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Abstract: Access control is the enforcement of the authorization policy, which defines subjects, resources, and access
rights. Graph-structured data requires advanced, flexible, and fine-grained access control due to its complex
structure as sequences of alternating vertices and edges. Several research works focus on protecting property
graph-structured data, enforcing fine-grained access control, and proving the feasibility and applicability of
their concept. However, they differ conceptually and technically. To gain a profound overview of the current
state of research, we study works from our systematic literature review on authorization and access control
for different database models in addition to recent ones. Based on defined criteria, we exclude research works
which do not protect graph-structured data, have coarse-grained approaches, consider models other than the
property graph model, or have no proof-of-concept implementation. The latest version of the remaining works
are discussed in detail in terms of their access control approach as well as authorization policy definition and
enforcement. Finally, we analyze the strengths and limitations of the selected works and provide a compar-
ison with respect to different aspects, including the base access control model, open/closed policy, negative
permission support, and datastore-independent enforcement.

1 INTRODUCTION

Access control ensures data security by protecting
assets and private information against unauthorized
access. It refers to enforcing authorization policies,
which specify access rights in terms of accessing sub-
ject, requested resource and performed action.

In graphs, data are structured as vertices con-
nected by edges to represent the relationships be-
tween objects. Vertices and edges are stored as en-
tities in graph databases, optionally including prop-
erties as key-value pairs. Fine-grained access con-
trol for graph-structured data refers to protecting ver-
tices and edges at the attribute level. Established
graph databases currently support role-based access
control (RBAC), while the latest research works ad-
dress relationships in graph-structured data, including
attributes on vertices and edges.

With this paper, we aim to discuss these latest
research works to get a profound overview of cur-
rent research approaches. The results provide guid-
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ance for our further research. We select the following
access control approaches for graph-structured data
from our systematic literature review (SLR) on access
control for different database models, and include fur-
ther recent works. Rizvi and Fong (2018) extended
the relationship-based access control model (ReBAC)
to support attributes in policy specification and en-
forcement. Mohamed et al. (2023a) presented a flexi-
ble, fine-grained authorization policy specification for
graph-structured data and datastore-independent en-
forcement. Furthermore, Hofer et al. (2023a,b) pro-
posed an approach to enforce fine-grained access con-
trol by rewriting Cypher queries using an Abstract
Syntax Tree (AST). Bereksi Reguig et al. (2024) re-
cently introduced an approach based on the Neo4j
access control model to apply attribute-based access
control (ABAC). We study the works on conceptual
and technical level by answering the following re-
search questions:
RQ1. What are the current access control approaches

in the context of graph-structured data?
RQ2. How are the authorization policies defined and

enforced in each work?
RQ3. How are the feasibility and applicability of the

proposed approaches proved?
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RQ4. What are the strengths and limitations for each
approach?

The paper is structured as follows. In Section 2,
we describe our method for selecting related works.
In Section 3 to 6, we discuss the conceptual approach,
definition and enforcement of authorization policy,
and implementation details for the selected works re-
spectively. We compare and analyze the approaches
in Section 7. The paper concludes with a summary
and an outlook on future work in Section 8.

2 SELECTION METHOD

In our SLR of authorization and access control for
different database models (Mohamed et al., 2023b),
we identified a list of research works related to the
graph database model. We additionally include recent
works as listed in Table 1. For each work, we indi-
cate whether or not it is included according to our se-
lection criteria: protecting property graph-structured
data, fine-grained authorization policy, and applied in
graph datastore.

Table 1: Research works in access control for graphs.

Research works Protect
property graph

Fine-
grained

Applied

Rizvi and Fong (2018) ✓ ✓ ✓
Morgado et al. (2018) × × ✓
Bertolissi et al. (2019) × ✓ ✓
Jin and Kaja (2019) × ✓ ✓
Mohamed et al. (2020) ✓ ✓ ✓
Valzelli. et al. (2020) ✓ × ✓
Chabin et al. (2021) ×1 ✓2 ✓
Clark et al. (2022) ✓ ✓2 ×
Hofer et al. (2023a) ✓ ✓ ✓
Bereksi Reguig et al. (2024) ✓ ✓ ✓

1 Based on the RDF graph model 2 For vertices but not edges

Morgado et al. (2018) present a model-based
approach using metadata with authorization rules
to control access in applications that use a graph
database. Their security model uses a predefined
schema for the vertices as a plugin in Neo4j. This
approach is not fine-grained, as it only considers pro-
tection on vertex level. The focus is on the meta
model and architecture rather than applying it to pro-
tect graph-structured data.

Bertolissi et al. (2019) introduce an access con-
trol framework for secure data fusion in cooperative
systems. Authorization policies are represented in a
provenance graph, which relates artefacts (vertices) to
depict their provenance through a system. They pro-
vide the formal semantics of the proposed language
and use the extensible access control markup lan-
guage (XACML) to demonstrate provenance-based
access constraints in ABAC policies. Jin and Kaja

(2019) use graphs to represent the XACML authoriza-
tion policy language model. An authorization policy
graph is constructed by parsing XACML policy files.
In addition duplicates and conflicts are handled before
generating the Cypher query statements. XACML re-
quests are processed as queries to Neo4j, which stores
the policy graph. Both approaches do not consider
protecting graph-structured data.

Chabin et al. (2021) propose an access control sys-
tem for graph-based models with schema constraints,
authorization rules to protect the data and user con-
text rules. To enforce the constraints, modules for
rewriting, planning and executing queries in parallel
are provided. Roles can have fine-grained access rules
on vertices, and clearance levels can be associated to
roles and resources. However, each user has only a
single role. Furthermore, only type and direction, but
no attributes can be specified for edges in rules. This
work is not considered in our comparison as it is not
designed to deal with property graphs, but rather the
resource description framework (RDF) graph model.

Valzelli. et al. (2020) introduce a property graph
model, which combines discretionary access con-
trol, mandatory access control and RBAC to pro-
tect knowledge graphs. Positive and negative autho-
rizations can be specified using authorization edges
between subjects and resources. RDF concepts are
translated into a property graph query. It is imple-
mented using Tinkerpop. We excluded RBAC ap-
proaches because it is not fine-grained and supported
in many graph databases, such as Neo4j, ArangoDB
and Azure Cosmos DB.

Clark et al. (2022) define the formal language and
unified framework ReLOG to encode ReBAC poli-
cies, which can be viewed as graph queries. Although
the work is a fine-grained ReBAC extension, we ex-
cluded it because only the theoretical feasibility of the
approach is investigated. Neither a concrete imple-
mentation nor demo cases are provided.

In the following, we discuss the latest research re-
sults of the remaining works in detail, which are Rizvi
and Fong (2018), Mohamed et al. (2023a), Hofer et al.
(2023a) and Bereksi Reguig et al. (2024).

3 ACCESS CONTROL APPROACH

We identified two main categories of access control
approaches: permit-deny access and filtered results.
With permit-deny access is requested given the sub-
jects, resources, actions, and other optional condi-
tions. The request is checked against the authorization
policy and a decision is returned indicating whether
the access is authorized or not. This can be used
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to control the type of actions to be performed on a
specific resource. The filtered results category refers
to returning authorized data. The result of unautho-
rized access requests is empty. It is commonly used in
databases, where views or query rewriting are applied
to filter the result according to the policy and retrieve
a list of authorized resources at once. Although there
are currently several works that focus on protecting
data in graph databases, they have different objectives
and use cases. In the rest of this section, we discuss
the conceptual approach for each work with respect to
their access control model and approach category.
AReBAC. The Attribute-supporting ReBAC Model
(AReBAC) (Rizvi and Fong, 2018) is an extension
to ReBAC (Bruns et al., 2012), considering attributes
on vertices and edges along relationships between
subjects and resources to provide fine-grained access
control in property graphs. It relies on a proprietary
graph pattern format to specify queries and access
control policies. A subset of Cypher, called Nano-
Cypher, is defined as an equivalent language. An au-
thorization request is a pair (m,s), with a requested
method m (i.e., a database query with additions) and
subject s. Authorization policies are defined in graph
patterns. For a request (m,s) by a user s, the match-
ing policies for the user’s query m are identified and
integrated with the query to filter the results.
XACML4G. The work of Mohamed et al. (2020)
aims to specify and enforce fine-grained, dynamic au-
thorizations for graph-structured data. There can be
several paths from a subject to a resource, but not
all of them are authorized. A subject can only ac-
cess a protected resource through authorized paths
considering the context of resources, as it can re-
veal confidential information. The ABAC model is
extended to specify flexible graph patterns as a path
from the subject to the resource, defining fine-grained
authorization constraints for vertices and edges and
pattern-related conditions to join and compare path el-
ements. The XACML policy language model and ref-
erence architecture are extended as a proof-of-concept
for the proposed approach, which is called XACML
for graphs (XACML4G), to consider specification and
evaluation of graph patterns. XACML4G is a permit-
deny access model since the result is a decision.
GQRA1. Hofer et al. (2023a,b) present a graph
query rewriting-based approach (GQRA) to enforce
fine-grained authorizations dynamically for Cypher
queries. Insecure queries are rewritten to include
authorization-specific filters. Thus, only authorized
data is returned. The query rewriting algorithm uses
an AST for the source Cypher query. Based on the de-
fined policy, authorization-specific filters are added to
the syntax tree and the query is reformulated accord-

ingly. This approach implicitly enforces ABAC in
graph databases, especially Cypher-based datastores,
beyond their supported access control features.
ABAC for Neo4j1. Bereksi Reguig et al. (2024) ex-
tend the RBAC model in Neo4j to support attributes.
In Neo4j, the enterprise edition supports granting and
denying traverse, read and match privileges to node
labels and relationship types along with their proper-
ties. However, the authorization policy rules are asso-
ciated to roles and apply to all nodes or relationships
with the specified label or type. Therefore, they ex-
tend this access control model to support fine-grained
conditions to filter out further nodes or relationships
from being traversed or read.

To answer RQ1, we provided an overview and
classified the selected works into two main categories
(i.e., permit-deny access and filtered results).

4 POLICY DEFINITION

In this section, we explain the authorization policy
language model for the selected works along with an
overview of the access request and response (if any).
AReBAC. Rizvi and Fong (2018) define authoriza-
tion policy in the context of AReBAC as ”... a
graph pattern used for specifying authorization re-
quirements for accessing resources.”. It can be con-
sidered as a graph restricted by mutual exclusion con-
straints and attribute requirements. AReBAC assumes
an underlying open policy. Database queries are cate-
gorized. Each category has at most one authorization
policy. Categories are used for the request and policy
matching. With graph patterns, a language for declar-
ative authorization policy specification is provided, as
an easier to use alternative to logic formulas and regu-
lar expressions (Rizvi and Fong, 2018). A graph pat-
tern contains a set of vertices, a set of edges, mutual
exclusion constraints on vertices, a set of attributes of
vertices and edges, a category, a mapping of selected
vertices and the return values. The graph pattern also
contains placeholders which will be replaced during
request processing and policy matching. To specify
an authorization policy, a Nano-Cypher query with an
associated category and mapping can also be used in-
stead of a graph pattern.
XACML4G. A preliminary policy specification is de-
fined in a proprietary JSON format in Mohamed et al.
(2020). Then, the XACML4G elements are defined
using XSD and applied in XACML (Mohamed et al.,
2023a). The meta element defines vertex labels and
edge types of the source graph relevant for policy

1We defined this abbrev. to use throughout our paper.
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evaluation. The pattern is a path with composite struc-
ture, consisting of a vertex, an edge, and either an-
other vertex (i.e., the base case) or an entire path.
Each vertex has an identifier, a label, its own cate-
gory URI and a sequence of attributes. Edges addi-
tionally include an optional direction, a type instead
of a label and a range (i.e., minimum and maximum
length) for flexible patterns. The pattern condition el-
ement is structured like the XACML condition, but its
identifier attribute references a vertex or an edge vari-
able in the pattern. Furthermore, the function attribute
should be one of the supported functions. Access re-
quest is extended to additionally include path-related
attributes, specifying vertices and edges as resources.
Based on the input request, the policy is matched and
evaluated, returning an access decision.
GQRA. The authorization policy model defined in
Hofer et al. (2023a) is influenced by XACML. Autho-
rization requirements are described in a policy hav-
ing a set of rules. The policy specifies the path from
the subject to the resource. The matching elements
can be referenced in conditions and filter templates,
which require runtime information. Each rule refer-
ences an element of the policy pattern and specifies
one or more boolean combined conditions. A con-
dition checks whether filter and return properties are
satisfied by any element of the policy pattern. The fil-
ter indicates whether the element is filtered according
to its label/type, its properties or not at all, while re-
turn states if it is included in the return clause of the
query (i.e., directly or aggregated).
ABAC for Neo4j. The policy rules in Bereksi Reguig
et al. (2024) are expressed like in Neo4j with an intro-
duced WHERE statement to specify one or more condi-
tions. Each condition consists of an attribute, an op-
erator or a built-in Cypher function, and a value. The
attribute belongs to an entity in the graph, user or con-
text. Thus, the policy extension is fine-grained at the
vertex and edge attributes. Currently, conditions are
only supported with the traverse privilege. The read
rules are specified without conditions to avoid circu-
lar permissions. The match is not directly supported,
but can be expressed by combining traverse and read.

To summarize, AReBAC, GQRA and ABAC for
Neo4j define their policies as a query or filter tem-
plate to restrict the result set. AReBAC uses a cate-
gory with the query to match it with the authorization
policy. XACML4G extends the XACML structure to
define paths in the graph. XACML4G and ABAC for
Neo4j are based on established policy formats such as
XACML and the Neo4j policy definition, while ARe-
BAC and GQRA define their own proprietary formats.

5 POLICY ENFORCEMENT

We now present the policy enforcement approach
for each of the selected works, including processing,
matching and conflict resolution (if applicable).
AReBAC. Rizvi and Fong (2018) propose an enforce-
ment based on query rewriting. Nano-Cypher queries
are not directly executed in Neo4j, but the evalua-
tion rather relies on the internal graph pattern for-
mat and the evaluation algorithm GP-Eval. When a
user sends an authorization request, the query is trans-
lated to a graph pattern. The policy is matched using
the method’s category. Categories can be organized
in a hierarchy, which defines a refinement relation-
ship, e.g., c1 ≥ c2. Accordingly, the policy for meth-
ods with category c1 must be at least as restrictive as
the one for methods with category c2. All graph pat-
terns along the hierarchy are combined into a single
graph pattern. The integrated policy and the query are
merged resulting in a single graph pattern. Rizvi and
Fong (2018) call this process weaving and not query
rewriting. The integrated graph pattern is evaluated
by GP-Eval, which only returns authorized data. As
the AReBAC approach relies on its graph pattern for-
mat, it is datastore-independent, at least at its core.
The database is accessed during the evaluation of the
graph pattern to retrieve candidates for the result set.
XACML4G. In Mohamed et al. (2023a), the XACML
conceptual components are extended to match the re-
quest path with the patterns in policy rules and eval-
uate the pattern conditions. To allow for a source
datastore-independent policy evaluation, a subset of
the overall source data is managed in an indepen-
dent graph, which is called source-subset graph. This
graph is optionally used to evaluate the policy with-
out relying on a specific datastore and can be con-
structed from multiple data sources. The policy ad-
ministration point (PAP) is extended to process the
XACML4G policy and create the source-subset graph
according to the specified entities in the meta element.
In the extended context handler, XACML4G requests
are parsed to extract the path attributes. Then, the
extended policy decision point (PDP) adds a specific
condition for evaluating the pattern if it exists in the
matched policy rule. Based on the pattern and its con-
ditions, a Cypher pattern and a WHERE statement are
dynamically generated and the query is executed to
evaluate path constraints as an extension in the pol-
icy information point (PIP). Conflicts are resolved in
XACML at the level of policies and rules using cus-
tom or predefined combining algorithms, such as first
applicable and (ordered) deny/permit overrides.
GQRA. Hofer et al. (2023a,b) enforces fine-grained
authorizations by rewriting Cypher queries at run-
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time. Firstly, the query is processed by mapping each
element in the query to the corresponding one in the
policy based on the pattern structure and the element
label(s). For that, the pattern is mapped to a set of
paths, each one represented as a tuple with start ver-
tex, and optional edge and end vertex. The resulting
comparable structure of the query and policy patterns
are needed for policy matching. A policy is applica-
ble if each path tuple of the insecure query matches
one of its rule patterns and satisfies the rule’s condi-
tions. A simplified AST is built, excluding syntactical
details as well as omitting CREATE and WITH clauses.
It describes the semantics of the query. Filters of the
matched policy rules are added to the WHERE part of
the AST. Nodes without labels could cause ambiguity
when multiple rules are matched. Thus, an optimiza-
tion approach is needed to avoid overlapping filters
or an empty result, due to non-matching constraints.
Since only positive permissions are supported, no
conflicts occur. The extended AST is written to a
Cypher statement and executed in the database to re-
trieve the authorized result set.
ABAC for Neo4j. Bereksi Reguig et al. (2024) pro-
posed an algorithm called SafeCypher to rewrite a
user query according to the defined authorization pol-
icy along with the user role(s) and return a safe one
(if applicable). First, the authorization graph is con-
structed such that each policy component (i.e., role,
privilege, permission and entity) is represented as a
vertex connected by directed edges, e.g., user role to
privilege (i.e., traverse or read), privilege to permis-
sion, and permission to entity (i.e., node label, rela-
tionship type and attribute). A variable is assigned to
each node and relationship in the source query and the
query elements (e.g., MATCH, WHERE and RETURN state-
ments) are extracted. In the case of a nested query, the
subqueries are separately rewritten and the results are
appended to the main query. Then, the corresponding
access conditions are added to the WHERE statement
and the attributes being returned are checked. Con-
flicts are resolved using the authorization policy graph
using the algorithm deny-override like in Neo4j. Fi-
nally, the safe query is optimized before execution.

We answered RQ2 in Section 4 and 5 by dis-
cussing the policy definition and enforcement mech-
anism for the selected works on the conceptual level.
In the following section, we present the technical de-
tails for each work and the provided use cases (if any).

6 IMPLEMENTATION

In this section, we address how the proposed access
control approaches are feasible and applicable (re-

fer to RQ3). For each work, we demonstrate which
frameworks and graph databases have been used in
addition to where in the architecture it has been im-
plemented, e.g., within the database or an indepen-
dent layer. Furthermore, we give an overview of the
evaluation methods and results.
AReBAC. AReBAC is a proprietary Java implemen-
tation and uses Neo4j2. Graph pattern is an internal
representation of queries and policies. Concerning the
architecture, access control is implemented between
the application and the database. Rizvi and Fong
(2018) use the Census-Income (KDD) Dataset from
the UCI Machine Learning Repository3 to demon-
strate the feasibility and performance of AReBAC.
The GP-Eval algorithm implementations provide sig-
nificantly better performance than Neo4j’s Cypher
evaluation engine, but the performance of semanti-
cally equivalent Nano-Cypher queries may differ.
XACML4G. Technically, XACML is an authoriza-
tion service between the datasource and the appli-
cation. Thus, XACML4G (Mohamed et al., 2023a)
is considered as an independent layer. The ap-
proach is implemented in Java as a source-code ex-
tension to Balana4, an open-source framework based
on Sun’s XACML implementation. Furthermore, the
XACML4G policies and requests are validated using
the XML schema for the language extensions. The
optional source-subset graph is created and stored in
an embedded Neo4j database. Currently, two Java
classes are implemented to import graph data for
Neo4j and ArangoDB. Access requests are parsed to
extract relevant attributes for policy matching and pat-
tern evaluation. Then, the PDP evaluates the matched
policy rules to determine the access decision, in-
cluding the XACML4G pattern and its conditions.
A Cypher query is generated from the pattern con-
straints in the policy and path attributes in the ex-
tended request. The pattern evaluation is successful
if the query returns a result. Two demo cases are pre-
sented with various access control scenarios and data
models in different graph database systems. Paths
with different lengths (1 to 5) are evaluated. In con-
trast to previous results, the latest XACML4G pro-
totypical implementation showed better performance
and the constant overhead due to policy processing
is eliminated. The overall overhead is reduced from
≈ 25 (excluding processing overhead) to 21 ms.
GQRA. The query rewriting approach in Hofer et al.
(2023a,b) is implemented in Java as an extension to
the Neo4j Object Graph Mapper (OGM). The class
Session is extended to enforce authorizations not only

2https://github.com/szrrizvi/arebac/
3https://archive.ics.uci.edu/
4https://github.com/wso2/balana
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when executing Cypher queries, but also in loading,
saving and deleting objects. A query parser is built
from a subset of Cypher’s grammar using ANTLR.
The function getPaths matches the query pattern
with those of the policy. Authorization-related filters
are added to the query and placeholders from the tem-
plates are replaced with runtime values. The result-
ing secure query is executed, and authorized resources
are returned. The prototypical implementation is ap-
plied in the research project SyMSpace5. Authoriza-
tion rules are defined in a configuration class. Accord-
ing to the graph model’s structure, permissions can be
assigned directly to users or via roles. Experiments
with representative queries show that the average time
needed for query rewriting is ≈ 0.2 ms.
ABAC for Neo4j. Bereksi Reguig et al. (2024) imple-
mented their proposed concept in Java within Neo4j.
Their Cypher query rewriting algorithm is executed
within the Neo4j browser. The defined authorization
policy is processed from its textual representation to
an access graph and stored in Neo4j. User-defined
procedures and functions are invoked from Cypher to
extend Neo4j using customized Java code. The eval-
uation with respect to efficiency and scalability uses
the Stack Exchange dataset. The experiments show
that introducing conditions in authorization rules has
minor performance overhead. It scales well with large
datasets in addition to complex Cypher queries and
authorization policies.

Although all selected works provide proof-of-
concept implementations, they are still research re-
sults. AReBAC is an independent framework with a
proprietary implementation for specifying authoriza-
tion policies in Nano-Cypher and enforcing them us-
ing their GP-Eval algorithm. XACML4G and GQRA
are implemented as extensions to Balana and OGM,
respectively, to prove the feasibility of the concepts
without being limited to these frameworks. Finally,
ABAC for Neo4j is implemented using custom proce-
dures, which can be invoked in Cypher and perform
operations on the database directly.

7 DISCUSSION

After discussing the selected approaches, we compare
them according to the following criteria. The results
are summarized in Table 2.
Access Control Approach. Most of the selected ap-
proaches rely on filtered results to perform access
control close to the database layer, by reducing the
result set to only permitted data. Therefore, the

5https://web.symspace.lcm.at

Table 2: Comparison of the selected works.

Criteria AReBAC XACML4G GQRA ABAC for
Neo4j

Access control
approach

filtered
results

permit-deny
access

filtered
results

filtered
results

Base AC model ReBAC ABAC ABAC RBAC
Open policy ✓ × ✓ ✓
Negative
permissions × ✓ × ✓

Runtime policy
processing ✓ ✓ ✓ ×
Datastore-
independent ✓ ✓ ✓1 ×

1 Cypher-based datastores only

same access request by different users may return dif-
ferent result sets, depending on their authorizations.
XACML4G belongs to the classic permit-deny ac-
cess, where the access request is checked and a de-
cision is returned.
Base Access Control Model. Fine-grained access
control in the context of graphs is considered in all
approaches, but with different access control models
as a basis. Rizvi et al. (2015) already did research in
ReBAC for relational databases, but without consid-
ering attributes. Even though ReBAC concepts can
be mapped to the graph model, AReBAC was devel-
oped to further support ABAC. The base model of
XACML4G and GQRA is ABAC, which allows flex-
ible, fine-grained authorization policies, but does not
consider restrictions on paths. The XACML4G policy
structure, contains components to define pattern con-
straints and meta data for policy evaluation. GQRA
supports path-specific requirements in their filter tem-
plates. ABAC for Neo4j in contrast is based on RBAC
like access control in the Neo4j Enterprise edition, but
is extended to support fine-grained conditions.
Open/Closed Policy. All filtered results approaches,
i.e., AReBAC, GQRA, and ABAC for Neo4j rely
on an open policy, which authorizes subjects by de-
fault(Samarati and de Vimercati, 2001). Authoriza-
tions limit the result. XACML4G assumes a closed
policy, i.e., only access with positive permission.
Positive and/or Negative Permission Support.
AReBAC and GQRA policies define filters to spec-
ify the permitted result set. However, XACML4G
and ABAC for Neo4j policies must explicitly de-
fine, whether matching the policy conditions results
is granting or denying access.
Runtime Policy Processing. This aspect considers
if policies need processing before evaluation. With
ABAC for Neo4j, policies are defined in text and then
transformed into an access graph as a pre-processing
step for query rewriting. All other approaches evalu-
ate policies directly with each authorization request,
even though, pre-processing could enhance perfor-
mance, e.g., translating AReBAC policies defined in
Nano-Cypher to graph patterns in advance.

Comparison of Access Control Approaches for Graph-Structured Data

581



Datastore-Independent Enforcement. The ARe-
BAC concept is datastore independent, as the internal
representation of queries and policies is graph pat-
terns. Thus, any graph pattern-equivalent language
could be used. However, to replace the underlying
Neo4j database, an abstraction layer for the database
access is needed. The query rewriting approach
in Hofer et al. (2023a) can be applied in Cypher-
based datastores, while XACML4G is dynamic, ap-
plies external authorization, and deals with property
graph-compatible datastores. In contrast, the work of
Bereksi Reguig et al. (2024) is datastore specific, i.e.,
restricted to Neo4j. Although they overcome the limi-
tations of the Neo4j access control model which is not
fine-grained and the rules are statically defined in the
system database, the authorizations are still linked to
roles and are not flexibly assigned to users according
to attribute-based criteria.

Each of the approaches has its strengths and weak-
nesses, and their relevance heavily depends on the
specific requirements. We summarize the main re-
sults to answer RQ4 in the following. The three
filtered results approaches (AReBAC, GQRA, and
ABAC for Neo4j) share many of the conceptual de-
tails such as an open access control approach, but dif-
fer in the chosen basic access control model. ABAC
for Neo4j supports negative permissions like the au-
thorization model of Neo4j. Furthermore, it follows
the Neo4j policy definition format unlike AReBAC
and GQRA, which have proprietary formats. GQRA
is restricted to Cypher-based datastores as it enforces
the policies by rewriting Cypher queries, whereas
AReBAC ”weaves” the database query and policies
specified in the proprietary graph pattern format, and
is thus conceptually independent of the Cypher lan-
guage. XACML4G in contrast differs in fundamen-
tal criteria, as it is a permit-deny access control ap-
proach with a closed policy. However, like GQRA,
it is based on ABAC. Furthermore, XACML4G is
datastore-independent, as it can be enforced on any
property graph-compatible datastore.

8 CONCLUSIONS

To compare and analyze fine-grained access control
approaches to protect property graph-structured data,
we selected Rizvi and Fong (2018), Mohamed et al.
(2020), Hofer et al. (2023a), and Bereksi Reguig et al.
(2024). The proposed access control approaches be-
long to the permit-deny access or filtered results cat-
egory (RQ1). We answered RQ2 and RQ3 by dis-
cussing each work in terms of access control model,
authorization policy definition, policy enforcement

approach and implementation details. In AReBAC,
the policy is either specified using their graph pattern
representation or a Nano-Cypher statement, which is
translated to a graph pattern. The enforcement algo-
rithm evaluates graph patterns with a minimal num-
ber of database accesses and amount of data retrieved.
The concept is implemented as an independent layer
on top of Neo4j. XACML4G defines graph-specific
authorization constraints on vertices and edges as a re-
cursively structured path pattern. Conditions for com-
paring and joining pattern elements can be specified
and edges are also considered as resources. Regard-
ing policy enforcement, dynamic queries are gener-
ated for the matched policies, taking additional at-
tribute values from the request, and then executed
in the source database or the one storing the source-
subset graph. The approach is implemented as an ex-
tension to the XACML policy language and architec-
ture. The authorization policy in GQRA is a set of
rules with paths having placeholders to be replaced
with runtime values. To enforce the policy, an AST
equivalent to the source query is generated for adding
authorization-specific conditions, and then translated
back to a Cypher query. OGM is extended to apply
the proposed query rewriting approach. In ABAC for
Neo4j, the policy has a textual representation based
on the Neo4j access control model, but stored in a
graph after processing. For the policy enforcement,
conditions for each clause are appended to the query,
which is optimized after resolving conflicts. A user-
defined procedure is implemented in Neo4j taking the
source query as input to be rewritten and executed.

For the last research question (RQ4), we defined
additional criteria to distinguish between the selected
works, which already satisfy our initial selection cri-
teria (i.e., protect property graph-structured data, fine-
grained, and applied in graph datastores). Only
XACML4G is designed differently with respect to
the permit-deny access control approach and closed
policy, while the rest belongs to the filtered results
category with open policy. Concerning the base ac-
cess control model, XACML4G and GQRA rely on
ABAC, while AReBAC and ABAC for Neo4j rely
on ReBAC and RBAC respectively. XACML4G and
ABAC for Neo4j support negative permissions, un-
like the other works. ABAC for Neo4j is the only
work that supports neither datastore-independent pol-
icy enforcement nor runtime policy processing, as the
approach is specific to Neo4j and a policy graph needs
to be constructed in advance. The enforcement ap-
proach in XACML4G can work with property-graph
compatible datastores, whereas GQRA is considered
for Cypher-based datastores.

The current work has highlighted further ques-
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tions concerning the differences and use cases of the
two categories for access control approaches. For ex-
ample, the filtered results category is typically used in
retrieving authorized resources based on the defined
policy. The permit-deny access category is less com-
monly used in access control for databases, but still
considered in applications to allow authorized users
to perform specific actions (e.g., edit or delete) on
particular resources and vice versa. A detailed com-
parison of the prototypes (if available) on a common
scenario is considered in the future. Furthermore,
we plan to add more aspects to our comparison and
include other works focusing on protecting property
graph-structured data that have been excluded due to
coarse-grained access control or a lack of application.

ACKNOWLEDGEMENTS

This work has been partly supported by the LIT Se-
cure and Correct Systems Lab funded by the State of
Upper Austria and the Linz Institute of Technology.
This work has also been supported by the COMET-
K2 Center of the Linz Center of Mechatronics (LCM)
funded by the Austrian federal government and the
federal state of Upper Austria.

REFERENCES

Bereksi Reguig, A. A., Mahfoud, H., and Imine, A. (2024).
Towards an effective attribute-based access control
model for neo4j. In Mosbah, M., Kechadi, T., Bella-
treche, L., and Gargouri, F., editors, Model and Data
Engineering, pages 352–366. Springer, Cham.

Bertolissi, C., den Hartog, J., and Zannone, N. (2019). Us-
ing provenance for secure data fusion in cooperative
systems. In Proceedings of the 24th ACM Symposium
on Access Control Models and Technologies, SAC-
MAT ’19, page 185–194. ACM.

Bruns, G., Fong, P. W. L., Siahaan, I., and Huth, M. (2012).
Relationship-based access control. In Bertino, E. and
Sandhu, R. S., editors, Proceedings of the 2nd ACM
conference on Data and Application Security and Pri-
vacy, pages 117–124. ACM.

Chabin, J., Ciferri, C. D. A., Halfeld-Ferrari, M., Hara,
C. S., and Penteado, R. R. M. (2021). Role-based ac-
cess control on graph databases. In Bureš, T., Dondi,
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