
A Tool-Supported Approach for Modelling and Verifying MapReduce
Workflow Using Event B and BPMN2.0

Mayssa Bessifi1, Ahlem Ben Younes2 and Leila Ben Ayed3
1FSEGS, University of Sfax,Tunisia

2ENSIT, University of Tunis, Tunisia
3ENSI, University of la Manouba, Tunisia

Keywords: Big Data, MapReduce, BPMN2, Event B, Formal Verification, Data Quality Properties, Refinement.

Abstract: Big data techniques are increasingly applied in critical applications (such as health, marketing nuclear
research field, aeronautics field), so it is desirable that a systematic method is developed to ensure the
correctness of these applications. As an aid to designers and developers, we propose a model-driven approach
for the specification and formal verification of MapReduce workflow applications using a semi-formal
language which is BPMN2 to represent MapReduce workflow and the Event B method for analysis. Our
approach starts with the graphical modelling of the MapReduce application as a chain of MapReduce design
patterns using an adapted BPMN2 notation. Then the model is transformed into an equivalent Event B project,
composed by a set of contexts and machines linked by refinement, that can be enriched with a variety of
desirable properties. The approach has been automated using a set of mapping rules implemented in a first
prototype tool. We illustrate our approach with a case study “Fireware” and we verify data quality properties
such as data non-conflict and data completeness.

1 INTRODUCTION

Nowadays, zettabytes of data are generated every
day. This flood of data is accessible in all formats, i.e.
structured, unstructured and semi-structured. The
large volume, the variety and the rising speed of
generation of this huge amount of data give rise to the
term Big Data (S and Ravishankar 2019). In order to
store, process and analyze such data new technologies
and storage mechanism are required. One of the most
successful paradigms is MapReduce. It has been
proposed by google and emerged as the core of
several Big Data frameworks such as Hadoop, spark
and Storm, etc.

Hadoop is developed by Apache Software
Foundation as an open-source framework. It is the
leader implementation of the MapReduce paradigm
to solve big data problems. Hadoop cluster is mainly
composed by two layers: a Hadoop distributed file
system called HDFS (Rehan and Gangodkar 2015)
for storing data and Hadoop MapReduce paradigm
for parallel processing. The Hadoop system is highly
scalable; i.e., it can combine the computing and the

storage power of thousands of computers to stock and
process the massive data in a distributed way.

Figure 1: Procedure of a MapReduce job.

As depicted in Figure 1, a MapReduce job is
created in two phases: map and reduce. The map
phase, composed of parallel map tasks, receives raw
data as input and generates a set of key-value pairs.
Any given "key" can be used by several pairs. Then,
the reducer, which can be one or many parallel reduce

504
Bessifi, M., Ben Younes, A. and Ben Ayed, L.
A Tool-Supported Approach for Modelling and Verifying MapReduce Workflow Using Event B and BPMN2.0.
DOI: 10.5220/0012861300003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 504-510
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

tasks, processes pairs from mappers and aggregates
values with the same key. The output of the reducer
can be written in HDFS or send to another Mapper, in
the case of MapReduce workflow.

A MapReduce workflow processes terabytes of
data through MapReduce jobs connected through
producer-consumer relationships. Each job consists
of one Map phase and one Reduce phase. A phase
includes multiple parallel Map or Reduce tasks.

Although the Hadoop MapReduce framework is
easy to grasp, the development of complex
MapReduce workflow can be a tedious task and
require the collaboration of many developers. The
intervention of different developers raises the
possibility of mistakes and bugs, in the map and
reduce programs, that can interrupt the MapReduce
execution or produce inaccurate output. Also, as
MapReduce applications are like every other
application, from the design phase a set of
requirements are envisaged and need to be verified
from an early stage to reduce the possibilities of
failure or inconsistency. Therefore, we propose in this
paper an approach driven by MapReduce design
patterns, for the modeling and formal verification of
MapReduce workflow using both the standard
BPMN2(Correia and Abreu 2012) and the Event B
method(Abrial 2010).

The objective of the proposed approach is twofold.
First, the approach is developed to help designers to
easily design their MapReduce workflow using the
graphical tool of a well-known and rich standard
which is BPMN, and based on a set of predefined
MapReduce design patterns.

Second, by automatically transformed the
MapReduce workflow to a formal notation, Event B,
the designer can make further analysis and
consequently detect any errors at earlier stage.

The rest of the paper is organized as follows:
section 2 presents related works and our main
contributions. Section 3 presents briefly BPMN and
the Event B method. Section 4 describe the proposed
approach for the specification and verification of
MapReduce workflow. Then a case study is
presented. Finally, section 6 concludes the paper.

2 RELATED WORKS

Although the wide spread of big data applications,
Only 13% of organizations have achieved full-scale
production for their Big Data implementations as
mentioned in the research (Colas et al. 2014) at

Capgemini Consulting. The main reason behind this
problem is the technical difficulty to design and
develop effective big data applications. Hence, in
order to increase the productivity in the development
of Big Data applications, new languages,
methodologies and tools needed to be created for
assisting and guiding developers. In this context, a
number of research are realized(Perez-Palacin et al.
2019)(Bersani et al. 2019)(Lim, Herodotou, and Babu
2012).

In (Chiang et al. 2021), Chiang et al. adopts petri
net to visually model the MapReduce framework in
order to verify its reachability property. The study act
as guidelines for the developer to ovoid common
errors such as when the system can’t find input or
output file.

Another variation of petri nets, Prioritized–Timed
Coloured Petri Nets, is used in (Ruiz, Calleja, and
Cazorla 2015), to evaluate the performance of the
application “SentiStrength” for the Hadoop module in
cloud environments. Simulations are realized by
CPNtools to find out the best performance–cost
agreements in advance.

Zeliu et al. analyses the rationality of MapReduce
workflow by using the Object Petri Net(Hong and
Bae 2000) in (Zeliu et al. 2019). The rationality
criteria are defined by: the absence of a strangler task,
the absence of conflict map and the reasonable
execution time.

In the above cited works, petri net with its
different variation is adopted at the design phase of
MapReduce application. Although, it is a mature
formalism that is widely used , a petri net model can
become very complex(Bessifi, Younes, and Ayed
2022). Also, the use of the model checking technique
as a verification technique pose always the problem
of the growing number of explored states and thus the
time of verification of data intensive applications
such as MapReduce applications.

In (Zhang et al. 2020), a runtime verification
approach at code level is presented. Both Map and
reduce programs are written in MSVL(Wang et al.
2020) language, properties to verify are expressed in
PPTL(Duan et al. 2019) formulas then verified using
the MSVL model checker. Two case studies are
presented to verify several data properties.

In this paper, we propose a model-driven
framework for the specification and verification of
MapReduce workflow to help developer to create a
correct by construction MapReduce application. This
approach combines the power of two different
languages: Event B and BPMN, to provide a
prototype tool that can be used to easily create high
quality applications.

A Tool-Supported Approach for Modelling and Verifying MapReduce Workflow Using Event B and BPMN2.0

505

Figure 2: BPMN2.0 meta-model adapted to MapReduce workflow.

The originality of our contribution consists of:
 Reducing designers' efforts due to the use of

BPMN graphical notation to define the proper
MapReduce workflow as a chain of MapReduce
design patterns.

 The automatic meta-model transformation of the
MapReduce workflow to an equivalent formal
description, through a set of mapping rules
implemented using the Kermeta model
transformation language.

 We adopt Event B as our target formal language,
supported by its RODIN tool, because of its
expressivity to model a complex system at
different levels of abstraction thanks to the
refinement concept, and the verification technique
is based on theorem proving which does not suffer
from the explosion number of states.

3 BACKGROUND

3.1 BPMN2.0

The BPMN “Business Process Model and Notation”

is a standard business process model and notation
developed by the Object Management Group. The
main goal of BPMN is to provide an easily to
understand notation that is capable to represent a
semantically complex process.

BPMN2 is a semantically rich modelling
language. While a UML activity diagram has about
20 different modelling constructs, a BPMN2 process
model diagram (the most complex of the 3 available)
has about 100 different modelling constructs,
including 51 event types, 8 types of gateway, 7 types
of data, 4 types of activities, 6 activity markers, 7
types of tasks, 4 types of flows, basins, corridors,
etc(Correia and Abreu 2012).

3.2 Event B Method

Event B is a formal method based on mathematical
foundations (first-order logic and set theory). An
Event B model is built by two types of components:
contexts and machines that respectively represent the
static and dynamic behavior of the model. They are
identified by a unique name and consist of a set of
clauses.

ICSOFT 2024 - 19th International Conference on Software Technologies

506

Figure 3: Overview of the proposed approach.

A powerful feature of Event B is the notion of
refinement. The user starts the modelling process
with a very simple abstract model that can be
gradually refined into something that is close to the
implementation of the system.

Figure 4: RODIN Project architecture (Toman et al. 2024).

4 PROPOSED APPROACH

As illustrated in Figure 3, the proposed model-based
approach is based mainly on three major phases. It
begins by designing the MapReduce workflow as a
sequence of MapReduce jobs (each job is a
MapReduce design pattern) using the BPMN tool,
Camunda. After the 1 to the proposed BPMN meta-
model. Second a model-to-model transformation is
executed to generate an Event B model conforms to
the Event B meta-model. Finally, the generated Event
B model is transformed into a RODIN project by the
means of a “Model to Text” transformation.
Once the RODIN project is opened, the designer can
add properties, expressed as predicates in the
different clauses (invariant, guard and theorem). All
typing properties as well as data-related properties,
such as data completeness and data non-conflict, are
automatically generated by the transformation
process.

A Tool-Supported Approach for Modelling and Verifying MapReduce Workflow Using Event B and BPMN2.0

507

Figure 5: Graphical modelling of a MapReduce "Fireware" application with BPMN2.0.

Figure 6: Data Completeness property.

A set of proof obligations is then generated. If a proof
obligation is not proven, then the designer uses the
trace file generated from the transformation phase to
locate the error in the BPMN specification and fix it.

5 VERIFICATION AND
VALIDATION

Uses Case. The "Fireware" application is the solution
to the "Denial-of-Service" DOS attack problem.
Figure 5 illustrates the MapReduce workflow of the
Fireware application, composed by three patterns:
occurrence calculation pattern, sort pattern and filter
pattern. The first pattern "Occurrence Calculation"
processes a very large log file that contains all the IP
addresses that have accessed a given URL to calculate
the number of hits for each IP address. The list of key-
value pairs produced by this pattern will be sorted in
an array by the following pattern “Sort”. The last
pattern "Filter" will take the sorted array and apply a
filter (maximum number of accesses allowed) on all
key (IP address), value (number of accesses) pairs.

Figure 7 represents the architecture of the Event B
project corresponds to the example in figure 5. Four
machines linked by refinement are created: the first
machine created is the machine named
“MACHINE_APPLICATION” which contains only

the information concerning the control flows of the
"Fireware Application" participant. The second
machine, "MachinePatron1", preserves the previous
machine and contains the information concerning the
control flows of the first sub-Process "Pattern
calculation of occurrence" and its internal
functioning. The third “MachinePatron2” and the
fourth machine “Machine Patron3” contain
information concerning the other two sub-processes
“Sorting Pattern” and “Filtering Pattern”. Each
machine preserves the consistency of its previous one.
Verification and Validation. The most important
interest of the proposed translation of MapReduce
workflow into Event B is to allow the formal
verification of safety properties. We are interested in
verifying data quality properties(Zhang et al. 2020) to
ensure the proper functioning and correctness of our
MapReduce application and they are generated
automatically by the transformation process.

• Data Completeness. It guarantees that all key-
value pairs are processed without missing ones.
For example, figure 6 illustrates the data
completeness property between the two phases
Split Data and Map Phase. It is represented in the
form of an invariant (inv12) and a guard (grd9)
in the machine "MachinePattern1". Ensure that
the input data cardinality of the map task is equal
to the output data cardinality of the split task.

ICSOFT 2024 - 19th International Conference on Software Technologies

508

Figure 7: The architecture of the RODIN project of the “firewire” application.

• Data non-conflict. It guarantees the absence of
two key-value pairs with the same key and
different values in any list of key-value pairs
except if they cooperate. This property is
necessary for applications for processing arrays
where we try to avoid the problem of duplicate
values as in our Sort pattern. The Map phase of
the Sort pattern will process the data provided by
the Reducer phase of the occurrence calculation
pattern. It will store the key-value pairs in an
array and therefore the result requires the
absence of the duplications. To do so, the array
must be a bijective function between its domain
and its range. This property is represented in the
invariant inv1 of our machine.

Figure 8: Non-conflict property of the Sort pattern.

6 CONCLUSION

In this paper, a model-driven approach is presented to
ensure the reliability of MapReduce applications. The
user can easily use the Camunda graphical tool of

BPMN to construct his MapReduce workflow by
using a chosen set of MapReduce design patterns. The
graphical model is then transformed automatically to
an Event B project composed by a set of contexts and
machines linked by refinement. The use of refinement
in the proposed approach improve the readability and
enhance the provability of the generated formal
specification. Furthermore, a set of data driven
properties such as data non-conflict and data
completeness are automatically generated by the
transformation process and then verified by the Rodin
prover.
In the future, we plan to integrate more design
patterns in our approach and study the possibility of
combining Model-Checking and Theorem-Proving to
benefit from the advantages of each technique for the
verification of other types of properties such as the
temporal property.

REFERENCES

Abrial, Jean-Raymond. 2010. Modeling in Event-B: System
and Software Engineering. Edited by Cambridge
University Press. 1 edition.

Bersani, Marcello M., Francesco Marconi, Damian A.
Tamburri, Andrea Nodari, and Pooyan Jamshidi. 2019.
“Verifying Big Data Topologies By-Design: A Semi-
Automated Approach.” Journal of Big Data 6 (1).
https://doi.org/10.1186/s40537-019-0199-y.

A Tool-Supported Approach for Modelling and Verifying MapReduce Workflow Using Event B and BPMN2.0

509

Bessifi, Mayssa, Ahlem Ben Younes, and Leila Ben Ayed.
2022. “BPMN2EVENTB Supporting Transformation
from BPMN2.0 to Event B Using Kermeta.” In Lecture
Notes in Networks and Systems, 286:247–55.
https://doi.org/10.1007/978-981-16-4016-2_24.

Chiang, Dai Lun, Sheng Kuan Wang, Yu Ying Wang, Yi
Nan Lin, Tsang Yen Hsieh, Cheng Ying Yang, Victor
R.L. Shen, and Hung Wei Ho. 2021. “Modeling and
Analysis of Hadoop MapReduce Systems for Big Data
Using Petri Nets.” Applied Artificial Intelligence 35 (1):
80–104. https://doi.org/10.1080/08839514.2020.18421
11.

Colas, Mathieu, Ingo Finck, Jerome Buvat, Roopa
Nambiar, and Rishi Raj Singh. 2014. “Cracking the
Data Conundrum : How Successful Companies Make
Big Data Operational.” Capgemini Consulting, 17.
https://www.capgemini.com/consulting/wp-content/
uploads/sites/30/2017/07/big_data_pov_03-02-15.pdf
%0Ahttps://www.capgemini-consulting.com/resource-
file-access/resource/pdf/cracking_the_data_conundru
m-big_data_pov_13-1-15_v2.pdf.

Correia, Anacleto, and Fernando Brito e Abreu. 2012.
“Adding Preciseness to BPMN Models.” Procedia
Technology 5: 407–17. https://doi.org/10.1016/j.protcy.
2012.09.045.

Duan, Zhenhua, Cong Tian, Nan Zhang, Qian Ma, and
Hongwei Du. 2019. “Index Set Expressions Can
Represent Temporal Logic Formulas.” Theoretical
Computer Science 788 (November): 21–38.
https://doi.org/10.1016/j.tcs.2018.11.030.

Hong, Jang Eui, and Doo Hwan Bae. 2000. “Software
Modeling and Analysis Using a Hierarchical Object-
Oriented Petri Net.” Information Sciences 130 (1–4):
133–64. https://doi.org/10.1016/S0020-
0255(00)00090-6.

Lim, Harold, Herodotos Herodotou, and Shivnath Babu.
2012. “Stubby:A Transformation-Based Optimizer for
Mapreduce Workflows.” Proceedings of the VLDB
Endowment 5 (11): 1196–1207. https://doi.org/10.
14778/2350229.2350239.

Perez-Palacin, Diego, José Merseguer, José I. Requeno, M.
Guerriero, Elisabetta Di Nitto, and D. A. Tamburri.
2019. “A UML Profile for the Design, Quality
Assessment and Deployment of Data-Intensive
Applications.” Software and Systems Modeling 18 (6): 35
77–3614. https://doi.org/10.1007/s10270-019-00730-3

Rehan, Mohd, and Durgaprasad Gangodkar. 2015. “Hadoop
, MapReduce and HDFS : A Developers Perspective.” In
Procedia Computer Science, 48:45–50. Elsevier.
https://doi.org/10.1016/j.procs.2015.04.108.

Ruiz, M. Carmen, Javier Calleja, and Diego Cazorla. 2015.
“Petri Nets Formalization of Map/Reduce Paradigm to
Optimise the Performance-Cost Tradeoff.” In
Proceedings - 14th IEEE International Conference on
Trust, Security and Privacy in Computing and
Communications, TrustCom 2015, 3:92–99. IEEE.
https://doi.org/10.1109/Trustcom.2015.617.

S, athisha M, and K C Ravishankar. 2019. “Security and
Privacy Issues in Big-Data Hadoop A Review.”
International Journal of Computer Sciences and

Engineering 6 (11): 730–38. https://doi.org/10.
26438/ijcse/v6i11.730738.

Toman, Zinah Hussein, Lazhar Hamel, Sarah Hussein
Toman, Mohamed Graiet, and Dalton Cézane Gomes
Valadares. 2024. “Formal Verification for Security and
Attacks in IoT Physical Layer.” Journal of Reliable
Intelligent Environments 10 (1): 73–91.
https://doi.org/10.1007/s40860-023-00202-y.

Wang, Meng, Cong Tian, Nan Zhang, Zhenhua Duan, and
Chenguang Yao. 2020. “Translating Xd-C Programs to
MSVL Programs.” Theoretical Computer Science 809:
430–65. https://doi.org/10.1016/j.tcs.2019.12.038.

Zeliu, Ding, Guo Deke, Chen Xi, and Chen Jin. 2019.
“MapReduce Rationality Verification Based on Object
Petri Net.” Journal of Systems Engineering and
Electronics 30 (5): 861–74. https://doi.org/10.21629/J
SEE.2019.05.05.

Zhang, Nan, Meng Wang, Zhenhua Duan, and Cong Tian.
2020. “Verifying Properties of MapReduce-Based Big
Data Processing.” IEEE Transactions on Reliability, 1–
18. https://doi.org/10.1109/tr.2020.2999441.

ICSOFT 2024 - 19th International Conference on Software Technologies

510

