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Abstract: Federated Learning has been recently adopted in several contexts as a solution to train a Machine Learning
model while preserving users’ privacy. Even though it avoids data sharing among the users involved in the
training, it is common to use it in conjunction with a privacy-preserving technique like DP due to potential
privacy issues. Unfortunately, often the application of privacy protection strategies leads to a degradation
of the model’s performance. Therefore, in this paper, we propose a framework that allows the training of a
collective model through Federated Learning using a hybrid architecture that enables clients to mix within the
same learning process collaborations with (semi-)trusted entities and collaboration with untrusted participants.
To reach this goal we design and develop a process that exploits both the classic Client-Server and the Peer-
to-Peer training mechanism. To evaluate how our methodology could impact the model utility we present an
experimental analysis using three popular datasets. Experimental results demonstrate the effectiveness of our
approach in reducing, in some cases, up to 32% the model accuracy degradation caused by the use of DP.

1 INTRODUCTION

Machine Learning (ML) methodologies require data
to train models. Getting data is not always easy: users
may not be prone to share their data with a third party.
Moreover, regulations like the GDPR 1 in Europe,
could set some limits on the use and sharing of the
data. A key idea in such regard is to train an ML
model cooperatively maintaining full control of their
data. The most famous cooperative learning tech-
nique is Federated Learning (FL) (McMahan et al.,
2017), which aims at training a global model by ex-
ploiting the cooperation of different participants who
do not have to share their data with the other parties.
In any FL architecture, each participant locally trains
a model that is then shared with the other participants
to achieve a global model consensus. The aggrega-
tion of the models could happen on a central server
(server-based) that acts as an orchestrator or on the
other clients of the network in the case of a peer-to-
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1EU General Data Protection Regulation (GDPR) can

be found at the following link: http://bit.ly/1TlgbjI.

peer (P2P) architecture.
Despite FL being designed to protect users’ pri-

vacy, several studies have shown that the model
trained with an FL architecture with a centralised ag-
gregation may have some privacy issues (Bouacida
and Mohapatra, 2021), (Melis et al., 2018), (Geip-
ing et al., 2020). Indeed, the central aggregator has
to be treated as a trusted entity, i.e., it has to aggre-
gate all model updates in a correct way without dis-
criminating against any of the clients. Moreover, it
does not have to conduct any malicious attack against
the participants such as membership inference attacks
(Shokri et al., 2016) using the received participants’
model weights. The gold standard to reduce the pri-
vacy risk of the clients involved in the FL process is
the use of Differential Privacy (DP) (Dwork, 2006)
during the model training.

In this paper, we propose and analyze a hybrid
and private FL framework by combining both P2P
and server-based architectures. In particular, we con-
sider a scenario where the clients, before starting the
model training with a server-based FL, can collabo-
rate with some other (semi-)trusted clients to agree
on a shared model. We assume that each client gains
access to both a low-privacy-risk dataset, for which
the client has no particular privacy constraints and, a
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high-privacy-risk dataset, which may have been re-
cently collected, on which the client is obliged to
guarantee stricter privacy requirements. Given the po-
tential evolution of the data over time, we also con-
sider the possibility that the second dataset might have
a different distribution with respect to the first one.
The approach proposed in this paper exploits the pres-
ence of these two datasets to reduce the impact of DP
on the utility of the model (measured by the model’s
accuracy). In particular, the scenario that we ana-
lyze is a mix of P2P and server-based FL where the
clients are first grouped into different clusters. In each
cluster, the clients use their low-privacy-risk datasets
to train a federated model with or without using DP.
Subsequently, the clients exploit the high-privacy-risk
datasets at their disposal for starting a differentially
private server-based FL computation. Each client ex-
ploits the model already trained within the cluster to
start the server-based FL training with the goal of re-
ducing the impact of DP on the model’s utility. We
experimented our hybrid methodology on three well-
known datasets. Experimental results show the effec-
tiveness of our approach in reducing considerably the
accuracy of the learned model.

The paper is structured as follows. In Section 2
we briefly present the related works and formalize the
definition of Federated Learning and DP that we used
in our methodology. Section 3 describes the details of
our methodology and Section 4 presents the experi-
ments used to validate it. Finally, Section 5 concludes
the paper and presents our ideas for future develop-
ments of the proposed approach.

We summarize here our main contributions:

• We propose a new hybrid framework for train-
ing FL models that allows clients to combine the
server-based and the P2P architecture;

• The framework allows the clients to adopt DP
when it is needed limiting as much as possible its
use to degrade as little as possible the accuracy.

• We tested our framework assuming no privacy
need in the P2P computation and a differentially
private server-based FL.

• We tested our approach using three different
tabular datasets with different non-iid distribu-
tions, three different requirements for privacy and
three different dataset configurations with respect
to low-privacy-risk and high-privacy-risk dataset
sizes.

2 BACKGROUND AND RELATED
WORKS

Federated Learning: FL is a technique introduced in
(McMahan et al., 2016) to train ML models collabo-
ratively while preserving users’ privacy. There exist
two main FL architectures: server-based (McMahan
et al., 2016) and peer-to-peer (P2P) (Tang et al., 2018)
(Vanhaesebrouck et al., 2016) (Kasturi et al., 2022)
(Sun et al., 2021). In the server-based architecture,
we have two main actors during federated training:
the K clients that own the training data and a cen-
tral server that orchestrates the training process. The
process is initiated by the central server. Each client
trains a model using its own data and transmits the
model updates to a central server. The server com-
bines all model updates received and sends back the
combined model updates to the clients. The process
iterates until the model reaches a point of convergence
in terms of model performance or until the maximum
number of iterations is achieved. Instead, in a P2P ar-
chitecture, communication with the server is replaced
with peer-to-peer communication between the clients.
All the clients in the network start training a model
using their own data. At the end of the local train-
ing step, all the clients broadcast their local model
update to the other clients in the network. All the
clients receive the updates and aggregate them into
a new model. Depending on the topology of the P2P
network, this process may differ.

In addition to server-based and P2P architectures,
other collaborative models have been proposed in the
past few years. (Augenstein et al., 2022) presents the
idea of Mixed FL. They want to exploit both the “de-
centralised” data owned by the clients and the “cen-
tralised” data stored on the server or in another data
centre. Based on the number of clients involved in
the training, we can have a cross-silo or a cross-device
Federated Learning. In the cross-silo approach, only a
few clients are involved in the training and all of them
are always available during the training. Instead, in
the cross-device approach, millions of clients are in-
volved in the training and they are available for the
training only if some conditions are met.

In terms of aggregation, there are two main algo-
rithms that can be used by the server: Federated-SGD
(FedSGD) and Federated Average (FedAvg) (McMa-
han et al., 2016). FedSGD is the baseline algorithm.
In this approach, the server initializes a model θ0 and
shares it with the χ clients selected for the FL round.
Each of the k ∈ χ clients performs a single gradient
update step gk = ∇L(θk,bi) on the batch bi and then
shares the gradient gk with the server. Then the server
aggregates the χ gradients into a single one, updates
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the model and starts a new FL round. The constraint
on the single gradient update, which each client can
perform before sharing it with the server, is a huge
limit on the training performance. FedAvg is a more
advanced algorithm that aims to improve the perfor-
mance of FedSGD. In this case, the clients can per-
form more than a single local epoch before communi-
cating with the server. Instead of sending the gradient
to the server, with FedAvg, each client performs mul-
tiple steps of gradient descent on its own datasets and
then shares the model Θk with the server. The server
performs the aggregation computing the mean of the
received models:

θt+1←
K

∑
k=1

nk

n
wk

t+1 (1)

In this paper, we assume the use of FedAvg as an ag-
gregation algorithm.
Differential Privacy: Differential Privacy is a
privacy-preserving model introduced by Cyntia
Dwork (Dwork et al., 2006b) (Dwork and Roth,
2014). More formally, given ε > 0 and δ ∈ [0,1] a
randomized mechanism M satisfies (ε, δ)-DP if for
any two “neighbouring” datasets D, D

′
which differ

in exactly one entry and for each S ⊂ O we have
P[M (D) ∈ S] ≤ eεP[M (D

′
) ∈ S] + δ. Intuitively, if

we run the same algorithm M on the two datasets,
DP ensures that the two outputs will be indistinguish-
able up to an upper limit ε known as privacy bud-
get. For the accounting of the privacy budget we
use the accountant available in Opacus (Yousefpour
et al., 2021), the most popular library to train Differ-
entially Private models using Pytorch (Paszke et al.,
2019). This accountant uses Rényi Differential Pri-
vacy (RDP) (Mironov, 2017), a relaxation of the orig-
inal DP definition based on the Rényi divergence.
Privacy Preserving ML: The definition of DP we
provided in the previous section can also be applied
during the training of a ML model. A modified ver-
sion of the Stochastic Gradient Descent algorithm
called DP-SGD has been proposed in the literature
(Abadi et al., 2016) to apply DP during the training of
an ML model. The DP-SGD algorithm performs two
steps. First of all, the gradient computed during the
model training is clipped so that all the samples will
have the same influence on the model update. Then,
some noise sampled from a Gaussian distribution is
added to the gradient to introduce privacy. The pseu-
docode of the algorithm is reported in Algorithm 1.

When applying DP to ML models, there exist two
possible alternatives: Example-level DP or User-level
DP. With example-level DP, we ensure that adding or
removing a single training example will only change
the output distribution in a minimal way. In the
user-level DP instead, the output distribution will not

change even if we add or remove all the samples
from one of the users. In this paper, we consider the
Example-level DP. The downside of the use of DP is
that it could harm the utility of the model. Therefore,
it is important to consider a trade-off between model
utility and privacy offered by privacy-preserving ML
methods. The trade-off between privacy and utility
in ML has been studied in several settings, explor-
ing various solutions both from the algorithmic stand-
point and the evaluation aspect (Zhao et al., 2020).

Algorithm 1: Differentially private SGD.

Input: Examples {x1, . . . , xN}, loss function
L(θ) = 1

N ∑i L(θ,xi). Parameters: learning rate ηt ,
noise scale σ, group size L, gradient norm bound
C.
Initialize θ0 randomly.
for t ∈ [T ] do

Take a random sample Lt with sampling prob-
ability L/N

Compute gradient
For each i∈ Lt , compute gt(xi)←∇θt L(θt ,xi)
Clip gradient
ḡt(xi)← gt(xi)/max(1, ||gt (xi)||2

C )
Add noise
g̃t ← 1

L (∑i ḡt(xi)+N (0,σ2C2I))
Descent
θt+1← θt −ηt g̃t

end for
return θT and compute the overall privacy

cost (ε,σ) using a privacy accounting method.

Privacy Mitigation Techniques in FL: Despite hav-
ing been introduced to solve privacy problems, FL
has some vulnerabilities that could be exploited by
an attacker. Bouacida and Mohapatra (Bouacida and
Mohapatra, 2021) present a comprehensive review of
all the vulnerabilities in FL. The attacks that pose a
threat to the FL framework are Membership Inference
attack(Shokri et al., 2016), Features leakage (Melis
et al., 2018) Backdoor Attacks, Inverting Gradient at-
tacks and Adversarial samples attacks. Some counter-
measures have been proposed to tackle some of these
vulnerabilities and preserve user privacy. In particu-
lar, DP (Dwork, 2006) and Homomorphic Encryption
have been proposed as a possible privacy-preserving
technique for FL (Pejic et al., 2022). To the best of
our knowledge, real-life applications of Homomor-
phic Encryption for Federated Learning are still in-
feasible because of the computational power needed
to execute this protocol.

The most used technique is DP. There are two
main approaches to using DP during the training of
a Federated Learning model. The first one is Central
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Differential Privacy (CDP) (Geyer et al., 2017). In
CDP the server is in charge of adding the necessary
noise to the aggregated model. This approach entails
the complete trust of the clients towards the aggrega-
tor server. The second methodology is Local Differ-
ential Privacy (LDP). In this case, the local clients in-
volved in the federated training are in charge of apply-
ing DP. There are a few approaches that can be used
to apply DP to local clients. (Wei et al., 2019) pro-
posed to apply LDP on the client side after the train-
ing of the local model. This approach could destroy
the model’s utility. Therefore, the most used approach
is based on DP-SGD (Differentially-Private Stochas-
tic Gradient Descent) (Abadi et al., 2016). With this
method, DP is applied directly to the gradients com-
puted during the training process. In addition to the
approaches that only employ DP during the training,
both (Bonawitz et al., 2017) and (Truex et al., 2019)
proposed a solution to train models using FL combin-
ing the use of DP with the use of secure multi-party
computation during the aggregation step.
FL Techniques Against Attacks: in (Chan-
drasekaran et al., 2022) Chandrasekaran et al. pro-
posed a hierarchical FL framework that exploits DP
to defend against privacy attacks like membership in-
ference attacks and model inversion. They divide the
nodes into zones and for each zone, there is a super
node. The super-node is chosen by the nodes of the
zone using some algorithms used in P2P networks.
The idea is that the nodes in a zone communicate with
a super node. Each node sends the weights and the su-
per node averages all of them adding noise. Later, the
super-nodes send the weights with noise to the central
server. The nodes can add noise when they train their
local model or they can trust the super-node.
FL with Clustering: Several modifications of the
classic FL protocol have been proposed in the past
few years. However, in the literature, the idea of clus-
tering is usually used with FL to deal with clients with
different distributions with the goal of increasing the
utility of the models making them tailored to the dif-
ferent distributions. In particular, (Briggs et al., 2020)
proposed the idea of exploiting the similarity of the
local gradients of the clients to cluster them. This al-
lows the training of independent and specialised mod-
els. This protocol was extended in (Luo et al., 2023)
to adapt to the privacy-preserving context. In partic-
ular, they designed a series of secure cryptographic
protocols to ensure parties’ privacy. However, our
modification of the standard FL protocol is different
from the ones proposed in the past. First of all, we
cluster the clients based on the trust among the clients.
Moreover, we add a pre-training Peer-to-peer step in-
side the clusters before starting the classic FL proto-

col with the server. (Shenaj et al., 2023) clustered
the clients based on the styles of the images belong-
ing to each client to have models able to exploit both
global and cluster-specific parameters. The idea of
mixing both P2P and server-based training has been
presented in (Yeganeh et al., 2022). In particular, their
idea was to perform the training with the server first
and then, after a few rounds, cluster the clients based
on their model and then continue the training inside
the clustering. Even though this idea seems similar to
ours, the goals are different. In this case, they exploit
the training inside the cluster to train models tailored
to each cluster. Moreover, they do not consider the
use of privacy mitigation techniques. This last part is
crucial in our proposal because of the goal of reduc-
ing the impact of privacy mitigation on accuracy by
exploiting the clusters.
The Effectiveness of Pre-Training on FL: When FL
models are trained and evaluate it is common to start
from a random initialization of the model. However,
several studies (Chen et al., 2023) (Nguyen et al.,
2023) empirically studied the impact of starting the
FL process from a pre-trained model. In general, this
approach has a positive effect both on the final ac-
curacy of the trained model and on the convergence
time. Moreover, it can also be helpful in reducing
the effect of data heterogeneity, this is particularly
useful when we consider a non-iid scenario that is
typical when dealing with FL. Recently, the idea of
using a public dataset to pre-train a model has also
been proposed as a possible solution to reduce the
degradation of the model utility due to the use of DP
(Kurakin et al., 2022) (Nasr et al., 2023) (De et al.,
2022). In our paper, we leverage these results to guar-
antee both a modularity of the training architecture
and to achieve a smaller degradation of the model util-
ity while training an FL model.

3 METHODOLOGY

The main goal of this paper is the introduction of a
more customizable, modular and easy to update archi-
tecture for FL which empowers users to choose how
and when to use DP in a way that does not unduly
degrade the utility of the model. When DP-SGD is
applied during the training of a model, privacy comes
at the cost of reducing the utility of the model, our
methodology aims to balance these two requirements
by exploiting two different types of architecture: P2P
and client-server. As in any classic FL system, our
methodology considers two main actors:

• A set of K clients that take part in the FL training.
These clients can cooperate with each other and to
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do so they can use a P2P or server-based architec-
ture. If they decide to use a P2P architecture, they
can gather in different clusters. The belonging of
a client to a cluster may depend, for instance, on
a similar distribution of cluster clients on the level
of trust that clients may have with each other or on
the membership of the same organisation. In addi-
tion to the P2P architecture, the clients can decide
to use a classic server-based FL. We assume that
each client k gains access to two datasets: a low-
privacy-risk dataset lrk, for which the client has
no special requirements in terms of privacy, and a
high-privacy-risk data hrk. This high-privacy-risk
dataset is used to simulate new data collections
potentially with a different distribution than the
one of lrk and with higher privacy requirements.

• A central server that orchestrates the whole learn-
ing process for learning a collective ML model by
aggregating clients’ models.

The scenario that we consider fits in a context in
which multiple entities, belonging to different orga-
nizations have to train a model. For instance, if
we consider a scenario with multiple hospitals, we
could have that the ones belonging to the same re-
gion can trust each other and thus, they can collab-
orate in a cluster with no privacy mitigation. Then,
after a cluster-based cooperation, they could start
to collaborate with the other hospitals by exploiting
the server coordination. The opportunity of merg-
ing both cluster-based collaboration and server-based
collaboration could also enable the clients to set up
different local strategies for learning. As a conse-
quence, with our flexible architecture the clients in-
side a cluster could learn their local models, with-
out any privacy mitigation strategy, using the low-
privacy-risk dataset. Then, once learning an initial
common model on these data they can use the com-
plete and potentially up-to-date and risky dataset for
the final learning, involving the server and the other
hospitals. Clearly, in this last part, they have to apply
the appropriate privacy mitigation strategies.

More formally, the different phases of the protocol
that we propose are the following:

1. Cluster Formation Phase: we consider a sce-
nario in which the clients are first gathered into
clusters, and then they start the training with the
P2P FL architecture. The whole set of K clients
that want to participate in the training of a fed-
erated model is partitioned in C clusters. Each
client k ∈ K is assigned exclusively to a clus-
ter Ci. Therefore, given the set of clusters C =
C1,C2, . . . ,Cm we have that ∑

m
i=1|Cc|= |K|.

2. P2P Training Phase: During this phase the

clients of each cluster train a model using a P2P
protocol. We report the pseudocode of the P2P
Training Phase in Algorithm 2. At the beginning
of this phase, each client initializes a model θk
from whom to start the training (Line 1 of Al-
gorithm 2). Then, the client of each cluster per-
forms a number of local training epochs Ec using
its own dataset lrk (Line 3 of the algorithm) and
broadcasts the model to all the other clients inside
the cluster (Line 5). Next, each client waits to re-
ceive the models broadcasted by the other clients
in the cluster (Lines 6 and 7). Once the client has
received all the models, it can apply FedAvg to
create the final model θ. The procedure is then
started again from Line 2 of Algorithm 2 and re-
peated for a certain number of FL rounds. During
this phase, the clients can decide if they want to
use DP-SGD for training a differentially private
model. In our experiments, we do not use DP dur-
ing the P2P Phase because we assume trust among
the clients of each cluster.

3. Server Phase: During this phase, the standard FL
protocol is executed. The different clients in this
case use the high-privacy-risk dataset hrk and ex-
ecute a fixed number of local training epochs Es
before sharing their local model with a server. For
each FL Round t, the server S aggregates clients’
models into a single collective model θt . If the
clients do not trust the central server they can mit-
igate the privacy risks of the model by applying
a protection mechanism. In our experiments, we
rely on DP and we apply the DP-SGD algorithm.

Algorithm 2: P2P-phase (Client Side.)

Require: Ec local epochs for P2P Phase. lrk low-
privacy-risk data of client k. L list of the clients
located in the same cluster as the client k.

1: Initialize model θk
2: for e ∈ Ec do
3: Train θc using local data lrk
4: end for
5: Broadcast(θk, len(lrk, V)
6: for ( dol ∈ L)
7: Θl ,nl ← Receive model(l)
8: end for
9: θ← ∑

|L|
l=1

nl
n θl # Aggregate with FedAvg

Figure 1 shows a representation of the protocol used
for our experiments. In this case, we are considering
two clusters with 3 clients each. The training is first
computed inside the clusters and then, it is completed
using a server-based approach.

As mentioned above, the two phases of this proto-
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Figure 1: A representation of our protocol. The model is firstly trained inside the different clusters using a P2P architecture.
Then server-based training is employed to complete the training. During this last phase, clients use DP-SGD to guarantee
privacy protection during the training.

col can be composed based on the client’s preferences
in order to ensure maximum flexibility and create var-
ious learning processes to train the federated model.
Obviously, all the clients taking part in the training
must agree on the protocol.
Privacy Protection in Our Methodology: The pro-
posed methodology is agnostic w.r.t. the privacy mit-
igation mechanism. We chose DP as it gives us the
possibility to select different privacy budgets at dif-
ferent phases of the protocol. In this paper, we rely
on the DP-SGD (Abadi et al., 2016) and on the RDP
Accountant (Mironov, 2017) implemented in Opacus
(Yousefpour et al., 2021). The noise used to guar-
antee privacy is drawn from a Gaussian Distribution
(Dwork et al., 2006a). Because of the composabil-
ity of our framework, it is possible to apply DP-
SGD both during the P2P Phase and during the server
Phase. In both cases, we need to set a correspond-
ing privacy budget that we want to guarantee. It is
possible to set a privacy budget (ε1,δ1) for the P2P
Phase and then a different privacy budget (ε2,δ2) for
the server phase. Then, we apply the basic compo-
sition theorem (Dwork and Roth, 2014) to compute
the final privacy budget guaranteed by the protocol.
To do so, we sum the different privacy budgets of the
two different phases into a single final privacy budget:
(ε = ε1 + ε2,δ = δ1 + δ2). In our experiments we do
not apply DP-SGD during the P2P Training Phase but
only during the server phase. Therefore, we guarantee
a privacy budget (ε2,δ2).

3.1 How We Partition the Data

A large number of previous works made a strong
assumption about the i.i.d.-ness distribution of the
dataset used to train a federated learning model. This
is not true in a real-life scenario since each participant
could have a different data distribution. Moreover, the
distributions could also evolve because of new data
collections. In our experiments, the goal was to simu-
late this scenario. Since we did not have a dataset that

was naturally split into different parts in the way we
needed, we had to simulate this scenario by splitting
a dataset such that it could respect these constraints.
Given a dataset D, we partitioned it using the follow-
ing approach:

• Given a dataset D we first split it into the C parts
corresponding to the C clusters. This partitioning
of the samples into clusters is based on the sam-
ple target. To generate imbalanced distributions,
we used a Dirichlet distribution for each of the
targets. Then, based on these distributions, we as-
signed the corresponding quantity of data to each
of the clients. The Dirichlet distribution has a pa-
rameter α that determines the level of non-i.i.d.-
ness. In our experiments, we used α = 0.5 to sim-
ulate a highly skewed dataset.

• The procedure used to partition the data into C
clusters is then recursively applied inside each of
the C clusters. In particular, given a cluster Ci with
Ki clients, the dataset Di assigned to cluster Ci is
partitioned into Ki parts using the same Dirichlet
distribution approach with the same α parameter.

• The last step is the creation of the high-privacy-
risk and low-privacy-risk datasets for each of the
clients of the different clusters. For each client
k of cluster Ci, the dataset Dk is partitioned into
2 parts using the Dirichlet Distribution with α =
0.5. This is done to simulate the presence of a
low-privacy-risk dataset and a high-privacy-risk
dataset with different data distributions. As we
already said, in our experiments, the low-privacy-
risk dataset will be used for the intra-cluster com-
putations while the high-privacy-risk dataset will
be used for completing the training of the final
model. The idea is to simulate a situation in which
clients in a cluster can exploit an old and/or small
dataset with low privacy requirements for an ini-
tial training and then, can complete the collabora-
tive training by exploiting the up-to-date and com-
plete dataset.
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(a) Dutch. (b) Income. (c) Covertype.

Figure 2: Fig. 2a, 2b and 2c show the result of the dataset partition among the clusters. In the case of Covertype (Fig 2c) that
is a multiclass dataset with 7 possible targets, we observe a more “real-life” distribution in which some client only receives
data with some of the possible targets.

4 EXPERIMENTS

We evaluate our methodology using three different
tabular datasets: Dutch (Van der Laan, 2001), Cover-
type (Blackard, 1998) and Income (Ding et al., 2022).
Dutch is a dataset collected in the Netherlands that
contains 60.420 samples. The task is to predict
whether the individuals have a salary higher or lower
than 50K. Covertype is a multi-class dataset that con-
tains 581.012 samples. The task is to predict one of
the seven possible forest cover types. Income is a
bigger version of the popular Adult dataset (Becker
and Kohavi, 1996). It is composed of 1.664.500 sam-
ples and it contains census data about 50 states of the
United States of America and Puerto Rico. As with
Dutch, even in this case, the task is to predict if the
individuals earn more or less than 50K.

To guarantee a comprehensive evaluation of the
proposed methodology, we considered multiple set-
tings in terms of privacy requirements and size of the
low-privacy-risk and high-privacy-risk datasets. In
terms of privacy requirements, for each dataset, we
considered three different privacy budgets:

• With Dutch we used (ε = 0.2, δ = 9×10−3), (ε =
0.5, δ = 9×10−3) and (ε = 1, δ = 9×10−3)

• With Income we used (ε = 0.5, δ = 1× 10−2),
(ε= 1.0, δ= 1×10−2) and (ε= 2.0, δ= 1×10−2)

• With Covertype we used (ε = 0.5, δ = 3×10−3),
(ε= 1.0, δ= 3×10−3) and (ε= 2.0, δ= 3×10−3)

The δ parameter is computed as δ = maxK
k=1

1
nk

where
nk is the size of the dataset of client k. The selection of
both ε and δ was guided by recommendations found
in the literature (Ponomareva et al., 2023).

For each dataset, we set a specific configuration in
terms of the number of clients and clusters exploiting
the different sizes of the datasets:

• with Dutch we created 5 clusters with 15 clients
each. In total, we have 75 clients;

• with Income we exploited the natural division of
the dataset into 51 states creating 51 clusters. For
each of these clusters, we used 5 clients. In total,
we have 255 clients.

• with Covertype we considered 20 clusters with 5
clients each. In total, we have 100 clients

After applying the partition strategy among clusters,
described in Section 3.1, we obtain a data distribution
for each dataset as depicted in Figure 2. We observe
that for Income (Figure 2b) and Covertype (Figure 2c)
data distributions are more interesting with respect to
their non-i.i.d.-ness. Differently from Dutch and In-
come, Covertype is a multiclass dataset with 7 pos-
sible targets. This feature of the dataset allows us
to have a more “real-life” distribution of the data in
which some cluster only sees a portion of the possi-
ble targets. Income distribution, instead, is interesting
because it is “naturally” split into 51 clusters corre-
sponding to the USA states and Puerto Rico.

Lastly, in our experiments, we also compared dif-
ferent sizes of the low-privacy-risk and high-privacy-
risk datasets:

• 20% low-privacy-risk and 80% high-privacy-risk;

• 30% low-privacy-risk and 70% high-privacy-risk;

• 40% low-privacy-risk and 60% high-privacy-risk.
To choose the hyperparameters for the experiments
we performed a hyperparameter tuning. To do this,
we split the low-privacy-risk and the high-privacy-
risk dataset of each client into two parts, one used
to train the model (80%) and one used to validate
it (20%). The model used for the experiments is a
Logistic Regressor implemented with Pytorch using a
simple neural network with a single linear layer.

4.1 Results

In this section, we present the result of the application
of our methodology. In particular, we want to high-
light the impact of using a low-privacy-risk dataset
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(a) (b) (c)

Figure 3: Figures 3a, 3b and 3c show a comparison between a Baseline (red line), the model trained with server-based
architecture on the high-privacy-risk dataset using DP-SGD (green line) and the model pre-trained in the clusters and then
trained with the server-based architecture (blue line) when using the Dutch Dataset.

(a) (b) (c)

Figure 4: Figures 4a, 4b and 4c show a comparison between a Baseline (red line), the model trained with server-based
architecture on the high-privacy-risk dataset using DP-SGD (green line) and the model pre-trained in the clusters and then
trained with the server-based architecture (blue line) when using the Income Dataset.

(a) (b) (c)

Figure 5: Figures 5a, 5b and 5c show a comparison between a Baseline (red line), the model trained with server-based
architecture on the high-privacy-risk dataset using DP-SGD (green line) and the model pre-trained in the clusters and then
trained with the server-based architecture (blue line) when using the Covertype Dataset.

during the P2P Training Phase on improving the fi-
nal model accuracy while guaranteeing privacy pro-
tection. For each experiment, we report the average
performance and the standard deviation of 4 different
runs, each with a different seed. In our experiments,
we compare the following models:

• “Baseline”: A model trained using a classic
server-based FL where clients use the high-
privacy-risk dataset. In this case, clients do not

apply any DP protection (Red Line in the plots).

• “Server-Based FL”: A differentially private model
trained with server-based FL where clients use the
high-privacy-risk dataset (Green Line in the plots)

• “P2P + Server-Based FL”: The outcome of our
methodology. In this case, we pre-train mod-
els inside multiple clusters using the clients’ low-
privacy-risk datasets without DP. Then, we train
a global model with a classic server-based FL,
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where pre-trained models are refined using the
client’s high-privacy-risk datasets using DP (Blue
Line in the plots).

Table 1: Dutch Dataset.
Low-Privacy-Risk (ε, δ) Accuracy FL Accuracy P2P+FL Improvement

20% - 0.817 +- 0.001 - -
30% - 0.815 +- 0.005 - -
40% - 0.810 +- 0.003 - -
20% (0.2, 9×10−3) 0.629 +- 0.06 0.81 +- 0.003 22.34%
20% (0.5, 9×10−3) 0.792 +- 0.001 0.747 +- 0.003 -%
20% (1, 9×10−3) 0.785 +- 0.003 0.808 +- 0.001 -%
30% (0.2, 9×10−3) 0.611 +- 0.018 0.808 +- 0.001 32.24%
30% (0.5, 9×10−3) 0.705 +- 0.017 0.682 +- 0.005 -%
30% (1, 9×10−3) 0.788 +- 0.002 0.803 +- 0.001 1.86%
40% (0.2, 9×10−3) 0.632 +- 0.014 0.815 +- 0.001 22.45%
40% (0.5, 9×10−3) 0.771 +- 0.002 0.788 +- 0.006 2.15%
40% (1, 9×10−3) 0.791 +- 0.002 0.809 +- 0.001 2.22%

Table 2: Income Dataset.
Low-Privacy-Risk (ε, δ) Accuracy FL Accuracy P2P+FL Improvement

20% - 0.781 +- 0.000 - .%
30% - 0.780 +- 0.000 - .%
40% - 0.779 +- 0.000 - .%
20% (0.5, 1×10−2) 0.732 +- 0.003 0.769 +- 0.000 4.81%
20% (1, 1×10−2) 0.745 +- 0.001 0.777 +- 0.000 4.11%
20% (2, 1×10−2) 0.756 +- 0.000 0.777 +- 0.000 2.77%
30% (0.5, 1×10−2) 0.741 +- 0.009 0.757 +- 0.001 2.15%
30% (1, 1×10−2) 0.757 +- 0.000 0.774 +- 0.001 2.19%
30% (2, 1×10−2) 0.765 +- 0.001 0.757 +- 0.000 -%
40% (0.5, 1×10−2) 0.718 +- 0.003 0.770 +- 0.000 6.75%
40% (1, 1×10−2) 0.753 +- 0.001 0.771 +- 0.000 2.20%
40% (2, 1×10−2) 0.761 +- 0.001 0.773 +- 0.001 1.55%

Table 3: Covertype Dataset.
Low-Privacy-Risk (ε, δ) Accuracy FL Accuracy P2P+FL Improvement

20% - 0.698 +- 0.002 - -
30% - 0.697 +- 0.005 - -
40% - 0.695 +- 0.006 - -
20% (0.5, 3×10−3) 0.554 +- 0.003 0.594 +- 0.005 7.22%
20% (1, 3×10−3) 0.614 +- 0.003 0.642 +- 0.002 4.56%
20% (2, 3×10−3) 0.64 +- 0.004 0.652 +- 0.002 1.87%
30% (0.5, 3×10−3) 0.533 +- 0.004 0.632 +- 0.002 18.57%
30% (1, 3×10−3) 0.615 +- 0.003 0.627 +- 0.006 1.95%
30% (2, 3×10−3) 0.612 +- 0.004 0.616 +- 0.004 0.65%
40% (0.5, 3×10−3) 0.573 +- 0.002 0.635 +- 0.006 10.82%
40% (1, 3×10−3) 0.572 +- 0.003 0.643 +- 0.004 12.41%
40% (2, 3×10−3) 0.612 +- 0.001 0.673 +- 0.003 9.96%

In Tables 1, 2 & 3 we report the results of the ex-
periments conducted on the three datasets with the
different combinations of DP parameters and low-
privacy-risk vs high-privacy-risk datasets. In the ta-
bles, we compare the accuracy achieved with “Server-
Based FL” with the one achieved with our method-
ology “P2P+Server Based FL” highlighting the im-
provement in percentage. We observe that, regardless
of the low-privacy-risk dataset size, we have a higher
improvement in performance in all the datasets when
using DP with the lowest privacy parameters. This
improvement is more evident for Dutch and Cover-
type. This means that our approach enables high
levels of privacy protection while guaranteeing very
good performance of the final FL model. Moreover,
it is also important to note that the accuracy of the
models is very close to the one obtained by applying
the standard FL computation without any privacy re-
quirements (first three lines of each table). Clearly,
the size of the low-privacy-risk and high-privacy-risk

datasets also impacts the improvement that we can
achieve with our methodology. In general, we observe
that the use of a low-privacy-risk dataset with 20%
or 30% of samples combined with looser privacy re-
quirements reduces our gain in performance with re-
spect to the classic Server-based FL. In some cases,
as for Dutch, it also makes it less effective. How-
ever, when we increase the size of the low-privacy-
risk dataset, our methodology can bring an improve-
ment to the final model accuracy that, in the case of
Dutch, ranges from 22%, when using a privacy re-
quirement (ε = 0.2, δ = 9×10−3), to 2%, when using
(ε = 1, δ = 9×10−3).

Concerning these experiments, we also report in
Figures 3, 4 and 5 the evolution of model accuracy
over the different FL rounds. All the plots refer to the
results that we obtained using data partitioning into
40% low-privacy-risk and 60% high-privacy-risk on
each client. To show the impact of the privacy require-
ment, we report all three different privacy require-
ments per dataset. We observe that the pre-training
inside the clusters of our methodology helps both in
starting the “P2P+Server Based FL” training from a
more accurate model and, in reducing the final ac-
curacy degradation with respect to the Server-Based
FL. Observing the different rounds we can notice that
our approach allows us to converge to the final model
accuracy faster and the model accuracy becomes sta-
ble over the FL rounds faster regardless of the privacy
budget. Looking at the three datasets we observe that
in Dutch and Income (Figure 3 and 4) the decrease in
privacy protection leads to a decrease in the improve-
ment of our methodology. For example, in Dutch,
where we used a severe privacy budget this is more
evident. Indeed the improvement goes from a 22.45%
of the case with (ε = 0.2, δ = 9×10−3) to the 2.22%
in the case with (ε = 1, δ = 9×10−3).

In general, we can observe that the more is the im-
pact of DP on the model trained by a server-based FL
the higher the improvement offered by our method-
ology. This is because our methodology, thanks
to the pre-training is more resistant to the potential
model degradation caused by DP. In Covertype (Fig-
ure 5c the decrease of the improvement is less evi-
dent because the effect of DP on the “Server-Based
FL” experiments with the three privacy settings is not
markedly different. Indeed, the improvement ranges
from 10.82%, in the case of (ε = 0.5, δ = 3× 10−3),
to 9.96, in the case of (ε = 2, δ = 3×10−3).
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5 CONCLUSION

In this paper, we introduced a new hybrid Federated
Learning architecture that mixes both aspects of P2P
and Server-based FL training to reduce the impact
of DP on the final model accuracy. Our idea is to
compose the classic FL architecture, in which the
model is trained using a server that acts as an orches-
trator, with a peer-to-peer architecture, in which the
model is trained without a third-party server. In our
scenario, each client possesses both a low-privacy-
risk and a high-privacy-risk dataset used during the
P2P and the Server-based Phase, respectively. We
tested our methodology using three different tabu-
lar datasets, three different privacy requirements and
three different sizes of low-privacy-risk and high-
privacy-risk datasets. Our experiments show how our
methodology can be effective in reducing the impact
of DP on the model’s accuracy. When comparing
the final model accuracy of the standard Server-based
FL approach with our methodology, we were able to
achieve in some cases an improvement up to 32%. In
particular, we found that the impact of our methodol-
ogy is more evident when using high privacy require-
ments, i.e. low privacy budget, which typically nega-
tively impacts the standard Server-based FL. The size
of the low-privacy-risk datasets is another important
factor to consider, the more we increase it the more
our methodology is effective. As a future work, we
intend to test a wider range of architectures mixing
the two building blocks, P2P-based and server-based
training, in different ways. Moreover, we would like
to validate the methodology on more datasets of dif-
ferent modalities.
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