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Abstract: The polyhedron abstract domain is a cornerstone of static program analysis, providing a powerful mathematical
framework for reasoning about numerical properties of programs. It can express a large number of properties.
This makes it complex and time-consuming. In the polyhedral analysis, the widening operator with threshold
proposes a good compromise between precision and time execution. However, ensuring both termination
and precision in the analysis process remains a challenge, particularly when dealing with complex programs
and high-dimensional state spaces. This paper proposes a novel approach to improve polyhedral analysis by
dynamically computing relevant widening thresholds, thereby improving both the termination and precision of
the analysis. We demonstrate the effectiveness of our approach through experimental evaluation on a variety of
benchmark programs. Our results show significant improvements in both analysis termination and precision.

1 INTRODUCTION

Static analysis by abstract interpretation aims to au-
tomatically proving properties of computer programs,
by computing invariants that over-approximate the set
of program behaviours (Cousot and Cousot, 1977;
Cousot and Cousot, 1992). Static analysis uses the
(concrete) program semantic function F to define a
program invariant X , such that F(X) = X . This rep-
resents the set of reachable program states, but is
however not computable. To deal with that, an over-
approximation is introduced using abstract interpre-
tation (Cousot and Cousot, 1977). The main idea is
to define a new (abstract) semantic function F♯ which
computes an abstract program invariant including the
concrete program invariant. This inclusion guarantees
the safety of the result but not its accuracy: the larger
the over-approximation is, the higher the probability
to add false alarms. This over-approximation is due
to the type of elements manipulated by F♯; the most
common and expressive abstraction is to represent
the reachable states of numerical programs as con-
vex polyhedra (Cousot and Halbwachs, 1978). The
polyhedron abstract domain (Cousot and Halbwachs,
1978) returns invariants that express a large set of
properties. However, this expressiveness makes the
analysis more complex and expensive: it has expo-
nential space and time complexity in the worst case.

The polyhedra abstract domain also faces signifi-
cant challenges and limitations. These include scala-

bility concerns in handling large programs with high-
dimensional state spaces, imprecision in handling
non-linear expressions and non-convex constraints,
and the trade-off between precision and efficiency in
analysis algorithms. Various techniques have been
proposed to alleviate this complexity burden, aiming
to strike a balance between analysis efficiency and
accuracy. However, many of these approaches in-
evitably sacrifice accuracy in order to achieve compu-
tational tractability. In (Castagna and Gordon, 2017),
a new version of the polyhedra abstract domain is de-
fined, to decrease the complexity of the analysis. For
that, a decomposed version of the polyhedron is used.
In (Yu and Monniaux, 2019), authors propose a new
polyhedral projection operator based on parametric
linear programming using floating-point arithmetic.
This operator is more efficient than the classical
Fourier-Motzkin elimination method. A new opera-
tor is proposed in (Arceri et al., 2023) to model the
splitting of control flow paths. This operator is used
to allow more efficient analysis when using abstract
domains that are expensive to compute. Note that
the proposed split operator has no impact on preci-
sion. To find a good trade-off between expressive-
ness and efficiency, new domains have been devel-
oped. These domains provide coarse-grained repre-
sentations of numerical properties, sacrificing preci-
sion for computational efficiency. While suitable for
certain types of analysis, these approximations may
fail to capture intricate dependencies or non-linear re-
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lationships present in the program, leading to impre-
cise results. They are known as weakly relational ab-
stract domains (Miné, 2006; Sankaranarayanan et al.,
2005; Goubault et al., 2012; Seladji and Bouissou,
2013; Seladji, 2017).

The other tool to reduce the computation time
of the analysis is to modify the Kleene algorithm
to make it faster. By using operators like widen-
ing (Cousot and Cousot, 1992) and narrowing that
accelerate convergence in iterative analysis algo-
rithms by approximating fixpoints or refining abstrac-
tions. Widening introduces imprecision by over-
approximating program states to ensure termination,
while narrowing aims to restore precision by refining
abstractions iteratively. However, striking the right
balance between widening and narrowing parameters
is crucial to avoid excessive imprecision or divergence
in the analysis. The widening operator in the poly-
hedra domain is used to ensure termination in iter-
ative analysis algorithms, particularly when dealing
with loops or recursive structures. By removing con-
straints that are not stable from one iteration to the
next. However, it is essential to recognize that widen-
ing introduces a large over-approximation, leading to
imprecise analysis results.

Techniques have been developed to minimise this
loss of accuracy. Threshold widening (Lakhdar-
Chaouch et al., 2011) predefines a set of thresholds,
the elements of which are used as candidate bounds
at each iteration. However, the choice of widen-
ing thresholds significantly impacts the analysis qual-
ity, balancing termination and precision. Finding
the optimal widening threshold is non-trivial and of-
ten requires manual tuning, limiting the scalability
and effectiveness of the analysis. In our previous
work (Bouissou et al., 2012), we presented a method
that dynamically computes a relevant set of thresholds
using relevant set of thresholds using numerical anal-
ysis tools. This technique was applied to the interval
and octagon abstract domains. It should be noted that
the solutions proposed to improve the computational
time of a polyhedral analysis can be categorized into
two main strategies:

• restricted data representation : One approach to
improving computational time in polyhedral anal-
ysis involves simplifying the representation of
program data to facilitate manipulation.

• improvement of fixed-point computation tech-
niques : it focuses on enhancing the efficiency
of fixed-point computation algorithms, typically
by employing better widening operators or con-
vergence strategies.
In this paper, we combines the advantages of

both data representation simplification and fixed-

point computation improvement techniques to im-
prove the polyhedral analysis. By exploiting the com-
pactness of support function-based representations,
our method facilitates faster convergence in fixed-
point computation algorithms while maintaining anal-
ysis precision. In addition, the use of support func-
tions allows efficient manipulation of program con-
straints, further improving computational efficiency.
The paper is organized as follows: in Section 2, we
explain the proposed method using a simple example.
In Section 3, we introduce some useful definitions. In
Section 4, we present our main contribution. Some
benchmarks are given in Section 5. Finally, we con-
clude with a conclusion and some perspectives.

2 AN ILLUSTRATED EXAMPLE

To illustrate the intuition behind our approach, let’s
consider a simple example involving a linear filter
program. Figure 1 depicts the structure of the pro-
gram. Analyzing the given program using the poly-
hedral abstract domain presents challenges due to its
inherent complexity. The analysis couldn’t terminate
within a reasonable time (e.g., more than 10 minutes),
it indicates the complexity of the program and the lim-
itations of the polyhedral analysis approach for this
particular case. In such scenarios, it’s essential to con-
sider alternative analysis techniques such as the use
of the widening operator. Note that, the analysis re-
sult for the given program, using widening, is an un-
bounded polyhedron. Indeed, widening with thresh-
olds (Lakhdar-Chaouch et al., 2011), offers an inter-
esting alternative approach. By using a predefined
set of thresholds as fixed-point candidates, this tech-
nique aims to control the trade-off between analysis
precision and computational complexity. However,
the static nature of threshold selection can be a bot-
tleneck, as it does not take into account the dynamics
of the analysed program. In this paper, we propose an
approach to compute dynamically relevant thresholds
for polyhedral analysis. This approach aims to adap-
tively adjust widening thresholds based on the evolv-
ing program state.

For that, we perform a pre-analysis using a sub-
polyhedra abstract domain (Seladji and Bouissou,
2013). This domain is based on a given set of tem-
plates. In this example, we define these templates
as a set of vectors uniformly distributed on a unit
sphere. First, a pre-analysis is performed using an
sub-polyhedron abstract domain (Seladji and Bouis-
sou, 2013) based on a given set of templates, such as
vectors uniformly distributed on a unit sphere. In Fig-
ure 2, the yellow polyhedron represents the result of
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double input() {
double u = 10.0, l = 0.0;
return ( rand()/(double)RAND_MAX ) * (u-l) + l;

}
int main() {

double xn, yn, ynm1,ynm2 ;
xn=xnm1=xnm2=yn=ynm1=ynm2=0;
int i=0;
while (i<4000) {

yn = xn + 0.5*ynm1 - 0.45*ynm2;
printf("%f %f\n",ynm1,yn);
ynm2=ynm1;
ynm1=yn;
xn = input();

}
return 0;

}

Figure 1: The body of the illustrated program called
filter2.

the pre-analysis, denoted as P. The obtained result
corresponds to a template representation of the fixed
point obtained using the polyhedra abstract domain.
Note that this pre-analysis has polynomial complex-
ity in the number of iterations and linear complexity
in the number of template vectors, which contributes
to the scalability and efficiency of the analysis pro-
cess.
The main idea is to use P to improve the polyhedral
analysis. To do this, we consider P as a fixed point
candidate and use it as a relevant threshold for the
widening operator to accelerate the analysis.

In Figure 2, the accuracy and efficiency of the pro-
posed approach is demonstrated by comparing the or-
ange polyhedron obtained by using P as a relevant
threshold with the brown polyhedron obtained from
the 200th Kleene iteration using polyhedral analysis
Note that, this analysis is done in less than 7 seconds,
which we consider very fast.

3 BACKGROUND

This section outlines some of the important notions
used in this article. In the rest, we note by R the set
of real numbers and ∀x,y ∈ R,< x,y > represents the
scalar product of x by y.

3.1 The Polyhedral Analysis

A convex polyhedron is a subset of Rn defined as the
intersection of finitely many half-spaces, each half-
space is given as a constraint of the form

n

∑
i=1

< αi,xi >≤ c

where ∀i ∈ [1,n], αi ∈ R and c ∈ R. We here adopt
the constraint representation of polyhedron, which is

Figure 2: The yellow polyhedron represents the one ob-
tained using the sub-polyhedra abstract domain and the or-
ange polyhedron is the one obtained using our method. The
polyhedron in brown represents the one obtained in the
200th kleene iteration using the polyhedra abstract domain.

best suited for static analysis. The set of all convex
polyhedra has a lattice structure with an exact inter-
section operator and the convex hull as union (Cousot
and Halbwachs, 1978). Obviously, for implementa-
tion issues, the coefficients of the constraints are usu-
ally chosen as rational numbers and the set of con-
straints is encoded using a matrix representation.

Definition 1 The abstract domain of convex polyhe-
dra, noted Cn, is the set of all pairs (A,b) where
A ∈ Rn×kis a real matrix and b ∈ Rn is a real vector.
A polyhedron P given by the pair (A,b) represents the
set of all points (x1, . . . ,xn) ∈ Rn such that

∀ j ∈ [1,k],
n

∑
i=1

〈
A j,i,xi

〉
≤ b j .

Given a polyhedron P = (A,b), the jth constraint
of P is

〈
A j,X

〉
≤ b j where X is the vector of variables

and A j is the jth row of A.
The static analysis of a program with the poly-

hedra domain consists in computing the least fix-
point P∞ of a monotone map F : Cn → Cn given by
the program semantics. To do so, the most used
method is Kleene algorithm that uses the equation
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Algorithm 1: Kleene iteration algorithm for the polyhedra
abstract domain.

1: P0 :=⊥
2: repeat
3: Pi := Pi−1 ⊔F(Pi−1)
4: until Pi ⊑ Pi−1

P∞ =
⊔

k∈I Fk(⊥), where ⊥ is the least element of
Cn. Kleene iteration Algorithm for the polyhedra ab-
stract domain is given in Algorithm 1. So analysing
programs using the abstract interpretation based static
analysis of a program consists of computing the least
fixed point of the equation P = P⊔F(P). As Kleene
algorithm may not terminate and may not compute
the least fixed point P∞, a widening operator is used
to compute an over-approximation Pw ⊒ P∞.

3.2 The Sub-Polyhedral Analysis

The sub-polyhedra abstract domain presented in (Se-
ladji and Bouissou, 2013) is based on support func-
tions (Hiriart-Urrut and Lemarechal, 2004). This do-
main is an abstraction of convex polyhedra over Rn,
where n is the number of variables of the program
being analyzed. We denote this abstract domain by
P∆, parametrized by a template ∆. It represents a fi-
nite set of directions ∆ = {d⃗1, . . . , d⃗l}. Note that, the
set ∆ can be computed randomly as vectors uniformly
distributed on the unit sphere. A novel approach to
compute a relevant ∆ is presented in (Seladji, 2017),
which is based on statistical analysis. The definition
of P∆ is given in Definition 2.

Definition 2 Let ∆ ⊆ Rn be the set of vectors and
R∞ = R ∪ {−∞,+∞} . We define P∆ as the set
of all functions from ∆ to R∞, i.e P∆ = ∆ → R∞.
We denote ⊥∆ (resp. ⊤∆) the function such that
∀d⃗ ∈ ∆, ⊥∆(d⃗) =−∞ (resp. ⊤∆(d⃗) = +∞).

For each Ω ∈ P∆, Ω(d⃗) is the value of Ω in direction
d⃗ ∈ ∆. Intuitively, Ω is a support function with finite
domain.
The abstraction and concretization functions of P∆ are
defined in Definition 3.

Definition 3 Let ∆ ⊆ Rn be the set of vectors.
We define the concretization function γ∆ :P∆ →Cn by:

∀Ω ∈ P∆, γ∆(Ω) =
⋂
d⃗∈∆

{x ∈ Rn,< d⃗,x >≤ Ω(d⃗)} .

The abstraction function α∆ : Cn → P∆ is defined by:

∀P ∈Cn,α∆(P) =


⊥ if P= /0

⊤ if P= Rn

λd⃗. δP(d⃗) otherwise
.

where, δP(d⃗) is the support function (Hiriart-Urrut
and Lemarechal, 2004) of the polyhedron P using the
vector d⃗.

Note that, the concretization of an abstract element of
P∆ is a polyhedron defined by the intersection of half-
spaces, where each one is characterized by its normal
vector d⃗ ∈ ∆ and the coefficient Ω(d⃗). The abstrac-
tion function on the other side is the restriction of the
support function of the polyhedron on the set of di-
rections ∆. The order structure of P∆ is defined using
properties of support functions.
We combine Kleene iteration algorithm and the P∆

abstract domain to perform the analysis. Let take in
consideration loops of the form:

while(C)
X=AX+b;

We suppose that A is a real matrix, b may be a set
of real values, given as a polyhedra Pb, and C is a
guard. Such loops include for example linear filters
in which Pb represents the possible values of the
new input at each loop iteration. We assume that the
program variables belong initially to the polyhedron
P0. Using properties of support function in the case
of loops without guard, we can define the abstract
element obtained in the ith Kleene iteration as follows:

∀d⃗ ∈ ∆, Ωi(d⃗) =

max
(

δP0(d⃗), max
j∈[1,i]

(
δP0(A

T jd⃗)+
j

∑
k=1

δPb(A
T (k−1)d⃗)

))
(1)

Equation 1 is used to define a special version of
Kleene algorithm. The obtained analysis has a poly-
nomial time complexity in the number of iterations
and linear in the number of directions in ∆. In ad-
dition, its result is as accurate as possible: at each
Kleene iteration, we have that Ωi = α∆(Pi), such that
Ωi (resp. Pi) is the result of the ith Kleene iteration
using the P∆ domain (respectively the polyhedra ab-
stract domain). So Ω∞ =α∆(P∞), with Ω∞ is the fixed
point obtained in the P∆ analysis and P∞ is the one
obtained using polyhedra domain.

4 THE SMART WIDENING

The Kleene algorithm plays a crucial role in static
analysis by abstract interpretation, particularly in
computing the least fixed point for various abstract
domains, including the polyhedral abstract domain.
In polyhedral analysis, it is performed to com-
pute the least fixed point of a set of constraints.
Widening is used to accelerate convergence by over-
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approximating the solution space, it is applied itera-
tively until a stable fixed point is reached, thus ensur-
ing the termination of the analysis.

One of the main drawbacks of Widening is the po-
tential for overly coarse results that quickly diverge
towards infinity. To deal with the loss of precision,
we define the so-called Smart widening operator. It
adds an intermediate step to extrapolate the potential
fixed point using a relevant threshold.
In polyhedron analysis, finding a relevant threshold
consists of automatically computing a polyhedron
that serves as a candidate fixed point in the Kleene
iteration. The polyhedron threshold is obtained us-
ing sub-polyhedral analysis, which means that the dy-
namics of the analysed program are taken into account
in the threshold computation process.
For the rest, we adopt the constraint representation of
the polyhedron. In this section, we present our main
contribution: the dynamic computation of a relevant
threshold to improve the widening operator in poly-
hedral analysis, thereby accelerating the analysis pro-
cess. Our approach consists of two main steps: first,
we describe the technique for dynamically comput-
ing a relevant threshold, and then we show how this
threshold improves the widening operator and speeds
up polyhedral analysis.

4.1 The Threshold Computation

In this section, We present a technique to dynamically
compute a relevant threshold during the analysis pro-
cess. This technique is based on sub-polyhedral anal-
ysis as described by (Seladji and Bouissou, 2013) .
A relevant threshold is defined as a polyhedron that
allows the polyhedral fixed point computation to be
accelerated without losing accuracy.
For that we use the P∆ abstract domain given in Sec-
tion 3.2. Let us consider the case of programs with
affine loops. Such loops are very common in embed-
ded systems, especially in the case of linear filters.
Let the program with the affine loop be given as fol-
lows:
while(C)

X=AX+b;

With A ∈ Rn×n and b ∈ Rn. Let C be a boolean ex-
pression. We assume that the program variables are
initially inside the polyhedron P0. For the rest, we
put C = true.
Using the polyhedra abstract domain Cn, the loop in-
variant, P ∈ Cn, is defined as the least fixed point of
the equation P = P⊔

(
AP+Pb

)
. Usually, the fixed

point is defined as the limit of the kleene iterates given
by Pi = Pi−1 ⊔ (APi−1 +Pb). Using the P∆ analysis,
we have that, the ith kleene iterate computes the sup-
port function of Pi, noted δPi , as follows :

∀d⃗ ∈ ∆,δPi(d⃗) =

max
(

δP0(d⃗), max
j∈[1,i]

(
δP0(A

T j d⃗)+
j

∑
k=1

δPb(A
T (k−1)d)

))
(2)

Let denote by P♯ the fixed point of the equation P=

P⊔
(
AP+Pb

)
. The P∆ analysis computes the support

function of P♯ in a given vector d⃗ ∈Rn, noted δP♯
(d⃗).

As shown in Equation 2, the computation of δP♯
(d⃗)

used only P0, Pb and A, which represent the input of
the program to be analysed. Let Θ be the function that
computes δP♯

(d⃗) using the P∆ analysis, it is given in
Definition 4.
Definition 4 Let P♯ be the fixed point of the equation
P= P⊔

(
AP+Pb

)
.

Let Θ : Rn ×Cn ×Cn ×Rn×n −→ R be a function de-
fined as follows :
(∀d⃗ ∈ Rn,P0,Pb ∈Cn,A ∈ Rn×n),

Θ(d⃗,P0,Pb,A) = δP♯
(d⃗) (3)

Where δP♯
(d⃗) is the support function of P♯ for the vec-

tor d⃗, obtained using the P∆ analysis.

As presented in (Seladji and Bouissou, 2013), the
computation of δP♯

(d⃗) has a polynomial complexity
in the number of iterations and linear in the number
of d⃗ in ∆. So, this computation is efficiency.
We know that for a given convex polyhedron P, the
support function allows us to define P in the follow-
ing way :

∀d⃗ ∈ Rn,P=
⋂

d⃗∈Rn

{
x ∈ Rn | ⟨x, d⃗⟩ ≤ δP(d⃗)

}
. (4)

Note that computing δP(d⃗) for all d⃗ ∈ Rn is a dif-
ficult task. We can only compute it for a subset ∆ of
Rn, which allows us to get an over-approximation of
P.

∀∆ ⊆ Rn,P ⊆
⋂
d⃗∈∆

{
x ∈ Rn | ⟨x, d⃗⟩ ≤ δP(d⃗)

}
. (5)

So, we can compute an over-approximation of P♯

using the Equation 3 of Definition 4. This computa-
tion is given in Definition 5.
Definition 5 Let the function
Λ : (Rn × Rn) × Cn × Cn × Rn×n 7−→ Cn de-
fined as follows : (∀∆ ⊆ Rn,P0,Pb ∈ Cn,A ∈
Rn×n),Λ(∆,P0,Pb,A) =⋂

d⃗∈∆

{
x ∈ Rn | ⟨x, d⃗⟩ ≤ Θ(d⃗,P0,Pb,A)

}
. (6)

So, from Definition 5, we can deduce that
P♯ ⊆ Λ(∆,P0,Pb,A).
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In the context of polyhedral analysis, P∆ analysis
refers to an abstract domain that captures properties
of convex polyhedra based on a set ∆ of templates.
The function Λ is used to define the best template
abstraction of P♯ using the set ∆. The polyhedron
given in definition 5 is considered as a relevant thresh-
old. By dynamically computing this relevant thresh-
old, the analysis can adapt to the specific character-
istics and dynamics of the program being analysed.
Once the threshold polyhedron is computed, it is inte-
grated into the polyhedral analysis framework as a rel-
evant threshold to improve the analysis process. This
threshold guides the widening and refinement opera-
tions, ensuring that the analysis efficiently converges
to a stable fixed point solution.
The P∆ analysis can be applied to a wider range of
programs than just those with affine loops. While
affine loops are a common scenario, especially in em-
bedded systems and signal processing applications.
The P∆ analysis provides a powerful framework that
can consider programs with complex loop structures
involving non-linear loops and affine transformations.

4.2 The Widening Computation

In this section, we integrate the threshold polyhedron
obtained from Definition 5 into the widening opera-
tor used in the Kleene iteration. For that, new oper-
ator are defined called the smart widening operator,
denoted ∇Λ. This operator considers the polyhedron
given in Definition 6 as a Kleene fixed point candi-
date and uses it as a threshold in the Kleene iteration
algorithm. Use the modified widening operator within
the Kleene iteration algorithm to iteratively refine the
analysis results towards a fixed point solution. At
each iteration, the polyhedron is used as a threshold to
guide the widening process, ensuring that the analysis
converges efficiently and accurately. The definition of
∇Λ is given in Definition 6.
Definition 6 For a given P,P0,Pb ∈ Cn, A ∈ Rn×n

and ∆ ⊆ Rn, the smart widening operator ∇Λ is de-
fined as follows :

P∇Λ (AP+Pb) = P∪Λ(∆,P0,Pb,A).
In Definition 6, the smart widening operator substi-
tutes the expression (AP+Pb) with the threshold re-
turned by the function Λ(∆,P0,Pb,A) . Afterwards,
the union operator is performed between P and the
polyhedron resulting from Λ(∆,P0,Pb,A).
So, we have that the function Λ(∆,P0,Pb,A) com-
putes a threshold polyhedron based on the input pa-
rameters : the set of templates ∆, the initial polyhe-
dron represented by P0 and Pb, and the affine trans-
formation matrix A. This threshold polyhedron rep-
resents a relevant approximation of the program state

space. The smart widening operator replaces the ex-
pression (AP+Pb) by the obtained threshold. This
ensures that the widening operation is guided by the
threshold polyhedron, focusing the analysis on rele-
vant ranges of the program state space where signifi-
cant changes are occurring. After substituting the ex-
pression with the threshold polyhedron, the union op-
erator is performed between the current polyhedron
P and the threshold one. This union operation com-
bines the information collected by p with the refined
approximation provided by the threshold polyhedron,
improving the accuracy and convergence of the analy-
sis. In Algorithm 2 we consider the adapted version of
the Kleene iteration algorithm using the smart widen-
ing operator. This adapted algorithm incorporates the
smart widening operator to guide the iterative refine-
ment process towards a stable fixed-point solution.

Algorithm 2: Kleene iteration algorithm based on smart
widening operator.

Require: ∆, A, P0,Pb
1: i := 0
2: repeat
3: if i ≥ 10 then
4: ∆Generation();
5: Pi := Pi−1 ∇Λ (APi−1 +Pb)
6: i := 0
7: else
8: Pi := Pi−1 ∪ (APi−1 +Pb)
9: i := i+1

10: end if
11: until Pi ⊑ Pi−1

The smart widening operator is used to extrapolate
the sequence of polyhedra obtained by Kleene itera-
tion up to the polyhedron computed by the Λ function.
In the algorithm 2 we introduce a deliberate delay in
the application of the smart widening operator, choos-
ing to apply it after every 10 Kleene iterations. This
delay is designed to allow the Kleene algorithm to sta-
bilise and attempt to converge to the fixed point be-
fore introducing the refinement provided by the smart
widening operator. Note that practical experiments
show that only one application of smart widening is
needed to speed up fixed-point computation.
In fact, the quality of the polyhedron calculated with
the function Λ is closely related to the quality of the
chosen set ∆. The set ∆ serves as the basis for con-
structing templates that approximate the behaviour of
the program, and the effectiveness of these templates
directly affects the accuracy and precision of the anal-
ysis results. One intuitive method for selecting tem-
plates is to take vectors that are uniformly distributed
on the unit sphere. Another method is to consider
the current kleene iteration polyhedron to compute the
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set ∆. The polyhedron Pi−1 obtained at the (ith − 1)
Kleene iteration contains constraints that define the
boundaries of the program’s state space at that itera-
tion. The normal vectors of the constraints of Pi−1
represent directions in the program’s state space that
are relevant to the analysis. These normal vectors cap-
ture the local geometry and behavior of the program
at the previous iteration. They can be used as tem-
plates for constructing the set ∆ for the current itera-
tion. By basing the selection of templates on the pre-
vious iteration’s polyhedron, this method adapts dy-
namically to the program’s behavior and changes in
the state space. It allows the analysis to focus on di-
rections that are relevant to the current state of the
program, enhancing the accuracy and effectiveness of
the analysis process. This method is represented in
the Algorithm by the function ∆Generation(). To en-
sure efficiency and effectiveness, it’s advantageous to
apply this method after computing a sufficient num-
ber of Kleene iterations to obtain a polyhedron Pi−1
with a substantial number of constraints. Construct-
ing ∆ based on a polyhedron with a large number of
constraints enables the selection of a diverse and rep-
resentative set of vectors, enhancing the quality and
coverage of the template set.
Utilizing Principal Components Analysis (PCA), as
presented in (Seladji, 2017), to compute an interesting
set ∆ offers another alternative for constructing tem-
plates in polyhedral analysis. PCA is a statistical tech-
nique that can be leveraged to identify the most sig-
nificant directions or principal components in a high-
dimensional dataset.

5 EXPERIMENTATIONS

The smart widening operator proposed a good trade
off between expressiveness and efficiency. For the ex-
perimentation, we apply Algorithm 2 with the poly-
hedra abstract domain to analyze several programs,
this analysis is called the smart polyhedral analysis.
The programs used contain a number of stable lin-
ear systems and digital filters, which are well-known
to be difficult to analyse using polyhedral analysis.
To show the efficiency and the scalability of the the
smart polyhedral analysis, it is tested on programs
with many variables. The smart polyhedral analysis
is implemented using PPL (Bag, ). PPL (the Parma
Polyhedra Library) is a library that provides an ef-
ficient implementation of the polyhedra abstract do-
main. Note that its implementation is based on ra-
tional numbers. We use also the MPFR Library1 to

1https://www.mpfr.org/

handle the floating point arithmetics. The experimen-
tations are done on a 2.4GHZ Intel Core2 Duo laptop,
with 8Gb of RAM.

First of all, the efficiency aspect of the smart
polyhedral analysis strongly depends on its execution
time. So, we evaluate the efficiency of this analy-
sis by computing its execution time. Table 1 shows
the execution time obtained using the smart polyhe-
dral analysis. In this experimentations, the function
∆Generation() in the Algorithm 2 defined ∆ as a set
of vectors uniformly distributed on a surface of the
n-dimensional sphere plus the orthogonal vectors, its
cardinality is noted |∆|. We have also that the col-
umn labeled t is the execution time (in seconds). The
column labeled by |V | represents the number of pro-
grams variables. Note that, |V | also represents the
dimension of the computed polyhedron. In general,
when a program uses a large number of variables, it
means that the corresponding analysis is calculating
high-dimensional polyhedra. High-dimensional poly-
hedra present several challenges in terms of compu-
tation and analysis. The polyhedra generated depend
on the analysis tool and the program under analysis.
Their dimensions can range from a few variables in C
programs to a thousand in Lustre programs. In gen-
eral, the analysis tools try to limit their use of polyhe-
dral analysis to a small number of variables and con-
straints. In the case where those limits are exceeded,
the analysis switches to less expressive abstract do-
main, as for example the interval domain. So, the pa-
rameter |V | is used in our experimentation to show the
scalability of our method.

We emphasize that for most of these programs the
polyhedral analysis don’t terminate before the time-
out (more than 10 minutes). If we use the widening
operator the results go to top, which represents a bad
accuracy. In Table 1 thus shows the efficiency of our
method with several programs.
To further illustrate the expressiveness aspect of the
smart widening operator, we display on Figure 3 and
Figure 4 the results of the smart polyhedral analysis,
given by the red and orange polyhedra, respectively,
the used threshold obtained using the P∆ analysis is
given by the blue and yellow polyhedra, respectively.
Note that, on Figure 3 the blue polyhedra are con-
tained within the red polyhedra , this shows the qual-
ity of the invariant we compute.

6 CONCLUSION

In this article we have defined a new method to im-
prove polyhedral analysis. Introducing a new ver-
sion of the Kleene iteration algorithm that utilizes a
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Table 1: Table of results obtained using our analysis and the polyhedral one.

Program Polyhedral analysis with ∇Λ Polyhedral analysis
Name |V | |∆| t(s) t(s)
prog 2 308 2.202 TO
filter1 4 332 2.202 TO
filter2 4 332 6.264 TO
filter3 4 332 59.764 TO
filter4 5 350 2m10.953 TO
lead leg controller 5 350 5m58.748 TO
Dampened oscillator 6 332 15.291 TO
Harmonic oscillator 6 332 4.882 TO
lp iir 9600 2 6 372 1m13.537 TO

double input1() {
double u = 10.0;
double l = -10.0;
return ( rand()/(double)RAND_MAX )

* (u-l) + l;
}
double input2() {

double u = 3.0;
double l = 0.0;
return ( rand()/(double)RAND_MAX )

* (u-l) + l;
}
int main() {
double x, xn, y,yn;
srand(time(NULL));
x=input1();
y=input2();
xn=yn=0;
int i=0;
while (i<10000){
xn = 0.5 *x - y - 2.5;
yn = 0.9 *y + 10;
x = xn;
y = yn;
}
return 0;
}

Figure 3: (Left) The body of the program called prog. (Right) The red polyhedron is the post fixed point obtained using the
smart widening operator. The blue polyhedron is the threshold obtained using P∆ analysis.

novel widening operator, the ”smart widening opera-
tor,” represents a significant advancement in polyhe-
dral analysis techniques. The smart widening opera-
tor applies the P∆ analysis on the program under anal-
ysis. P∆ The result of the P∆ analysis serves as the
fixed-point candidate for the polyhedral analysis. The
result obtained from the P∆ represents a template rep-
resentation of the fixed point achieved through poly-
hedral analysis. These templates capture important
directions or patterns in the program’s state space,
providing a compact and informative representation

of the fixed point. The smart widening operator is in-
tegrated into the Kleene iteration algorithm to guide
the iterative refinement process. Instead of apply-
ing traditional widening techniques, the algorithm ap-
plies the P∆ analysis to obtain the fixed-point can-
didate, which serves as the threshold for widening.
By using the template representation obtained from
P∆ analysis, the smart widening operator aims to im-
prove both the efficiency and precision of the polyhe-
dral analysis. The experimental results show that the
smart widening operator allows to speed up the poly-

ICSOFT 2024 - 19th International Conference on Software Technologies

86



double input() {
double u = 10.0, l = 0.0;
return ( rand()/(double)RAND_MAX )

* (u-l) + l;
}
int main() {
double xn, yn, ynm1,ynm2 ;
xn=xnm1=xnm2=yn=ynm1=ynm2=0;
int i=0;
while (i<4000) {

yn = xn + 0.5*ynm1 - 0.45*ynm2;
printf("%f %f\n",ynm1,yn);
ynm2=ynm1;
ynm1=yn;
xn = input();

}
return 0;
}

Figure 4: (Left)The body of the program called Filter 2.(right) The orange polyhedron is the post fixed point obtained using
the smart widening operator. The yellow polyhedron is the threshold obtained using P∆ analysis.

hedral analysis when the standard polyhedral analy-
sis fails. The smart widening operator can easily be
adapted to other abstract domains, for which the set
∆ should be adapted to the shape of the correspond-
ing domain. The choice of this set plays an important
role in the accuracy and relevance of the result of the
smart widening operator. In our future work, we will
develop a method to dynamically define a relevant set
∆ using the work presented in (Seladji, 2017).
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