
Conceptual Model Detection in Business Web Applications Within the
RPA Context

Dora Moraru, Adrian Sterca a, Virginia Niculescu b, Maria-Camelia Chisăliţă-Creţu c

and Cristina-Claudia Osman d

Babeş-Bolyai University, Cluj-Napoca, Romania

Keywords: Web Automation, Robotic Process Automation, Data Model Extraction, Entity Detection in Web Applications.

Abstract: Robotic Process Automation (RPA) platforms target the automation of repetitive tasks belonging to business
processes, performed by human users. Web automation is a part of RPA that deals with the automation of web
applications. In our previous work, we introduced a web automation tool in the form of a browser plugin that is
able to discover simple processes on a target business web application and is able to later execute these simple
processes automatically without human intervention. Our web automation tool relies on a description of the
data model used by the target web application. This data model must be manually specified by the human user
in advance. In our current work, we propose a new method for discovering this data model automatically from
the target web application itself. We also performed some experiments in the paper that show that our method
is viable.

1 INTRODUCTION

Companies operating in different business areas often
share the same economic and human objectives while
performing specific business processes. Economic
objectives involve reducing costs, increasing produc-
tivity, improving efficiency, and service quality. Hu-
man objectives indicate practices that allow employ-
ees to feel valued and supported in the working area,
which frequently means reducing the amount of repet-
itive and manual work.

Usually, business processes require interaction be-
tween various business applications (e.g., Customer
Relationship Management (CRM) systems, Enter-
prise Resource Planning (ERP) software).

Robotic Process Automation (RPA) is the appli-
cation of specific methodologies and technologies
that aim to automate business process-related repet-
itive tasks achieved by human users (Hofmann et al.,
2020).

Existing RPA tools provide capabilities for devel-
oping software robots (or bots) that mimic the actions
performed by humans to execute the steps of a partic-
ular business process.

a https://orcid.org/0000-0002-5911-0269
b https://orcid.org/0000-0002-9981-0139
c https://orcid.org/0000-0002-1414-0202
d https://orcid.org/0000-0002-9706-2915

Automation includes a wide range of actions
(Hartley and Sawaya, 2019), such as data entering,
simple calculations, data reading and extraction from
ERP systems, PDF files, or images, form fill out,
e-mail reply, attachments opening or saving, partic-
ular application features execution, operations over
files and folder, data scraping from web pages, etc.
More, multiple technologies such as optical charac-
ter recognition (OCR), natural language processing
(NLP), and various artificial intelligence (AI) meth-
ods are used for data extraction (Hegde et al., 2018).

Software robots automate rule-based processes
using high-volume and well-defined structured data
processed in a deterministic context (Willcocks and
Lacity, 2016).

Current RPA platforms (e.g., UiPath1, Automa-
tion Anywhere2, Blue Prism3, Microsoft Power Au-
tomate4, etc.) help increase work efficiency and accu-
racy by automatizing business processes and execut-
ing them more robustly by avoiding possible human
errors.

RPA refers to those tools that operate on the user
interface (UI) aiming to perform automation tasks us-
ing an ”outside-in” approach (Van der Aalst et al.,

1https://www.uipath.com/
2https://www.automationanywhere.com/
3https://www.blueprism.com/
4https://powerautomate.microsoft.com/en-us/

Moraru, D., Sterca, A., Niculescu, V., Chisǎliţǎ-Creţu, M. and Osman, C.
Conceptual Model Detection in Business Web Applications Within the RPA Context.
DOI: 10.5220/0012864100003753
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 19th International Conference on Software Technologies (ICSOFT 2024), pages 519-526
ISBN: 978-989-758-706-1; ISSN: 2184-2833
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

519

2018). RPA is not an invasive technology, based on
existing systems, without being constrained to de-
velop or replace costly platforms (Willcocks and Lac-
ity, 2016).

RPA projects usually follow an automation pro-
cess consisting of task identification, process redef-
inition from AS-IS to TO-BE, actual bot develop-
ment, testing, deployment, and monitoring (Huang
and Vasarhelyi, 2019), (Gex and Minor, 2019).

RPA developers identify UI components of a soft-
ware application like buttons, text input controls,
drop-down lists, and tables, and then customize activ-
ities by writing code snippets in a programming lan-
guage to act on these UI controls (e.g. clicking the se-
lected button, writing data in the text input, select all
data from a table or a drop-down list, etc.). The code
referencing the selected UI controls forms the auto-
mated business process which can be executed many
times later with different input parameters.

This paper emphasizes a complementary ap-
proach, where we automatically navigate over the
web application and aim to identify a conceptual
model employed throughout the executed business
processes.

The original contributions presented in the paper
can be summarized as follows. In previous work
(Sterca et al., 2023) we developed a web automation
tool in the form of a browser plugin that is able to dis-
cover simple processes in a target business web appli-
cation and it can later execute these simple processes
automatically without human intervention; an exam-
ple of such a simple process which we call a concep-
tual operation is the operation of adding an account
in a CRM business application. In our previous work,
we relied on a description of the data model used by
the target web application (i.e. the concepts and en-
tities used by the web application together with their
properties). This data model must be created manu-
ally by the human user either from the official doc-
umentation of the target web application or from the
UI of the target web application itself. This manual
labour is tedious and takes time. In our current work,
we propose a new method for the automatic discov-
ery of this data model of the target business web ap-
plication, keeping the human user intervention to the
lowest degree possible.

The rest of the paper is structured as follows: Sec-
tion 2 provides related work about business processes
in the context of RPA. Section 3 offers details about
our web automation tool developed in previous work.
Our algorithm for the automatic discovery of the data
model of the target web application is described in
detail in Section 4, while Section 5 describes some
evaluation tests that we performed in order to show

that our method of automatic detection of the data
model of a business web application is viable. The pa-
per concludes with the final remarks and future work
ideas.

2 RELATED WORK

The software development cycle (SDC) starts with a
high-level design that gets translated into source code.
Reverse engineering flips this process around, taking
the source code or the software product and identi-
fying the original design intent. Reverse engineering
allows the extraction of ER models (Hainaut, 1991) or
UML models (Iftekhar et al., 2019), (Abb and Rehse,
2022) from schema or schema-less databases.

RPA is a cutting-edge technology that allows com-
panies to automate repetitive office tasks. Utilizing
software robots programmed to execute specific in-
structions, RPA imitates human actions by interacting
with various web and desktop applications (Van der
Aalst et al., 2018). On the other hand, Process Mining
(PM) represents a set of techniques that extracts mod-
els based on human behaviour recorded as event logs
(Van Der Aalst, 2016). The intersection of these fields
is described as Robotic Process Mining (RPM) (Leno
et al., 2021). RPM instruments aim to create RPA
scripts from UI logs. Nevertheless, there are some
differences between event logs (input for PM) and UI
logs (input for RPM) (Leno et al., 2021). Firstly, the
level of abstraction is different: UI logs are gener-
ated at GUI level, while event logs are generated at
the business process task level. Therefore, a business
process task may consist of several UI actions. Event
logs ask for a case ID, while a unique identifier for
each case is not required at UI log level. The data pro-
duced/consumed within an event is not mandatory to
be stored at the event log level, while UI logs need this
data. The fourth difference mentioned by (Leno et al.,
2021) refers to the missing events that in some situa-
tions are ignored if they are not recorded by the infor-
mation systems used by the involved participants.

A method for analyzing UI logs with the aim of
identifying sequences of actions is depicted by (Bosco
et al., 2019). The focus is on discovering routines
that can be automated to improve the user experience
or streamline processes. The limitations of their re-
search refer to routines involving loops (when the exit
condition is not identifiable) and noise (the presence
of an event that does not belong to the current rou-
tine). There are also approaches that discover candi-
date routines from unsegmented UI logs in the pres-
ence of noise (Leno et al., 2020). Application logs
are also analysed with the aim of extracting the most

ICSOFT 2024 - 19th International Conference on Software Technologies

520

frequent user tasks. Usually frequent pattern mining
techniques and sequential pattern mining techniques
(Mannila et al., 1997), (Agrawal and Srikant, 1995)
are used, but (Dev and Liu, 2017) propose a rank pat-
tern based on membership based cohesion.

A reference data model for process related UI logs
is proposed by (Abb and Rehse, 2022). This model
is described as an extension of the standard used for
event logs, XES (Günther and Verbeek, 2013). Our
plugin browser maps the UI operations to conceptual
operations in a database, the main idea being focus-
ing on the connection of UI actions to database oper-
ations.

Web scraping techniques are used to automati-
cally extract information from websites. These tech-
niques have diverse applications, including gathering
contact information, monitoring and comparing price
changes, collecting product reviews, compiling real
estate listings, tracking weather data, detecting web-
site changes, and integrating web data (Zhao, 2017).
Three phases are needed for web scraping projects:
site analysis, data analysis and design, and produc-
tion (ten Bosch et al., 2018). Our approach is differ-
ent than web scraping as the plugin browser identifies
the conceptual operations and it can execute these op-
erations. Furthermore, the data model is discovered
based on the identification of the conceptual opera-
tions.

In a systematic mapping study, Sepulveda et. all
(Sepulveda et al., 2017) summarizes the methods and
techniques to obtain the data model from business
process models. In the RPA context, our method ex-
tracts the data model by examining the Graphical User
Interface (GUI) components and the Document Ob-
ject Model (DOM) structure. None of the approaches
presented earlier focus on extracting conceptual data
models based on the GUI/DOM structure.

3 WAPlugin FOR WEB
AUTOMATION

WAPlugin is a web automation tool implemented as
a browser plugin that automatically translates hu-
man user operations on the UI of a target web appli-
cation onto conceptual operations in the underlying
database. We consider conceptual operations as being
CRUD (i.e. Create, Retrieve, Update, Delete) oper-
ations on concepts; the term concept refers to a data
type stored in a database table, while an entity refers
to a row/record of a database table. A concept always
describes a set of entities; e.g. an ‘Account concept‘
is stored in an ‘Account‘ table in the database, while
each entry/record from this table represents an ‘Ac-

count entity‘.
This web automation tool is developed as a

browser plugin, and so it bears the advantages of this
kind of applications. The usage of this tool involves
two stages:

• one stage through which the tool discovers the
specific conceptual operations

• and another stage in which the tool is able the au-
tomatically executes these operations.

In the first stage, the human user guides the tool by
navigating in the target business web application (i.e.
clicking through the various buttons, links and other
clickable elements of UI of the target web applica-
tion), so that the plugin discovers what we call pri-
mary blocks for process automation - which is another
name for a conceptual operation. The user has to fol-
low on the UI all the steps that are needed to each
conceptual operation; all these operations assisted by
the user form the stage that we may call the learn-
ing stage. Based on this guidance, the plugin discov-
ers and extract these primary blocks, and then on a
further stage, it can automatically execute such pri-
mary blocks on the target web application or it can
form complex processes with the discovered primary
blocks and it can execute those too. The human user
specifies to the browser plugin which primary block
(i.e. conceptual operation) to execute and he/she can
also provide parameters for the respective conceptual
operation; for example, if the user wants to execute an
‘Add New Account‘ automatically, he/she must spec-
ify which conceptual operation should be executed to
the browser plugin (in this case its an ‘INSERT Ac-
count‘ conceptual operation) and then the user must
provide the parameters for this conceptual operation
(e.g. the name of this new account, its address, de-
scription and other properties described in the data
model of the business web application).

For further details, please see (Sterca et al., 2023).
The WAPlugin automation tools requires up front

a description of the data model of the target business
web application. This data model is just a list of all
the concepts used by the target web application. Each
concept is defined by a list of properties and is equiv-
alent to a database table in the underlying database
used by the target web application. This data model
is an input parameter for all functionalities offered by
our browser plugin (together with the root URL of the
target web application and the access credentials to
the application). In our previous work, we specify
this data model of the target web application manu-
ally in the form of a long JSON string. The purpose
of our current work is to determine this data model (or
an approximation of it that will be further refined by
a human expert) automatically by browsing through

Conceptual Model Detection in Business Web Applications Within the RPA Context

521

the web pages generated by the target business appli-
cation. This automatic discovery of the data model
of the target business web application would reduce
the amount of labour required from the human user
who otherwise needs to consult the technical docu-
mentation of the application or he/she needs to browse
through the webpages of the UI of the application in
order to manually describe the data model of the ap-
plication in JSON format.

4 DETECTING THE DATA
MODEL OF THE TARGET WEB
APPLICATION

The basic idea of our method for detecting the under-
lying data model of a business web application is that
as long as the business web application exposes the
Update functionality for its entities (and most, if not
all, business applications offer this kind of functional-
ity to its human users; otherwise, all the entities would
be read-only in the application), a browser plugin can
detect these entities by discovering html input fields
(like ”<input type=text >,<select >,<textarea >”)
in the web pages generated by the application and can
associate these input fields to textual labels from the
UI of the application. These textual labels will form
the properties/fields of entities in the data model. As
long as the web application offers update function-
ality, it has to use html input fields in order to get
values from the human user (the web application can,
of course, implement its own custom input fields, but
this involves complex javascript code which is inef-
ficient as long as html tags described by the HTML
standard language are available and were especially
created for this purpose - to get the input from the hu-
man user).

The algorithm used for automatically browsing
through the web pages generated by the business web
application, algorithm which is implemented in our
browser plugin, works by running a depth-first traver-
sal on the entire web application. The various web
pages of the application are traversed through click-
able elements. This algorithm is described in code
listing 1.

In the first lines of the algorithm, lines 1-
3, we perform initializations of various structures
used in the algorithm: the stack and the current
clickableElements present on the web page. The al-
gorithm assumes that the starting HTML document of
the web application is already loaded in the browser
(this means the access credentials were already input
by the human user before running the algorithm). The

Algorithm 1: The algorithm that navigates automatically
through a business web application.

The AutomaticBrowsing algorithm is:
1: Stack = [] ; newPath = [];
2: clickableElements = GetClickableElements()
3: Stack.push(newPath,clickableElements)
4: while (Stack is not empty) do
5: clickableElementsSet = Stack.top()[1]
6: if clickableElementsSet == NULL then
7: continue
8: end if
9: ClickElem =

10: GetFirstUnvisitedClickableElement(clickableElementsSet)
11: ClickElem.state = visited
12: if clickElem is not in the current DOM then
13: Navigate(Stack.top()[0])
14: end if
15: remaining = GetUnseenClickableElements()
16: Stack.push(newPath,remaining)
17: entity = DetectEntity()
18: if entity! = NULL then
19: DataModel.add(entity)
20: Stack.pop()
21: GoBackOneStep()
22: end if

23: end while

algorithm retrieves the clickableElements from this
HTML document in line 2. An element of the stack is
formed by the clickableElementsSet found on the web
page and a list (newPath) formed by the XPATHs of
the clicks that led to the current webpage (in line 3,
newPath is an empty list).

Following, lines 4-23 define the main cycle of the
iterative depth-first traversal algorithm. The Stack
stores all the clickableElements that need to be tra-
versed/visited. An element is removed from the stack
when all its clickable elements are visited by our tool
or when an entity for the data model is found. On
lines 5-14 we take the first element from the top of the
stack, get its first unvisited (i.e. unclicked) clickable
element and check if it is present in the current DOM;
if not, the plugin navigates to the path of ClickElem,
using the first list from the element retrieved from the
stack (Stack.top()[1]). Each element of the stack is a
pair element containing at index 0 the path - sequence
of clickable elements that got us to this webpage and
at index 1 the webpage - defined by a set of clickable
elements. Reaching the web page that contains our
current clickable element, the browser plugin clicks it,
the DOM is expected to change, and in the following
steps (lines 15-16) we get the new clickable elements,
that have not been seen until now by the plugin, and
store them into the stack in order to be visited later.

Next, on line 17, we try to detect if an entity
is present on the current web page (DetectEntity()).
Lines 18-22 are for the case when an entity from the

ICSOFT 2024 - 19th International Conference on Software Technologies

522

data model is present in the loaded HTML document.
In this scenario, we store this entity in the data model,
remove the last element from the stack because we are
no longer interested in the current web page (since we
have found the entity), and go back a step (there’s a
higher probability that the next unvisited clickable el-
ement is situated on the previous page than others).

The algorithm for detecting an entity for the data
model is based on the premise that a label associ-
ated with an input is situated on its North-West side.
Therefore, we firstly detect the inputs (<input>, <se-
lect>, <textarea>) present on the HTML web page
and then try to find for each input the closest textual
label that is positioned in the North-West quarter of a
circle with the centre in the middle of the input. If for
more than one input we have found a pair in the list of
labels, it means that the plugin has found an entity for
the data model of the page, and the associated textual
labels are the properties/fields of the entity of the data
model.

5 VALIDATION

We conducted an experiment in which we tried to de-
termine the data model for a business web application.
The application we used to test our browser plugin is
Microsoft Dynamics 2016 CRM. This business appli-
cation has more than 150 distinct types of web pages
generated (i.e. more than 150 functionalities). We
let the plugin discover entities for 30 minutes, time in
which it found 21 different entities out of 21 possibili-
ties (apparent 100% precision; also the plugin did not
detect any false entity - an entity that does not exist
in the application). This precision of 100% is appar-
ent because although the plugin detected all the avail-
able entities in the time frame of the experiment (30
minutes), occasionally some of the properties/labels
of the detected entities were not properly detected.

We realize that it would have been better to let the
plugin run for a significantly longer period of time, so
that it discovers all entities in the data model of the
Microsoft Dynamics 2016 CRM application, but the
web pages generated by this application are similar
and we consider that running the data model detec-
tion algorithm of our plugin for about 30 minutes is
statistically relevant for the whole Microsoft Dynam-
ics 2016 CRM application. After running the browser
plugin for 30 minutes, we report the entities it has
found. Some of these entities were found multiple
times because of their numerous occurrences in the
web pages of the application. Being a complex ap-
plication, it has a variety of buttons and features, such
as generating reports or downloading files. Therefore,

the plugin had to traverse these steps with the aim of
discovering an entity.

Running the data model discovery algorithm for a
longer time period would, of course, allow the plugin
to discover more entities from the data model of the
target business web application.

In screenshot Fig. 1, we can see how the plugin
detected the clickable elements and bordered them in
red. We compute the XPATH of these HTML ele-
ments and push them into a stack, in order to be later
clicked one by one in a depth-first search manner.

In Fig. 2 and Fig. 3, the plugin firstly detected the
input fields present on this web page and then associ-
ated the closest textual label to each input. Therefore,
the labels which are associated with an input, repre-
sent the properties of an entity, or more exactly, the
column’s names of an entity in a database. In rare
cases, where the wrong labels are closer to an input,
the associations are incorrect.

The list of entities that make up the model is saved
by the browser plugin in JSON format due to the ubiq-
uitous support for this format in web applications.
Each entity is described by its name and a list of at-
tributes/fields (which are equivalent to column names
in a database table). For example, a small snippet of
the entities from the Microsoft Dynamics 2016 CRM
application identified by our browser plugin tool is the
following :
["Invoice" :

["Invoice ID", "Name", "Currency",
"Price list", "Prices locked",
"Opportunity", "Order", "Customer",
"Description", "Date delivered",
"Due date", "Shipping method",
"Payment terms", "Bill to address",
"Ship to address"],

"Order" :
["Order ID", "Name", "Currency",
"Price list", "Prices locked",
"Opportunity", "Quote", "Potential
Customer", "Description", "Requested
delivery", "Date fulfilled",
"Shipping method", "Payment terms",
"Freight Terms", "Bill to address",
"Ship to address"]

]

We should also note that the detected model of
the application is just an approximation of the data
model of the database used by the target web appli-
cation. The actual data model of the database used
by the web application is hidden from the human user
(i.e. the human user does not have direct access to the
underlying database of the web application). The de-
tected data model is the one imprinted in the UI of the
web application (i.e. it is comprised from the labels

Conceptual Model Detection in Business Web Applications Within the RPA Context

523

Figure 1: Detection and highlight of clickable elements from a web page.

Figure 2: Detecting an entity in Ms Dynamics 2016 CRM - example 1.

used in the UI of the web application). But this ap-
proximate data model is the one we need if we want
to automate the usage of the target web application as
explained in Section 3.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we introduced a method for automatic
discovery of the data model used by a target busi-
ness web application. Our method is implemented

in a browser plugin and is based on automatic navi-
gation through the web pages generated by the target
business web application. It identifies specific DOM
elements (i.e. html input tags) and associates these
to properties of concepts in the data model to be dis-
covered. We note that this data model is just an ap-
proximation of the actual data model of the underly-
ing database used by the target web application (this
database is hidden from the human user). But this ap-
proximate data model is all we need in order to imple-
ment a web automation tool in the form of a browser
plugin (i.e. a tool that is able to discover business pro-
cesses - with or without the help of the human user -

ICSOFT 2024 - 19th International Conference on Software Technologies

524

Figure 3: Detecting an entity Ms Dynamics 2016 CRM - example 2.

in a target business web application and is later able
to execute these processes automatically.

We performed some evaluation tests on a business
web application, namely Microsoft Dynamics 2016
CRM in order to show that our method is viable. Our
method indeed discovered entities from the underly-
ing data model used by the target web application.

Of course, our work has limitations. In future
work, we intend to perform evaluation tests on other
business web applications, not just on Microsoft Dy-
namics 2016 CRM.

Also, our current work is not able to detect refer-
ences/links between concepts in the data model (i.e.
the equivalent of foreign keys in database tables).
And this would be a good starting point for future
work.

REFERENCES

Abb, L. and Rehse, J.-R. (2022). A reference data model for
process-related user interaction logs. In International
Conference on Business Process Management, pages
57–74. Springer.

Agrawal, R. and Srikant, R. (1995). Mining sequential pat-
terns. In Proceedings of the eleventh international
conference on data engineering, pages 3–14. IEEE.

Bosco, A., Augusto, A., Dumas, M., La Rosa, M., and
Fortino, G. (2019). Discovering automatable routines
from user interaction logs. In Business Process Man-
agement Forum: BPM Forum 2019, Vienna, Austria,
September 1–6, 2019, Proceedings 17, pages 144–
162. Springer.

Dev, H. and Liu, Z. (2017). Identifying frequent user tasks
from application logs. In Proceedings of the 22nd in-
ternational conference on intelligent user interfaces,
pages 263–273.

Gex, C. and Minor, M. (2019). Make your robotic process
automation (rpa) implementation successful. Armed
Forces Comptroller, 64(1):18–22.

Günther, C. W. and Verbeek, E. (2013). Xes standard defi-
nition. 2014. BPMcenter. org.

Hainaut, J.-L. (1991). Database reverse engineering: Mod-
els, techniques, and strategies. In ER, pages 729–741.

Hartley, J. L. and Sawaya, W. J. (2019). Tortoise, not the
hare: Digital transformation of supply chain business
processes. Business Horizons, 62(6):707–715.

Hegde, S., Gopalakrishnan, S., and Wade, M. (2018).
Robotics in securities operations. Journal of Securi-
ties Operations & Custody, 10(1):29–37.

Hofmann, P., Samp, C., and Urbach, N. (2020). Robotic
process automation. Electronic Markets, 30(1):99–
106.

Huang, F. and Vasarhelyi, M. A. (2019). Applying robotic
process automation (rpa) in auditing: A framework.
International Journal of Accounting Information Sys-
tems, 35(C).

Iftekhar, N., Warsi, M. R., Zafar, S., Khan, S., and
Biswas, S. S. (2019). Reverse engineering of rela-
tional database schema to uml model. In 2019 In-
ternational Conference on Electrical, Electronics and
Computer Engineering (UPCON), pages 1–6. IEEE.

Leno, V., Augusto, A., Dumas, M., La Rosa, M., Maggi,
F. M., and Polyvyanyy, A. (2020). Identifying can-
didate routines for robotic process automation from
unsegmented ui logs. In 2020 2nd International Con-
ference on Process Mining (ICPM), pages 153–160.
IEEE.

Conceptual Model Detection in Business Web Applications Within the RPA Context

525

Leno, V., Polyvyanyy, A., Dumas, M., Rosa, M. L.,
and Maggi, F. M. (2021). Robotic process min-
ing: Vision and challenges. Business & Information
Systems Engineering: The International Journal of
WIRTSCHAFTSINFORMATIK, 63(3):301–314.

Mannila, H., Toivonen, H., and Inkeri Verkamo, A. (1997).
Discovery of frequent episodes in event sequences.
Data mining and knowledge discovery, 1:259–289.

Sepulveda, C., Cravero, A., and Cares, C. (2017). From
business process to data model: A systematic mapping
study. IEEE Latin America Transactions, 15(4):729–
736.

Sterca, A., Niculescu, V., Chisăliţă-Creţu, M.-C., and Os-
man, C.-C. (2023). Primary building blocks for web
automation. In Zhang, F., Wang, H., Barhamgi, M.,
Chen, L., and Zhou, R., editors, Web Information Sys-
tems Engineering – WISE 2023, pages 376–386, Sin-
gapore. Springer Nature Singapore.

ten Bosch, O., Windmeijer, D., van Delden, A., and van den
Heuvel, G. (2018). Web scraping meets survey design:
combining forces. In Big Data Meets Survey Science
Conference, Barcelona, Spain.

Van Der Aalst, W. (2016). Data science in action. Springer.
Van der Aalst, W. M. P., Bichler, M., and Heinzl, A. (2018).

Robotic process automation. Business and Informa-
tion Systems Engineering, 60:269–272.

Willcocks, L. P. and Lacity, M. (2016). Service automation
robots and the future of work. SB Publishing.

Zhao, B. (2017). Web scraping. Encyclopedia of big data,
1.

ICSOFT 2024 - 19th International Conference on Software Technologies

526

