inter-
act with the contract, and the r Fallback attacker
rule, which is executed when a transaction without
valid information is received, in particular, it only
raises an exception.

1 rule r_Attack =
2 let ($cl = current_layer) in
3 let ($scl = sender($cl)) in
4 if executing_function($cl) =

attack then
5 switch instruction_pointer(

$cl)
6 case 0 :
7 r_Transaction[

attacker,
random_user,
random_amount,
random_function]

8 case 1 :
9 r_Ret[]

10 endswitch
11 endif
12 endlet
13 endlet
14
15 rule r_Fallback_attacker =
16 let ($cl = current_layer) in
17 if executing_function($cl) !=

attack then
18 switch instruction_pointer($cl

)
19 case 0 :
20 r_Throw[]
21 case 1 :
22 r_Ret[]
23 endswitch
24 endif
25 endlet

Once the model of the Auction smart contract is
combined with the attacker’s model, the following
CTL formula has to be added to the resulting model to
guarantee the absence of the exception disorder vul-
nerability:

1 CTLSPEC AG((sender(current_layer) = user
and executing_function(current_layer)
= bid and instruction_pointer(
current_layer) = 1) implies AF(
currentFrontrunner(global_state_layer)
= user))

In particular, the property checks, for all the possi-
ble model states (AG), that, if the transaction sender is
user, the executing function is bid, and the instruc-
tion pointer is 1, then, in some future state in all the
paths (AF), the user will certainly become the new
front-runner.

The CTL property is proved to be false. By ex-
ploiting the ASMETA feature of building a scenario

An ASM-Based Approach for Security Assessment of Ethereum Smart Contracts

341

from a model checker counterexample, we can recon-
struct the execution leading to the attack.

The following listing reports (some of) the loca-
tion values of the last state returned by the scenario
execution.

1 <State 20 (controlled)>
2 ...
3 call_response(1)=false
4 call_response(2)=false
5 currentFrontrunner(1)=attacker
6 currentFrontrunner(2)=attacker
7 executing_contract(1)=auction
8 executing_contract(2)=attacker
9 executing_function(1)=bid

10 executing_function(2)=fallback
11 global_state_layer=0
12 ...
13 </State 20 (controlled)>

Since each model state stores the whole call stack,
analyzing all the nested transactions’ data is possi-
ble. In particular, in lines 3 and 4, the responses for
the two nested calls are false, which means that an
exception has been raised during the second transac-
tion and, since the bid function propagates the ex-
ception, the first transaction returns a negative value
too. Moreover, in lines 5 and 6, the value for the
currentFrontrunner function does not change dur-
ing any of the performed transactions. Lines 7, 8, 9,
and 10 report values of the executing contract and ex-
ecuting function of the transaction. Finally, line 11,
reports the value of global state layer, which is 0
because of the raised exceptions; if no exception had
been raised, the value for the global state layer
would have been 2.

A V&V analysis similar to the one performed on
the running example has been carried out on various
models of smart contracts we developed, in combina-
tion with the different models of attackers available.
So far, we modeled a number of vulnerable/correct
smart contracts taken from the literature. As for the
attackers, we also modeled an inoffensive attacker and
an attacker that exploits the reentrancy attack.

7 RELATED WORK

Several tools have been developed for automated
analysis, testing, and debugging of Ethereum smart
contracts. However, as highlighted in the study by
(Zhang et al., 2023), a large portion of exploitable
bugs in real-world smart contracts (around 80%) are
not effectively identified by current tools. These bugs
are classified as “machine unauditable bugs” (MUBs)
due to the lack of appropriate test oracles and the need
for domain-specific knowledge to detect them. Dif-

ferent surveys and reviews (Zhang et al., 2023)(Al-
makhour et al., 2020)(Bartoletti et al., 2024) have
been viewed and analyzed to extract some of the most
popular and effective tools for analyzing Ethereum
smart contracts. In particular, most of the litera-
ture categorizes the tools depending on the methodol-
ogy. Among the most popular methodologies, model
checking and theorem proving are mostly used to
check contract correctness, while fuzzing and sym-
bolic execution are mostly used for vulnerability iden-
tification.
Correctness. Tools facing smart contract’s correct-
ness or at least used to ensure that a smart contract ad-
heres to the expected behavior, involve formal meth-
ods, theorem proving, model checking, and runtime
verification techniques.

Tools following the approach presented in (Bhar-
gavan et al., 2016), e.g., Solidity* and EVM*, typ-
ically translate Solidity contracts into F* programs,
and call an F* runtime library for all Ethereum oper-
ations. Specifically, Solidity* compiles Solidity con-
tracts into F* for source-level correctness verification;
EVM* decompiles EVM bytecode into F* code to an-
alyze low-level properties.

The work in (Sotnichek, 2019) exploits the K-
Framework (Ştefănescu et al., 2016), which enables
verification of smart contracts through runtime veri-
fication of bytecode instead of Solidity, as bytecode
language can be used for any high-level contract lan-
guage (used to specify the contract model).

Finally, the work in (Amani et al., 2018) uses Is-
abelle/HOL to verify the EVM bytecode of smart con-
tracts. This is done by splitting the contracts into ba-
sic blocks, and program correctness of each block is
proved by using Hoare triples. The entire verifica-
tion procedure has been successfully applied to a case
study.

In general, all the above-mentioned approaches
require a strong mathematical and logical background
and use complex mathematical notations; this often
prevents practitioners from using them. Instead, the
ASM models can be read as high-level programs, and
have a simple notation and very basic control flow
constructors. Moreover, since they are executable,
ASM models are suitable for simulation and other
validation techniques that are much more lighter than
complex verification approaches, at least to have im-
mediate feedback regarding model reliability before
checking for correctness. In addition, whereas other
approaches cover only few vulnerability classes, we
provide both intra- and inter-contract analysis of se-
curity properties. In particular, having one or more at-
tacker models running in parallel with the smart con-
tract to be validated allows us to detect many more

SECRYPT 2024 - 21st International Conference on Security and Cryptography

342

unsafe interactions than those detected by the ap-
proaches that only search a specific instructions pat-
tern in the code.
Vulnerability Detection. These types of tools aim to
improve the security of smart contracts by detecting
vulnerabilities and verifying contracts against known
vulnerability patterns.

SolCMC and Certora are two leading formal ver-
ification tools for Solidity contracts. SolCMC (Alt
et al., 2022) is a symbolic model checker integrated
into the Solidity compiler since 2019. Developers
specify properties as assert statements within the con-
tract code, which are treated as verification targets.
SolCMC transforms the instrumented contract into
Constrained Horn Clauses (CHCs) and uses CHC sat-
isfiability solvers like Spacer (integrated into Z3) or
Eldarica to check if any assert can fail, producing a
trace witnessing the violation.

Certora (Jackson et al.,), on the other hand,
decouples property specifications from the contract
code. Properties are written in the Certora Verifica-
tion Language (CVL), an extension of Solidity with
metaprogramming primitives. Certora compiles the
contract and associated properties into a logical for-
mula and sends it to an SMT solver. Unlike SolCMC,
verification in Certora is done remotely on a cloud
service.

Among the other tools, Mythril (Smashing
Ethereum Smart Contracts for Fun and ACTUAL
Profit, 2018) employs concolic analysis, taint analy-
sis, and control flow checking of the Ethereum Vir-
tual Machine (EVM) bytecode to identify vulnerabil-
ities. Its approach involves pruning the search space
and identifying values that allow exploiting vulnera-
bilities in the smart contract.

Another promising tool is Slither (Feist et al.,
2019), developed by TrailOfBits. Slither is a
static analysis framework that converts Solidity smart
contracts into an intermediate representation called
SlithIR and applies program analysis techniques like
dataflow and taint tracking to extract and refine vul-
nerability information. Notably, the combination of
Mythril and Slither was found to be notably effective
(Kushwaha et al., 2022).

Securify (Tsankov et al., 2018), developed by
ETH Zurich, also demonstrated good performance. It
statically analyzes EVM bytecode to infer semantic
information about the contract using the Souffle Dat-
alog solver. It then checks compliance and violation
patterns that capture sufficient conditions for proving
if a property holds or not.

While the above-mentioned tools effectively de-
tect common vulnerabilities, they exhibit several lim-
itations. Most do not support identifying attacks in-

volving exception handling or complex interactions
between contracts. The majority of tools do not
even facilitate behavioral analysis (Almakhour et al.,
2020)(Zhang et al., 2023). Furthermore, attack pre-
vention is not the sole consideration during smart con-
tract design and development; contract correctness is
equally crucial to ensure appropriate behavior. Many
tools focus solely on attack identification and do not
verify contract correctness.

Our proposed approach aims to address both de-
sign correctness and vulnerability detection. It can
deal with complete and complex Solidity contracts,
also using exceptions. It allows for providing the user
with a library of malicious contracts that can be used
to check the robustness of a smart contract against
given types of vulnerability.

8 CONCLUSIONS

This paper presents a novel approach to modeling and
verifying Solidity smart contracts using the Abstract
State Machine formal method. It exploits the speci-
fication and analysis capabilities, as well as the wide
range of tools for model validation and verification,
of the ASMs to improve the security and reliability
of smart contracts. Since we model the exception-
handling mechanism, the proposed method can deal
with all features and characteristics of complex So-
lidity smart contracts.

We use a vulnerable version of the Solidity auc-
tion contract, commonly used in blockchain ap-
plications, to show our approach’s modeling and
vulnerability-checking mechanism. In particular, we
face the verification of intra- and inter-contract prop-
erties, allowing us to identify vulnerabilities and en-
sure contract reliability.

Our approach offers several advantages:

• Formal foundation: ASMs provide a formal foun-
dation for modeling and verifying smart contracts,
ensuring mathematical rigor and precision.

• Modular design: The ASM model is modular, al-
lowing the analysis of individual contracts and the
investigation of interactions between contracts.

• Tool support: ASMETA provides a suite of tools
for model development, simulation, validation,
and verification, and they can represent efficient
support to practitioners in the tool-drive analysis
of smart contracts.

In future work, we plan to extend our modeling
capabilities to address more complex smart contract
scenarios, developing automated tools for model gen-
eration from Solidity code, and investigating the ap-

An ASM-Based Approach for Security Assessment of Ethereum Smart Contracts

343

plication of machine learning techniques to enhance
vulnerability detection.

We believe that our approach can contribute to the
development of more effective and complete model-
checking methods to improve smart contracts’ secu-
rity and reliability, fostering wider adoption and inno-
vation in blockchain-based applications.

REFERENCES

(2016). King of the Ether Throne - Post-Mortem Investi-
gation. https://www.kingoftheether.com/postmortem.
html.

Almakhour, M., Sliman, L., Samhat, A. E., and Mellouk,
A. (2020). Verification of smart contracts: A survey.
Pervasive and Mobile Computing, 67:101227.

Alt, L., Blicha, M., Hyvärinen, A. E., and Sharygina, N.
(2022). SolCMC: Solidity compiler’s model checker.
In International Conference on Computer Aided Veri-
fication, pages 325–338. Springer.

Amani, S., Bégel, M., Bortin, M., and Staples, M. (2018).
Towards verifying Ethereum smart contract bytecode
in Isabelle/HOL. In Proceedings of the 7th ACM SIG-
PLAN international conference on certified programs
and proofs, pages 66–77.

Arcaini, P., Gargantini, A., and Riccobene, E. (2010). As-
metaSMV: a way to link high-level ASM models to
low-level NuSMV specifications. In Abstract State
Machines, Alloy, B and Z: Second International Con-
ference, ABZ 2010, Orford, QC, Canada, February
22-25, 2010. Proceedings 2, pages 61–74. Springer.

Arcaini, P. and Riccobene, E. (2019). Automatic Refine-
ment of ASM Abstract Test Cases. In 2019 IEEE In-
ternational Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW), pages 1–10.

Bartoletti, M., Fioravanti, F., Matricardi, G., Pettinau,
R., and Sainas, F. (2024). Towards benchmark-
ing of Solidity verification tools. arXiv preprint
arXiv:2402.10750.

Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Golla-
mudi, A., Gonthier, G., Kobeissi, N., Kulatova, N.,
Rastogi, A., Sibut-Pinote, T., Swamy, N., et al. (2016).
Formal verification of smart contracts: Short paper. In
Proceedings of the 2016 ACM workshop on program-
ming languages and analysis for security, pages 91–
96.

Borger, E., Stark, R., and Borger, E. (2003). Abstract state
machines: a method for high-level system design and
analysis / Egon Borger, Robert Stark. Springer, Berlin.

Braghin, C., Cimato, S., Damiani, E., and Baronchelli,
M. (2020). Designing smart-contract based auctions.
In Yang, C.-N., Peng, S.-L., and Jain, L. C., edi-
tors, Security with Intelligent Computing and Big-data
Services, pages 54–64, Cham. Springer International
Publishing.

Braghin, C., Riccobene, E., and Valentini, S. (2024). Mod-
eling and verification of smart contracts, with Abstract
State Machines. In Proceedings of ACM SAC Confer-
ence (SAC’24).Accepted to 39th ACM/SIGAPP Sym-
posium on Applied Computing.

Carioni, A., Gargantini, A., Riccobene, E., and Scandurra,
P. (2008). A scenario-based validation language for
ASMs. In Abstract State Machines, B and Z: First
International Conference, ABZ 2008, London, UK,
September 16-18, 2008. Proceedings 1, pages 71–84.
Springer.

Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M.
(1999). NuSMV: A new symbolic model verifier. In
Computer Aided Verification: 11th International Con-
ference, CAV’99 Trento, Italy, July 6–10, 1999 Pro-
ceedings 11, pages 495–499. Springer.

Ştefănescu, A., Park, D., Yuwen, S., Li, Y., and Roşu, G.
(2016). Semantics-based program verifiers for all lan-
guages. In Proceedings of the 31th Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’16), pages 74–91. ACM.

Ethereum (2024). Ethereum Virtual Machine (EVM). https:
//ethereum.org/en/developers/docs/evm/.

Feist, J., Greico, G., and Groce, A. (2019). Slither: a static
analysis framework for smart contracts. In Proceed-
ings of the 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain, WET-
SEB ’19, page 8–15. IEEE Press.

Gargantini, A., Riccobene, E., and Scandurra, P. (2008).
Model-driven language engineering: The ASMETA
case study. In 2008 The Third International Confer-
ence on Software Engineering Advances, pages 373–
378. IEEE.

Gargantini, A., Riccobene, E., Scandurra, P., et al. (2007).
A metamodel-based simulator for ASMs. In Proc. of
the 14th Intl. Abstract State Machines Workshop.

Jackson, D., Nandi, C., and Sagiv, M. Certora technology
white paper. https://docs.certora.com/en/latest/docs/
whitepaper/index.html.

Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., and Lee,
H.-N. (2022). Ethereum smart contract analysis tools:
A systematic review. IEEE Access, 10:57037–57062.

Siegel, D. (2016). Understanding The DAO
Attack. https://www.coindesk.com/learn/
understanding-the-dao-attack/.

Smashing Ethereum Smart Contracts for Fun and ACTUAL
Profit (2018). Smashing Ethereum Smart Contracts
for Fun and ACTUAL Profit. HITBSecConf. https:
//github.com/Consensys/mythril.

Sotnichek, M. (2019). Formal verification
of smart contracts with the K frame-
work. https://www.apriorit.com/dev-blog/
592-formal-verification-with-k-framework.

Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A.,
Bünzli, F., and Vechev, M. (2018). Securify: Practical
security analysis of smart contracts. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, page 67–82,
New York, NY, USA. Association for Computing Ma-
chinery.

Wood, G. et al. (2014). Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yel-
low paper, 151(2014):1–32.

Zhang, Z., Zhang, B., Xu, W., and Lin, Z. (2023). De-
mystifying exploitable bugs in smart contracts. In
2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 615–627. IEEE.

SECRYPT 2024 - 21st International Conference on Security and Cryptography

344

