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Abstract: Early detection and diagnosis of dementia is a major challenge for medical research and practice. Hence, in 
the last decade, digital drawing tests became popular, showing sometimes even better performance than their 
paper-and-pencil versions. Combined with machine learning algorithms, these tests are used to differentiate 
between healthy people and people with mild cognitive impairment (MCI) or early-stage Alzheimer's disease 
(eAD), commonly using data from the Clock Drawing Test (CDT). In this investigation, a Random Forest 
Classification (RF) algorithm is trained on digital Tree Drawing Test (dTDT) data, containing socio-medical 
information and process data of 86 healthy people, 97 people with MCI, and 74 people with eAD. The results 
indicate that the binary classification works well for homogeneous groups, as demonstrated by a sensitivity 
of 0.85 and a specificity of 0.9 (AUC of 0.94). In contrast, the performance of both binary and multiclass 
classification degrades for groups with heterogeneous characteristics, which is reflected in a sensitivity of 
0.91 and 0.29 and a specificity of 0.44 and 0.36 (AUC of 0.74 and 0.65), respectively. Nevertheless, as the 
early detection of cognitive impairment becomes increasingly important in healthcare, the results could be 
useful for models that aim for automatic identification. 

1 INTRODUCTION 

Early detection and diagnosis of dementia, especially 
in its early stages, is a major challenge in medical 
research and practice (Yamasaki & Ikeda, 2024). 
Traditional methods such as Shulman's Clock 
Drawing Test (CDT) have proven useful for detecting 
moderate to severe dementia but show limitations in 
identifying mild cognitive impairment (MCI, Huang 
et al., 2023). 

In this context, digital drawing tests have become 
more popular. By using a tablet and a pressure-
sensitive stylus, patients are asked to create drawings 
on a tablet, which requires a complex interplay of 
different cognitive abilities. Examples of such 
drawing tests (see Figure 1 and Figure 2) include the 
CDT (CDT, Yuan et al., 2021), the Spiral Drawing 
Test (SDT, Fujiwara et al., 2023), and the digital Tree 
Drawing Test (dTDT, Robens et al., 2019). The 
benefits of those tests are that they create a less 
stressful situation for the patient through creative 
image design and freer presentation options, but also 

use modern software for data collection, evaluation, 
and statistical analyses of the complete drawing 
process. This opens the potential to determine the 
severity of dementia from a more patient-oriented 
perspective and to enable an art-based but at the same 
time reliable screening for patients with MCI and 
early-stage Alzheimer's disease (eAD). 

 

Figure 1: Examples of the Clock Drawing Test (left; Yoon 
& Ahn, 2023) and the Spiral Drawing Test (right; Müller et 
al., 2017). 
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Thus, digital drawing tests not only have become 
a promising tool in different areas of health services, 
but also show comparable or sometimes even superior 
performance than their paper-and-pencil versions, 
according to recent systematic reviews and meta-
analyses of screening studies on MCI (Chan et al., 
2021; Ding et al., 2022). At the same time, the 
digitization of these tests enables the combination of 
process data with machine learning algorithms. 
Currently, the CDT data is commonly used for 
classification tasks (Binaco et al., 2020; Jimenez-
Mesa et al., 2022). The same applies when dealing 
with SDT data (Akyol, 2017; Fahim et al., 2021). 
However, with regard to the dTDT data, only a few 
approaches exist, which could be due to the 
complexity of data. While drawing tests such as the 
CDT or the SDT mainly focus on graphomotoric 
aspects (i.e., drawing movement), processing aspects 
(i.e., time of completion and speed), and spatial 
reasoning (deviation from a given form), the dTDT 
also includes texture features (e.g., the use and change 
of colors or stroke width). 

Results, which were obtained by using a logistic 
regression model (Robens et al, 2019), show that the 
research with dTDT data is worth continuing: Firstly, 
patients, suffering on cognitive impairments, have a 
tendency to draw smaller and simpler images, which 
were not positioned centrally on the drawing surface. 
Secondly, a lack of variety in the selection of colors 
and line widths was observed, which could indicate a 
limited creative decision-making ability. Thirdly, the 
movements of the pencil were less fluid and less 
coordinated, sometimes even fleeting with a tendency 
towards increased movements in the air. And finally, 
a reduced speed when drawing, a delayed start to the 
drawing process, and longer pauses when not drawing 
were observed. 

This investigation aims to extend the analyses of 
Robens et al. (2019) by using a Random Forest 
Classification (RF) model for predicting cognitive 
impairment. RF was chosen because it already proved 
to be adequate for handling dTDT data when applied 
in binary classification models (Li et al., 2022). In 
contrast to these two previous studies, not only the 
binary classification is investigated here, but also a 
first step towards a multiclass classification. Such 
multiclass model would be beneficial for the 
classification of impairments in clinical practice, as 
the prediction would not depend on the model 
selected according to the given circumstances, i.e., 
the experience of the medical professional and the 
symptoms of a patient. 

2 MATERIAL AND METHODS 

2.1 Dataset 

The dataset initially contains 66 numeric features of 
257 people who were asked to draw a tree, similar to 
Koch's tree test (Koch, 1952). In contrast to Koch's 
tree test, these people had to draw the tree digitally 
and were not bound by the requirement to draw a fruit 
tree (see Figure 2 for an example). 

The process data recorded during the drawing 
make up the majority of the initial features. Other 
features include socio-medical information, i.e., age, 
gender, and the score of the Mini-Mental Status 
Examination (MMSE) questionnaire. The feature 
describing the people's cognitive health condition 
assessed by medical professionals is used as outcome. 
With this, the people can be divided into three groups: 
a healthy control group (HC, 86 people), a group with 
MCI (97 people), and a group with eAD (74 people). 
The MCI and eAD group can also be viewed as a 
combined group: the cognitive impaired group, which 
is the opposite of the healthy control group (nonHC, 
171 people). 

 

 
Figure 2: Example of a digital tree drawing taken from 
(Robens & Ostermann, 2020). 

The socio-medical information of the three 
groups is given in Table 1, revealing some significant 
differences. Looking at the gender balance, male 
participants are dominant in the HC group, while 
female participants are the majority of the other two 
groups, ranging from 53.1 % in the MCI group to 
70.3 % in the eAD group. There are also imbalances 
between the groups with respect to age and 
educational years. Patients in the nonHC group were 
significantly older than those in the HC group. 
Moreover, participants in the HC group had more 
educational years (14.0 years) than those in the MCI 
(12.9 years) and eAD group (11.1 years). 
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To enhance the dataset and compensate for the 
imbalances, further features, e.g., image colors or 
texture characteristics, were extracted from the tree 
images. These features were taken from the findings 
of previous studies, investigating cognitive condition 
(Ostermann et al., 2020; Robens et al., 2020). In 
addition, features that are easy to calculate were 
added, e.g., image size, ratio between image and 
screen, or center of mass. At the end, there were a 
total of 22 new features that, together with the others, 
form the basis for possible predictors. 

Table 1: Socio-medical information of the participants 
subdivided by their cognitive health condition (MMSE: 
Mini-Mental Status Examination; M: Mean; SD: Standard 
deviation; *: significant differences between the groups). 

 HC MCI eAD
Number 86 97 74
Gender*  

34 (39.5 %) 
52 (60.5 %) 

 
52 (53.6 %) 
45 (46.4 %) 

 
52 (70.3 %)
22 (29.7 %)

 Female 
Male 

Age*  
64.9 ± 10.4 

64 

 
68.1 ± 12.0 

70 

 
73.6 ± 11.1 

75 
 M ± SD 

Median 
Education*  

14.0 ± 3.0 
13 

 
12.9 ± 2.8 

12 

 
11.1 ± 3.1 

11 
 M ± SD 

Median 
MMSE*  

29.2 ± 0.9 
29 

 
26.3 ± 2.1 

26 

 
22.1 ± 3.0 

22 
 M ± SD 

Median 

2.2 Process Flow 

The process flow for developing the binary and 
multiclass models consisted of four steps, whereby 
the dataset with the initial features served as the basis 
(Figure 3). First, the data set was prepared for training 
the models. This was followed by the selection of the 
relevant features. Once these were determined, the 
models were optimized by tuning the 
hyperparameters. Finally, the models were evaluated 
with unseen test data. 

Since feature selection (except pre-selection) and 
model evaluation are intentionally randomized steps, 
they were repeated 20 times. Only the split of the 
dataset was controlled at the pre-processing step by 
setting a seed, which shall lead to comparable results. 

2.2.1 Data Pre-Processing 

First, the dataset was checked for missing values. If 
values were missing, the person and all according 
data were removed from the dataset. After that, the 
features were normalized so that the models could 
process the dataset better. Normalization can be done 
with various methods. This investigation uses a min-

max approach, which achieves comparatively good 
results by rescaling the features into a new range of 
values (Jayalakshmi & Santhakumaran, 2011). The 
following formula expresses the used scaling: 
 𝑍௜,௝ ൌ 𝑋௜,௝ െ minሺ𝑋௜ሻmaxሺ𝑋௜ሻ െ minሺ𝑋௜ሻ (1)

 

With this scaling, each value Xi,j of a feature i 
becomes a value Zi,j between 0 and 1. The functions 
min and max denote the minimum and maximum 
values of feature i. 

After normalization, the dataset was divided into 
two parts using a fixed seed. The first part was used 
to train the models and the second part to test the 
models. The ratio of training data and test data was 
80:20. All the subsequent steps were performed with 
this dataset split to ensure that the same data is always 
used for training and that the data for evaluation has 
never been seen before. 
 

 
Figure 3: Process flow of model development, starting with 
the dataset itself, through pre-selection to evaluation. 

2.2.2 Feature Selection 

In the first step of feature selection, the 66 initial 
features were pre-selected to a total of 19 using a list 
created by art therapists specialized in dementia 
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(Robens et al., 2019). The 22 newly added features 
remained unaffected by this reduction. 

In the second step, a recursive feature elimination 
approach with a 10-fold cross-validation (RFECV) 
were used. The RF algorithm wrapped by the RFECV 
were used to determine the features within the 
training data. The approach identifies relevant 
features by using a subset of all possible feature 
combinations (2n - 1), starting with all features and 
successively reducing the number of features. The 
relevance was then indicated by ascending numbers, 
whereby relevant features that have been selected 
were marked. 

In a third step, the features from the second step 
were further viewed in accordance with their 
contribution to the model’s accuracy, which was 
indicated by the number of selected features in 
addition to their ranking. Therefore, a feature was 
eliminated if it only contributes with many other 
features. This was to ensure that the most relevant 
features (frequent occurrence plus high rank) were 
identified as predictors for the classification task. 

2.2.3 Hyperparameter Tuning 

After the most relevant features were selected, the 
hyperparameters of the RF models for the binary and 
multiclass classification had to be tuned to further 
improve the models’ accuracy. This was done using a 
grid search approach, again, with 10 folds for cross-
validation (GSCV). 

Seven hyperparameters (n_estimators, 
max_depth, min_samples_split, min_samples_leaf, 
max_features, bootstrap, and class_weight) were 
tuned, starting with a wide range of values. The range 
then was optimized step by step until no further 
improvement in accuracy could be observed. 

2.2.4 Evaluation 

For the evaluation, the RF models were also trained 
with the 10-fold GSCV. After training, the RF models 
received the test data the first time to perform their 
prediction. 

Accuracy, precision, sensitivity, specificity, and 
F1-score were used to assess the performance of the 
models. Moreover, the diagnostic power of the 
selected features was analyzed using the areas under 
curve (AUC). The interpretation is as follows (Polo 
& Miot, 2020): 
 worthless: 0.6 - 0.7; 
 poor: 0.7 - 0.8; 
 good: 0.8 - 0.9; 
 excellent: > 0.9. 

3 RESULTS 

3.1 Data Pre-Processing 

When checking the dataset for missing values, only 
one value and therefore one person was removed 
from the dataset, leaving 256 people for the model 
development. The subsequent split of the dataset into 
training and test data resulted in 204 and 52 people, 
respectively. 

3.2 Feature Selection 

The visual output (Figure 4) of the RFECV indicates 
that the optimal number of features for all three 
models is probably in the lower decimal range. From 
a value of around 15, all models appear to stagnate, 
which could indicate overfitting. Therefore, between 
10 and 15 individual features seems to be optimal for 
each model. 

When looking at the quantitative output of the 
RFECV, similarities can be observed. 15.45 ± 8.48 
features are used to classify the HC and nonHC 
groups, 23.35 ± 7.71 for HC and eAD groups, and 
14 ± 4.95 for HC, MCI, and eAD groups. Except for 
the classification of HC and eAD, the optimal number 
of features falls within the previously assumed range 
due to the standard deviation. 

Table 2: Features remaining for model evaluation (B1: 
binary classification of HC and nonHC; B2: binary 
classification of HC and eAD; M: multiclass classification 
of HC, MCI, and eAD). 

Feature B1 B2 M 
Color Changes  X X
Color Count  X 
Contrast  X X
Duration (ms) X  X
Image Width X X X
Not Painting (%) X X X
Page Relation X  X
Painting (ms) X  
Pen Up Count X X X
Pen Up Pen Down Relation X X X
Pen Up Stroke Length X  X
Pressure Velocity Relation X X X
Stroke Changes  X X
Strokes Per Minute X X X
Velocity Mean X X X
Volatile Motion Mean X X X

 
All features considered relevant are listed in Table 2. 
There are 12 features for the two binary classification 
models and 14 for the multiclass classification model. 
Specific colours (e.g., red, green, or yellow) and the 
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center of mass of the image (i.e., x and y coordinate 
of the pixel) were excluded in the feature selection 
process mainly because they were only partially used 
to train the RF models and had less importance when 
they appeared. Moreover, socio-medical information, 
i.e., age, educational years, gender, and other mental 
health related data such as MMSE or data from CDT, 
were also excluded.  

 
Figure 4: Results of the RFECV. For each model, the 
diagrams show the correlation between the number of 
features and their corresponding accuracy. 

3.3 Hyperparameter Tuning 

Tuning the hyperparameter resulted in a significant 
improvement in accuracy for each model. It was best 
with the multiclass model. Its accuracy during feature 
elimination was 0.49 ± 0.04, with a peak of about 
0.59 after tuning. The two binary classification 
models showed a similarly good improvement. The 
accuracy increased from 0.68 ± 0.02 to about 0.74 in 
the classification of HC and nonHC and from 
0.75 ± 0.04 to about 0.82 in the classification of HC 
and eAD. 

3.4 Evaluation 

The binary model to classify HC and nonHC showed 
the second best results. It had a mean accuracy of 
74 % and was quite successful at detecting the non-
healthy people (sensitivity) but lacked in detecting the 
healthy ones (specificity) as given in Table 3. Among 
the most important features were “Velocity Mean”, 
“Pen Up Count”, and “Strokes Per Minute”. 

The distinction between HC and eAD group was 
most successful. The model’s mean accuracy was 
88 %. In detail, the model detected healthy people 
similarly well as people with eAD, shown by a mean 
specificity of 90 % and a mean sensitivity of 87 %, 
respectively. Also here, “Velocity Mean” was one of 
the most important features. In addition, “Color 
Changes” and “Pressure Velocity Relation” had a 
strong impact on the model. 

Table 3: Metrics of the GSCV represented as mean and 
standard deviation (B1: binary classification of HC and 
nonHC; B2: binary classification of HC and eAD; M: 
multiclass classification of HC, MCI, and eAD). 

 B1 B2 M 
Accuracy 0.74 ± 0.02 0.88 ± 0.01 0.22 ± 0.01
Precision 0.74 ± 0.03 0.87 ± 0.01 0.4 ± 0.02
Sensitivity 0.91 ± 0.02 0.85 ± 0 0.29 ± 0.32
Specificity 0.44 ± 0.03 0.9 ± 0.02 0.36 ± 0.01
AUC 0.74 ± 0.01 0.94 ± 0 0.65 ± 0.01
F1-Score 0.68 ± 0.02 0.87 ± 0.01 0.29 ± 0.01

 
As presented in Table 3, the multiclass model was 

the worst of the three, although “Velocity Mean” had 
the most impact as in the two binary classifications. 
In general, all features had a relatively equal impact 
on the model, which was found by looking at their 
importances. More importantly, the model showed 
great difficulties in classifying the MCI group, 
resulting in a mean accuracy of 22 %, which was even 
below chance (33.3 %). This is similar in terms of 
specificity and sensitivity. 
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Figure 5: ROC curve for binary and multiclass 
classification. For each model, the diagrams show the 
correlation between the sensitivity (true positive rate) and 
the corresponding 1 – specificity (false positive rate). 

Receiver operating characteristic (ROC) curves in 
Figure 5 display the models’ performance for the 
binary and multiclass classification. With mean 
AUCs of 0.74 and 0.94 for the binary models, the 
results can be considered as in need of improvement 

and almost perfect, respectively. The mean AUC of 
0.65 for the multiclass model is unfortunately not 
sufficient. 

4 DISCUSSION 

This investigation describes the use of three RF 
classification models for a dataset of healthy and 
cognitive impaired people that completed the dTDT. 
The features of the dataset were first reduced in 
accordance with the similar study of Robens et al. 
(2019). The remaining 19 features (22 including age, 
gender, and educational years) were then expanded 
by features that could easily be calculated and 
features based on other findings of cognitive 
condition (Ostermann et al., 2020; Robens et al., 
2020). 

The evaluation of the trained models reveals that 
the distinction between the HC group and the group 
with eAD works quite well. The result is comparable 
to previous studies on dTDT data (Li et al., 2022; 
Robens et al., 2019), indicating a functional and valid 
model. In contrast to that, no similar result could be 
achieved with the distinction between the HC group 
and the nonHC group. The model’s performance is 
significantly worse as in the mentioned two studies, 
but comparable with the result of a study on digitized 
CDT data (Jimenez-Mesa et al., 2022). 

Although the available features and selection 
process were almost identical to the study of Robens 
et al. (2019), the limiting factor here might be that the 
dataset is too heterogeneous and too imbalanced. On 
the one hand, mean MMSE scores between HC and 
MCI and between MCI and eAD overlap (Table 1). 
On the other hand, all three groups had similarly long 
educational years. Since MMSE is a marker for 
cognitive condition (Dellasega & Morris, 1993) and 
education has a protective effect on developing 
cognitive impairment such as AD (Sando et al., 
2008), the process data could be disturbed by these 
circumstances, making a clear distinction not 
possible. According to Wenner et al. (2020), 
manipulating the training data and adjusting the 
classifier could improve the classification with an 
imbalanced dataset, which might be considered in 
future studies. 

For the low performance of the multiclass model, 
which was below chance, the same limitations and 
solutions mentioned for the binary classification 
could be applied here. Another improvement might 
be utilizing a model that specifically is designed for 
the classification of trees based on their size 
(Setiawan et al., 2020). Nevertheless, there is still a 
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need for further investigation, because even if it was 
done with dCTD data, a prediction with a multiclass 
classification can be better than by chance (Binaco et 
al., 2020). 

5 CONCLUSIONS 

Early detection of cognitive impairment is an 
increasingly important field in healthcare. Therefore, 
the idea of combining machine learning algorithms 
with digital drawing tasks to enable automatic 
identification of cognitive impairments has been 
explored for some time. With the here presented 
results, which vary strongly depending on the 
classification task, new insights could be provided for 
handling dTDT data. Whereas the binary 
classification of homogeneous and sufficiently 
distinct groups works well, both binary and multiclass 
classification seem to have their difficulties if the 
characteristics that form a group are not distinct 
enough. 
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