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Recent advancements highlight the crucial role of high-quality data in developing accurate Al models, espe-
cially in threat intelligence named entity recognition (TI-NER). This technology automates the detection and
classification of information from extensive cyber reports. However, the lack of scalable annotated security
datasets hinders TI-NER system development. To overcome this, researchers often use data augmentation
techniques such as merging multiple annotated NER datasets to improve variety and scalability. Integrating
these datasets faces challenges like maintaining consistent entity annotations and entity categories and ad-
hering to standardized tagging schemes. Manually merging datasets is time-consuming and impractical on a
large scale. Our paper presents TI-NERmerger, a semi-automated framework that integrates diverse TI-NER
datasets into scalable, compliant datasets aligned with cybersecurity standards like STIX-2.1. We validated
the framework’s efficiency and effectiveness by comparing it with manual processes using the DNRTI and
APTNER datasets, producing Augmented APTNER (2APTNER). The results demonstrate over 94% reduc-
tion in manual labour, saving several months of work in just minutes. Additionally, we applied advanced ML
algorithms to validate the effectiveness of the integrated NER datasets. We also provide publicly accessible

datasets and resources, supporting further research in threat intelligence and AI model developments.

1 INTRODUCTION

Threat intelligence, also known as entity recognition
(TI-NER), is a specialized NLP task in the cyberse-
curity and threat intelligence domain. It identifies
and classifies cybersecurity-related entities within un-
structured text reports, such as malware, threat actors,
indicators of compromise (IoCs), security tools, and
vulnerabilities. Although manual analysis by secu-
rity analysts is precise, the large volume and varied
sources of daily threat reports make this approach im-
practical. To address this, researchers have turned
to machine learning (ML) models to automate the
extraction of actionable intelligence from these re-
ports. Examples of such tools include AGIR (Per-
rina et al., 2023), TTPHunter (Rani et al., 2023a),
Vulcan(Jo et al., 2022), AttackKG(Li et al., 2022),
CyberRel(Guo et al., 2021), EXTRACTOR(Kiavash
et al., 2021), and CyberEntRel(Ahmed et al., 2024).
These deep learning tools depend on high-quality an-
notated datasets. In cybersecurity, the most com-
mon tagging schemes for annotating these entities in
text sequences are BIO (beginning, inside, or outside)
and BIOES (beginning, inside, outside, end, or sin-
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gle), although there is limited research on the costs
of choosing one scheme over another. The effective-
ness of TI-NER is further underscored by its integra-
tion with the Structured Threat Information eXpres-
sion (STIX) framework like STIX-2.1 [(Jordan et al.,
2022)]. STIX organizes extracted entities in a stan-
dardized format, facilitating data sharing and analy-
sis. It includes at least 19 entity types or STIX do-
main objects (SDOs) and 18 STIX cyber-observable
objects (SCOs) or artifacts, each of which represents
a unique entity commonly found in cyber threat intel-
ligence (CTI) datasets.

However, a significant challenge in developing a
dynamic and effective TI-NER AI model for real-
world use is the scarcity of suitably scalable labelled
datasets. These datasets need to be well-annotated
and readily accessible to facilitate progress in the
field. Additionally, they should encompass a diverse
range of entity categories with many instances per
category and include a substantial volume of tokens
(Wang et al., 2020c). Additionally, adherence to the
widely adopted STIX 2.1 specifications is essential, as
these serve as a standard format for TT data exchange
among security firms. Data augmentation (DA), by
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merging existing annotated NER datasets, offers a
potential solution to this challenge. DA is the pro-
cess of generating new data from existing data. Ro-
bust ML models require large and varied datasets for
initial training, but sourcing sufficiently diverse real-
world datasets can be challenging because of data si-
los, regulations, and other limitations (Ding et al.,
2024; Zhou et al., 2020). While various DA tech-
niques are available in the literature, it’s important
to note that they do not always guarantee improved
dataset quality or subsequent model performance (Lin
et al., 2024; Bakur et al., 2024). The DA approach
consisting of integrating two or more NER datasets
in cybersecurity presents several challenges, includ-
ing inconsistencies in tagging schemes, number of la-
bels, label names, and compliance with standards like
STIX2.1. Merging NER datasets without addressing
these issues degrades the model’s performance. Man-
ual merging processes are time-consuming and cum-
bersome, akin to re-annotating each dataset manually.
To address these challenges, this study intro-
duces TI-NERmerger, a semi-automated framework
for merging TI-NER datasets. Our framework stream-
lines the integration process, significantly reducing
manual effort. Experimental results using two promi-
nent open-source TI-NER datasets, DNRTI(Wang
et al., 2020c) and APTNER(Wang et al., 2022),
demonstrate that our framework saves over 94% of
manual work, which would typically take several
months, in just a few minutes.
Our key contributions can be summarized as follows:

* We introduced TI-NERmerger, a semi-automated
framework designed to integrate threat intelli-
gence NER datasets. A case example involv-
ing open-source NER datasets such as DNRTI
and APTNER illustrates the framework’s effec-
tiveness and performance.

e We curated the DNRTI-STIX NER dataset, com-
prising 175,354 tokens, 39,435 labeled entities,
and 6,580 sentences. This dataset adheres to the
STIX 2.1 data exchange standard.

* We created the curated 2APTNER dataset by
merging DNRTI-STIX and APTNER. This more
extensive augmented dataset contains 434,150
tokens, 79,161 labelled security entities, and
16,691 sentences. It offers greater scalability than
existing datasets and complies with the STIX 2.1
standard, establishing itself as the premier dataset
for building robust NER AI models.

* We implemented deep learning models, including
BiLSTM and BERT, to demonstrate the effective-
ness of the curated DNRTI-STIX and 2APTNER
datasets for TI-NER.
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Figure 1: Sample threat information in BIO(A) and
BIOES(B) format.

* To promote research in this field, in addition to
the TI-NERmerger framework, we will make both
the DNRTI-STIX and 2APTNER datasets avail-
able through our GitHub repository, accessible via
the following link !.

The paper proceeds as follows: Section 2 discusses
the challenges motivating this study, Section 3 re-
views previous research efforts, Section 4 outlines the
methodology for merging TI-NER datasets, Section
5 introduces the TI-NERmerger framework, and Sec-
tion 6 concludes the paper, summarizing key findings
and contributions.

2 PROBLEM DEFINITION

We illustrate the research problem using a simple
case example in Figure 1, which mirrors a real-world
scenario. In this example, A and B represent two
annotated TI-NER datasets collected from different
sources. The objective is to merge these datasets into
a single consolidated dataset suitable for training a ro-
bust AI model.

The analysis of datasets A and B reveals the fol-
lowing challenges:

1. Tagging schemes: Dataset A utilizes the BIO
tagging scheme, whereas Dataset B employs the

Uhttps://github.com/imouiche/TI-NERmerger
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BIOES tagging scheme.

2. Label names and entity categories: Dataset A in-
cludes label names such as HackOrg, Tool, Org,
Area, and Purp, while dataset B uses labels such
as APT, MAL, TOOL, IDTY, LOC, ACT, and IP.
This also highlights the difference in the number
of entity types between A and B.

3. Annotation: There is inconsistency in entity anno-
tation between the datasets. For example, "Cobalt
Strike" labelled as B-Tool I-Tool in dataset A
is annotated as B-MAL E-MAL, indicating it as
malware instead of a tool like in A. Another in-
consistency is between "financial organizations"
labelled as B-Org I-Org in dataset A and "military
industries" labelled as B-IDTY E-IDTY in dataset
B. Both entity types ("Org" and "IDTY") identify
the object being targeted by hackers or malware.
The only difference is that "Org" is more specific.

4. Uncovered entities: Dataset B includes low-level
indicators of compromise (IoCs), such as IP ad-
dresses, which are neglected in Dataset A.

Integrating datasets A and B without addressing these
challenges will degrade the model’s performance.
While the manual process can be completed within
minutes if A and B only contain one sentence each,
real-world datasets like DNRTI(Wang et al., 2020c)
and APTNER(Wang et al., 2022) contain tens of thou-
sands of sentences, which makes the manual approach
cumbersome and even intractable at large scale. In
addition, datasets contain entities that span several to-
kens, making their identification and extraction more
complex. This paper aims to alleviate these chal-
lenges by transitioning from the manual process to a
semi-automated one, taking advantage of the fact that
these datasets are already annotated and come from
the same domain.

3 RELATED WORKS

Previous literature lacks any work explicitly target-
ing the development of a framework for merging
TI-NER datasets. Given that this paper also aims
to release suitably annotated NER datasets compli-
ant with cybersecurity data exchange standards like
STIX-2.1 (Jordan et al., 2022), we will review previ-
ous efforts in this direction to provide research con-
text. (Zhou et al., 2018) conducted a comprehensive
study in which they crawled 687 Advanced Persistent
Threat (APT) reports published between 2008 and
2018. They then annotated 370 articles, focusing on
11 predefined indicators of compromise (IoC) entity

types. (YI et al., 2020) introduced a novel NER ap-
proach called RDF-CREF, which combines regular ex-
pressions, a dictionary of known entities, and the con-
ditional random field (CRF) algorithm. To evaluate
the model, they created a NER dataset using 14,000
web security reports, encompassing 22 predefined en-
tity categories and featuring 7,413 labelled entities.
(Kim et al., 2020) designed a NER system that lever-
aged the character-level feature vector to detect cy-
ber threats within unstructured text reports. To evalu-
ate the performance of their model, they constructed
a corpus that contained 498,000 entity tags and 11
cyber keywords or entity names. (Guo et al., 2021)
gathered security reports from diverse CTI sources,
including APT reports, hacker forums, security bul-
letins, and more. They created a dataset named OS-
INT, consisting of 13,000 sentences, to assess the
capabilities of CyberRel, a model designed for the
simultaneous extraction of entities and relationships
from security reports. (Marchiori et al., 2023) intro-
duced the STIXnet model, which employs rule-based
methods, NLP, and deep learning techniques to ex-
tract 18 STIX entities and relationships within secu-
rity reports. As part of their work, the authors made
available a sample of annotated APT groups, which
they gathered by crawling data from the MITRE
ATT&CK repository (Corporation, 2023).

Previous attempts to address the lack of large-
scale and high-quality annotated NER datasets in cy-
bersecurity have not gone unnoticed. Table 1 summa-
rizes advancements in the NER domain in a compar-
ative study. It is essential to highlight that, at present,
all the annotated datasets mentioned are not publicly
accessible except for DNRTI (Wang et al., 2020c)
and APTNER (Wang et al., 2022). DNRTI covers
only 13 entity categories and does not conform to the
STIX 2.1 specification for sharing cyber threat intelli-
gence (CTI) information (Wang et al., 2022). DNRTI-
STIX is a newly generated TI-NER dataset that ad-
heres to the STIX 2.1 standard. The integration of
DNRTI-STIX and APTNER results in the augmented
APTNER, also known as 2APTNER. The 2APTNER
dataset surpasses existing datasets in terms of the
number of tokens, annotated entities, and sentences,
establishing itself as the largest NER dataset in the
field of threat intelligence.
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Table 1: The DNRTI-STIX?2 and 2APTNER Datasets and their Comparison with Existing TI-NER Datasets.

Datasets Open | # of entity | # of to- | # of la- | # of | vocab | # of Re-
types kens beled ents. | sents. size ports
(Zhou et al., 2018) X4 11 1773638 69032 - - 390
(YTetal., 2020) [ 23 - 7413 - - 14128
(Kim et al., 2020) X 11 498000 15720 13570 | - 160
(Guo et al., 2021) [ - - 75990 13000 | - -
(Marchiori et al., 2023) | X 18 - - - - -
(Wang et al., 2020c) vl 13 175461 36808 6592 9426 -
(Wang et al., 2022) val 21 258796 39726 10111 | 15608 | -
DNRTI-STIX2 vl 21 175354 39435 6580 9444 -
2APTNER val 21 434150 79161 16691 | 16439 | -

4 METHODOLOGY FOR
INTEGRATING TI-NER
DATASETS

This section outlines the step-by-step procedure fol-
lowed in this paper for merging labelled TI-NER
datasets in cybersecurity. After defining the datasets,
the methodology comprises four main phases: Tag
Representation, Entity Categories, Entity Mappings,
and Annotation. The paper begins with a manual ap-
proach to establish the baseline for developing the au-
tomation framework known as Ti-NERmerger.

4.1 Datasets

The two datasets utilized for the experiment are
DNRTI(Wang et al., 2020c) and APTNER(Wang
et al., 2022), sourced from their respective reposito-
ries [(Wang et al., 2020b), (Wang et al., 2020a)]. We
combined the training, testing, and validation sets into
a unified dataset for each dataset. We conducted pre-
processing to eliminate non-ASCII characters and in-
complete sentences, and the resulting distribution of
the number of sentences, labelled entities, and vocab-
ulary size can be found in Table 1. The objective is
to merge these datasets to create a more scalable an-
notated dataset for building robust NER Al systems.
In this case, the resulting dataset is called augmented
APTNER or simply 2APTNER.

The definitions and examples of each entity type
are provided in Table 2. Additionally, the

4.2 Tag Representation

The goal here is to select the tagging scheme for the
resulting dataset (2ZAPTNER). DNRTI is labelled us-
ing the BIO (beginning, inside, or outside) scheme,
while APTNER employs BIOES (beginning, inside,
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outside, end, or single). Since we only have two
datasets, choosing between BIO and BIOES is op-
timal. To maintain simplicity and leverage the data
granularity provided by BIOES, we opted for this for-
mat and this decision addresses the issue (1) stated in
Section 2.

4.3 Entity Categories

This step tackles challenge (2) of the problem def-
inition in Section 2 by specifying the entity cate-
gories for the target dataset 2APTNER). The DNRTI
dataset comprises 13 entity types: HackOrg, Of-
fAct, SamFile, SecTeam, Time, Way, Tool, Idus, Org,
Area, Purp, and Features. In contrast, the APTNER
dataset features 21 entity categories, including APT,
SECTEAM, LOC, TIME, VULNAME, VULID, TOOL,
MAL, FILE, MD5, SHA1, SHA2, IDTY, ACT, DOM,
ENCR, EMAIL, OS, PROT, URL, and IP. Given that
APTNER complies with the STIX 2.1 standard for
data exchange, using its entity types ensures align-
ment with this standard. Therefore, utilizing APT-
NER as the base dataset and converting DNRTI to
align with APTNER for seamless integration is bene-
ficial.

4.4 Entity Mappings

This step involves defining possible entity mappings
when aligning two datasets. Entity mappings elu-
cidate the types of relationships that exist between
entity types in different datasets. Once entity cate-
gories for the resulting or target dataset have been
defined, up to four possible entity mappings can be
distinguished. Due to this finite number, it becomes
feasible to semi-automate the process. For DNRTI
and APTNER, the four established mappings are il-
lustrated with examples in Table 2.
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1. 1-to-1 Mappings indicate a direct mapping be-
tween DNRTT and APTNER entities.

2. 1-to-many Mappings: they show the DNRTI enti-
ties or categories that were expanded into two or
more APTNER features.

3. many-to-1 Mapping: as a reverse of 1-to-many
mappings, they present those DNRTI entities
merged into a single APTNER entity.

4. Uncovered Entities: this section introduces addi-
tional entities similar to APTNER, not initially in-
cluded in the original DNRTI article but uncov-
ered during the annotation process while convert-
ing DNRTT to align with APTNER, i.e. with 21
entity types. It is important to note that this map-
ping is optional as one may decide only to con-
sider initially annotated entities.

The primary objective of this phase is to establish a
foundation for seamless manual and automated har-
monization of datasets.

4.5 Annotations or Alignments

This phase aims to tackle challenges (3) and (4) from
Section 2. To resolve the inconsistency issue in entity
annotation between both datasets, it is crucial to have
a reliable reference source of truth. We relied on the
MITRE ATT&CK framework (Corporation, 2023) as
our primary point of reference to determine the cor-
rect entity types. The MITRE ATT&CK framework is
a knowledge base of adversary tactics and techniques
based on real-world observations. It is widely used
in cybersecurity for threat intelligence, threat hunt-
ing, and incident response purposes. The example
provided in Figure 1, utilizing the MITRE repository,
highlights that "Cobalt Strike" in Dataset A should
be classified as part of the Malware class rather than
a Tool, thus offering enhanced precision in address-
ing inconsistency for a coherent integration. Address-
ing the challenge (4) is important but not mandatory.
It involves identifying entities that were not initially
included in the original dataset. The case example
shown in Table 2 entails discovering entities such as
DOM, ENCR, EMAIL, OS, PROT, URL, and IP in
the DNRTI dataset. It is important as it helps increase
the number of instances of these classes in the target
dataset, thereby enhancing classification accuracy.

After completing the analysis phases, the manual re-
labeling of DNRTI using BIOES format and the 21
predefined entity categories of the target dataset was
initiated. This process involved four annotators: one
PhD student and three master’s students, all from a
cybersecurity background. The process began with
two one-hour meetings coordinated by the PhD stu-
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to O to O
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, O , O
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Figure 2: Sample conversion of DNRTI (a) to DNRTI-
STIX(b).

dent. During the first meeting, 25 sentences were
re-labeled to serve as examples. At the end of the
meeting, each student selected 10 sentences to an-
notate for the next meeting. In the second meet-
ing, all 40 sentences were reviewed for better under-
standing. Subsequently, the remaining DNRTT sen-
tences were distributed among all annotators, with the
PhD student receiving 40% and each master’s student
receiving 20%. Annotators collaborated to address
any confusion that arose during the annotation pro-
cess and the consensus was obtained through a ma-
jority vote. The voting weight was distributed such
that the PhD student’s vote counted for 40%, while
each master’s student’s vote counted for 20%. This
distribution of voting power effectively resolved any
tie situations. The manual process to align DNRTI
with APTNER, ensuring adherence to the STIX 2.1
specification, took three months to complete. The re-
sulting dataset, named DNRTI-STIX, will seamlessly
merge with APTNER to create 2APTNER. This com-
bined dataset offers a more scalable annotated TI-
NER dataset for building reliable Al systems. A sam-
ple conversion of DNRTI to DNRTI-STIX is shown
in Figure 2. For instance, the named entity "HIGH-
TIDE" initially labeled as "Tool" is changed to "Mal-
ware" according to the MITRE ATT&CK repository.
Similarly, "Microsoft Word .doc" classified initially
as "Tool" (i.e., "B-Tool I-Tool B-Tool"), becomes "B-
FILE E-FILE S-FILE" after conversion.
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Table 2: Entity Mappings aligning DNRTI with APTNER and STIX 2.1.

| DNRTI Entities | APTNER Entities |

STIX-2.1

\ Examples \

] 1-to-1 Mappings |

HackOrg APT Threat groups APT19, admin @338, MuddyWater
SecTeam SECTEAM Security teams FireEye, MATI, Palo Alto Networks
Area LOC Location China, Russia, North Korea
Time TIME Time Sept 10, April 9th, 2016
] 1-to-many Mappings ‘
Exp VULNAME Exploit EternalBlue, zero-day
VULID Vulnerability ID CVE-2017-8759, CVE-2016-4117
Tool TOOL Tool PowerSh.ell, LaZagne .
MAL Malware SHIRIME, FinSpy, Clayslide
MAL Malware Backdoor.APT.FakeWinHTTPHelper
FILE File checkerl.exe, .docs, Excel worksheets
SamFile MD5 Hash value 12hj34ng34¢ghjdf802n3inf
SHA1 Hash value AAOFA4584768CE9E16D67D8C520...
SHA2 Hash value cca268c13885ad5751eb70371bbc9ce8c...
] many-to-1 Mappings \
Idus IDTY Identity, Military Industry, Financial Institutes
Org Industry Google, Technology organizations
OffAct ACT Attack patterns Spear-phishing
Way Attack patterns Brute force
Purp Attack patterns Exfiltration, DoS
Features Attack patterns Lateral movement
] Uncovered Entities \
o DOM Domain adobe.com, mydomain1607.com
- ENCR Encryption methods RSA, AES
- EMAIL Email edmundj @chmail.ir, hostay88 @ gmail.com
- (0N} Operating system Windows, Linux
- PROT Protocol ssh, HTTP, POP3
- URL URL https://github.com
- 1P IP address 185.162.235.0, 0.0.0.0

4.6 Integration and Results

As shown in Table 3, the conversion of the DNRTI
to DNRTI-STIX from using fine-grained BIOES for-
mat resulted in a total of 39,435 labelled entities,
adding 2,625 entities to the original DNRTI. A slight
reduction in the number of tokens and sentences for
DNRTI-STIX can be observed, and this is primarily
attributed to the removal of noisy data, including non-
ASCII characters and incomplete sentences, during
the migration process. Additionally, DNRTI-STIX
features 21 entity categories that are the same as APT-
NER and, therefore, can be merged with no issues.
Their integration gives rise to the 2APTNER dataset,
which is more expansive and encompasses 434,150
tokens, 79,161 labelled security entities, and 16,691
sentences. It provides increased scalability compared

362

to existing datasets and adheres to the STIX 2.1 stan-
dard, solidifying its position for building real-world
Al systems.

Figure 3 provides a visual representation of dif-
ferent class distributions that distinguish 2APTNER
as the most scalable TI-NER dataset when com-
pared to DNRTI-STIX and the leading APTNER. The
labelling quality and effectiveness of the resulting
datasets (DNRTI-STIX and 2APTNER) are assessed
in the following sections.

4.7 Evaluations and Discussions

This section evaluates the quality and effectiveness of
the curated DNRTI-STIX and 2APTNER datasets re-
sulting from the manual labelling process. Various
state-of-the-art (SOTA) algorithms in the literature
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Table 3: Curated DNRTI-STIX and 2APTNER Datasets from Manual Approach.

Datasets # ents type | # of tokens | # of labeled ents. | # of sents. | vocab size
DNRTI 13 175461 36808 6592 9426
DNRTI-STIX 21 175354 39435 6580 9444
APTNER 21 258796 39726 10111 15608
2APTNER 21 434150 79161 16691 16439
VULNAME = 4.7.1 DNRTI-STIX vs DNRTI
vuuD e
URL | The hyperparameters for each base model used in the
TOOL experiment are detailed in Table 4. A Dropout of 0.2
TIME was applied with BiLSTM to prevent overfitting. The
::i B datasets were split into training, test, and validation
— sets in a ratio of 7:1.5:1.5 for both models.
qg; : Table 4: Models’ parameter settings.
VDS & parameters BERT | BiLSTM
T;é batch size 8 16
P g dropout 0.5 0.5
IDTY learning rate le-5 le-5
FILE epsilon le-6 le-6
Er:ji n weight decay 0.001 0.001
o _ hidden layer size 100 -
APT optimizer Adam Adam
AcT embedding size 768 300
0 2000 4000 G000  BOOD 10000 12000 number of epochs 1 10

DNRTISTIX

Figure 3: Comparison of DNRTI-STIX, APTNER, and
2APTNER.

AFTMER m 2ZAPTNER

have demonstrated significant performance on NER
tasks. For this study, we implement one recurrent neu-
ral network (RNN)-based architecture like BiLSTM
and one transformer-based model like BERT. The pri-
mary objective is to evaluate the effectiveness of the
datasets rather than focusing on the performance of
the models. Both BiLSTM and BERT have bidirec-
tional capabilities, allowing them to capture informa-
tion from past and future contexts, significantly en-
hancing their ability to comprehend the overall con-
text of a sequence. This quality contributes to their
impressive performance in NER tasks [(Huang et al.,
2015), (Zhou et al., 2021), (Varghese et al., 2023),
(Wang et al., 2020a), (Devlin et al., 2019)]. Moreover,
BERT undergoes pre-training on an extensive cor-
pus of text data before fine-tuning for specific down-
stream tasks, employing an attention mechanism to
consider the entire context of a word within a sen-
tence. BERT has gained prominence, particularly for
its transformer architecture, which excels in capturing
long-range dependencies. This study implements the
base forms of these models to demonstrate the effec-
tiveness of our datasets.

Table 5 provides a comparative summary of
DNRTI-STIX and DNRT datasets for BILSTM and
BERT models. DNRTI-STIX features more unique
entity tags (60) than DNRTI (27) due to the conver-
sion of DNRTI to 21 entity categories aligned with
the STIX standard. Despite covering a broader range
of entity categories and exhibiting more diversity in
entity types, DNRTI-STIX maintains relatively simi-
lar performance to DNRTI and even slightly outper-
forms it in terms of Precision (P), Recall (R), and
F1 scores (F1) for both BiLSTM and BERT models.
This highlights the quality of the manual relabeling
process undertaken by the authors. As expected, the
BERT model achieves higher Precision, Recall, and
F1 scores compared to the BiLSTM model for both
datasets, indicating its superior performance. For this
reason, we used the BERT model to report the indi-
vidual class classification for both datasets in Table
6.

This table comprehensively shows how effectively
the model predicts each class, presenting per-class
and overall performance metrics, including Micro
Avg, Macro Avg, and Weighted Avg.

* The Micro Avg row represents the weighted av-
erage of precision, recall, and F1-Score across
all classes, considering individual predictions and
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Table 5: DNRTI-STIX vs DNRTI using BiLSTM and
BERT models.

DNRTI-STIX DNRTI
# unique 60 27
entity tags
Metrics P R F1 | P R F1
BiLSTM- 0.68 0.70 0.69| 0.67 0.70 0.68
CRF
BERT 0.79 0.84 0.81| 0.77 0.82 0.80

support for each instance.

* The Macro Avg row displays the unweighted av-
erage of precision, recall, and F1-Score across all
classes, treating all classes equally without con-
sidering class imbalances.

* The Weighted Avg rows provide a weighted aver-
age of precision, recall, and F1-Score, with each
class’s contribution weighted by its support after
the split.

It’s important to note that specific entity classes, such
as SHAI, and URL, are not included in the report.
This omission is due to the insufficient number of
instances for these classes in DNRTI-STIX, as seen
in Fig 3, and they were not considered during train-
ing and evaluation. Simultaneously, Table 6 presents
the classification report for the BERT model on the
original DNRTI dataset. This not only highlights
the unique characteristics of the STIX 2.1 format
in extracting more detailed entity information from
TI-NER datasets but also underscores the quality of
data relabeling done by the authors, maintaining the
model’s performance relatively high despite the in-
creased number of entity categories in DNRTI-STIX.

4.7.2 DNRTI-STIX VS APTNER vs 2APTNER

The Augmented APTNER also known as 2APTNER
is formed by merging the DNRTI-STIX and APT-
NER datasets. Table 7 displays the classification
report for these datasets using BiLSTM and BERT
models. DNRTI-STIX demonstrates superior perfor-
mance compared to APTNER and 2APTNER. Previ-
ous studies have shown that BiLSTM struggles with
larger datasets due to memory requirements. This is
also seen in Table 7, while BERT consistently outper-
forms across all datasets.

Upon reviewing the BERT classification reports in
Table 8 for both APTNER and 2APTNER datasets, it
becomes evident that the "SHAI1" entity class hurts
2APTNER with a contribution of 0.00. This is be-
cause the count of instances of this class was less
than 50, and machine learning (ML) models typically
require a minimum of 50 samples to understand the
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context within a sentence [(Rani et al., 2023b), (Pe-
dregosa et al., 2011)]. However, the contribution of
"SHA1" and "URL" was ignored for DNRTI-STIX.
Thus, it is understood that DNRTI-STIX and 2APT-
NER perform similarly using the BERT model.

This concludes the demonstration of high-quality
annotation and efficiency of the DNRTI-STIX and
2APTNER datasets obtained through the manual re-
labeling approach using the BILSTM and BERT base
form models. These datasets will serve as base-
lines for evaluating the TI-NERmerger framework
proposed in this study, aimed aA common approach
in data-centric Al is data augmentation or argumen-
tation to meet these requirementsre already annotated
and belong to the same domain, the framework aims
to automate and optimize the dataset integration pro-
cess.

5 TI-NERmerger: A
SEMI-AUTOMATED
FRAMEWORK FOR
INTEGRATING NER DATASETS
IN CYBERSECURITY: A CASE
STUDY OF DNRTI AND
APTNER

With the rise of data-centric Al and the emergence
of Large Language Models (LLMs) like BERT, GPT-
3, RoBERTa, and others, the importance of high-
quality, scalable, and diverse datasets for training ro-
bust Al systems has become increasingly apparent.
To meet these requirements, a common approach in
data-centric Al is data augmentation or argumenta-
tion. This involves merging multiple open-source an-
notated datasets into a single, consolidated, and di-
verse dataset with the aim of significantly improv-
ing the resulting Al systems. However, integrat-
ing threat intelligence named entity recognition (TI-
NER) datasets poses several challenges, as outlined
in Section 2. These challenges include using differ-
ent tagging formats, entity types, and inconsistency
in entity annotation. The manual process to address
these issues and align datasets for integration is time-
consuming and becomes increasingly difficult when
dealing with numerous datasets.

This section introduces TI-NERmerger, a semi-
automated framework designed for merging TI-NER
datasets. Leveraging that these datasets originate
from the same domain and are already annotated
for NER tasks, TI-NERmerger facilitates the tran-
sition from the current manual approach to a semi-
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Table 6: DNRTI-STIX vs DNRTI Classification Report using the BERT Model.

DNRTI-STIX DNRTI
Class P | R | F1 | Class | P R F1
ACT 0.72 0.80 0.76 Area 0.85 0.93 0.89
APT 0.80 0.88 0.84 Exp 0.96 0.98 0.97
DOM 1.00 0.80 0.89 Features 0.73 0.83 0.78
EMAIL 0.80 1.00 0.89 HackOrg 0.78 0.83 0.81
ENCR 0.75 0.60 0.67 Idus 0.79 0.80 0.79
FILE 0.78 0.89 0.83 OffAct 0.71 0.84 0.77
IDTY 0.78 0.81 0.79 Org 0.65 0.68 0.66
Ip 0.67 1.00 0.80 Purp 0.63 0.74 0.68
LOC 0.85 0.91 0.88 SamFile 0.81 0.81 0.81
MAL 0.79 0.83 0.81 SecTeam 0.88 0.87 0.88
MDS5 1.00 1.00 1.00 Time 0.87 0.91 0.89
oS 0.84 0.95 0.89 Tool 0.68 0.77 0.72
PROT 0.94 0.64 0.76 Way 0.73 0.64 0.68
SECTEAM 0.87 0.87 0.87
SHA?2 1.00 1.00 1.00
TIME 0.85 0.90 0.87
TOOL 0.70 0.71 0.70
VULID 1.00 0.99 1.00
VULNAME 0.86 0.90 0.88
Micro Avg 0.78 0.84 0.81 Micro Avg 0.77 0.82 0.80
Macro Avg 0.84 0.87 0.85 Macro Avg 0.77 0.82 0.79
Weighted Avg | 0.79 0.84 0.81 Weighted Avg | 0.77 0.82 0.80
Table 7: DNRTI-STIX VS APTNER vs 2APTNER Classification Report using BiLSTM and BERT.
DNRTI-STIX APTNER 2APTNER
Model Metrics P R F1 P R F1 P R F1
Micro Avg 0.65 | 0.74 | 0.69 | 0.65 | 0.61 | 0.63 | 0.60 0.61 0.63
BiLSTM-CRF Macro Avg 0.56 | 0.50 | 0.54 | 045 | 047 | 046 | 041 046 042
Weighted Avg | 0.66 | 0.74 | 0.69 | 0.59 | 0.61 | 0.60 | 0.60 0.60 0.60
Micro Avg 0.78 | 0.84 | 081 | 0.73 | 0.78 | 0.76 | 0.76  0.80 0.78
BERT Macro Avg 084 | 0.87 | 085 | 0.77 | 0.79 | 0.78 | 0.81 0.82 0.81
Weighted Avg | 0.79 | 0.84 | 0.81 | 0.73 | 0.78 | 0.76 | 0.76 0.80 0.78

automated one. This transition allows the annotation
task, which typically takes several months, to be com-
pleted in just a few minutes.

Figure 4 illustrates the framework, which comprises
four main components leading to the formation of
the target or merged dataset. The framework is in-
spired by the manual process of integrating DNRTI
and APTNER, as outlined in Table 2. The four com-
ponents are classified into two phases: Analysis and
Automation. The analysis phase includes Tag Rep-
resentation, Entity Categories, and Entity Mappings.
The automation phase involves annotation or align-
ment and integration into the target dataset. As de-
picted in Figure 4, the framework claims the capabil-
ity of merging multiple datasets (denoted as n). In
practice, this is achieved by merging two datasets at a

time, and then the resulting dataset is merged with the
next dataset in the sequence.

For clarity, we maintain the example of DNRTI and
APTNER to describe the four components:

1. Tag Representation.
Select the tagging scheme for the target dataset,
such as BIO or BIOES. This decision should be
influenced by the specific requirements of the
NER dataset, the dataset’s characteristics, and
the desired level of detail in entity recognition
((Konkol and Konopik, 2015), (Alshammari and
Alanazi, 2021)). The framework implements only
these two tagging formats because almost all NER
datasets in security use one of these formats. To
repeat the experiment using our tool for the case
of DNRTI and APTNER, we have chosen BIOES.
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Figure 4: TI-NERmerger: Semi-automation framework to integrate NER datasets in cybersecurity.

Table 8: APTNER and 2APTNER Classification Reports
using the BERT model.

APTNER 2APTNER

Class P \ R \ F1 P R F1

ACT 0.56| 0.68]| 0.62 | 0.62 0.68 0.65
APT 0.82] 0.88] 0.85 | 0.82 0.86 0.86
DOM 093] 090| 0.92 | 0.83 0.98 0.92
EMAIL 0.67| 0.56| 0.61 | 1.00 0.73 0.84
ENCR 0.85( 0.92] 0.89 | 0.76 0.85 0.80
FILE 0.72] 0.75] 0.74 | 0.77 0.74 0.76
IDTY 0.71] 0.82] 0.76 | 0.68 0.74 0.78
1P 094 094] 0.94 | 0.94 097 0.96
LOC 0.88 0.91] 0.89 | 0.84 0.89 0.86
MAL 0.71] 0.72] 0.72 | 0.72 0.80 0.76
MD5 0.69| 0.63] 0.66 | 0.93 0.97 0.95
OS 0.771 0.78| 0.77 | 0.83 0.86 0.85
PROT 0.72] 0.77] 0.74 | 0.70 0.79 0.74
SECTEAM | 0.87| 0.89| 0.88 | 0.80 0.82 0.81
SHA1 - - - 0.0 00 0.0

SHA2 0.771 097| 0.86 | 0.98 1.00 0.99
TIME 0.87| 091] 0.89 | 0.77 0.82 0.79
TOOL 0.53| 0.57] 0.55 | 0.72 0.74 0.73
URL 0.89] 0.71] 0.79 | 0.78 0.50 0.61
VULID 1.00| 0.99| 0.99 | 1.00 1.00 1.00
VULNAME 0.52] 0.51| 0.51 | 0.76 0.76 0.76

This choice is based on its previous use in rep-
resenting the APTNER dataset, which was larger
and contained 21 entity categories, and it also ad-
heres to the STIX standard.

2. Entity Categories.

Thoroughly analyze the entity categories in each
dataset and predefined the entity types for the fi-
nal dataset. This task should be carried out by
a domain expert who understands the specific re-
quirements of the NER tasks. In the case example,
the authors opted for the 21 predefined APTNER
entity categories for the target dataset.

3. Entity Mappings.
Establish distinct mappings between each dataset
and the predefined entity types of the target
dataset. Possible mappings include 1-to-1 map-
pings, 1-to-many mappings, many-to-1 mappings,
and the discovery module. Refer to Table 2 for
a visual representation of the four different map-
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pings defined for the case of DNRTI and APT-
NER.

. Annotation or Alignment.

This component involves translating the different
mappings established in the preceding phase into
a programming language. The TI-NERmerger
framework is implemented in Python and com-
prises six main modules, each of which can work
and be executed independently. The first mod-
ule reads the command-line inputs, while the next
four modules implement each identified mapping:
1-to-1 mappings, 1-to-many mappings, many-to-1
mappings, and uncovered entities. Finally, the last
module performs the merge and outputs the result.
The component is approached as an active anno-
tation initiative, with a domain expert in the loop
who decides which module to run and provides
the required entity classes. For the case example
of DNRTT and APTNER:

(a) The first module reads user inputs from the
command line and applies any tagging con-
version if needed. For example, a command-
line input of "TI-NERmerger BIOES DNRTI
APTNER 2APTNER" means the user wants
to merge DNRTI and APTNER into a single
dataset called 2APTNER using BIOES tagging.
This module will automatically detect which
DNRTI and APTNER does not align with this
format and make the necessary conversion. In
this case, DNRTI will be changed from BIO to
BIOES.

(b) The 1-to-1 mappings module assigns new
labels, namely APT, SECTEAM, LOC, and
TIME, to all DNRTI entities with labels Hack-
Org, SecTeam, Area, and Time, respectively.

(c) The many-to-1 mappings module merges all
DNRTI entities tagged as Idus and Org into
IDTY; and all DNRTI entities annotated as Of-
fAct, Way, Purp, and Features into ACT.

(d) The I-to-many mappings module implements
an algorithm that uses Python Scrapy library to
query ATT&CK repository(Corporation, 2023)
and categorize all DNRTI entities labelled as
Tool into either TOOL or MAL (malware). It
defaults to TOOL if the software is not found
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on the MITRE platform. It works similar to the
manual process to address inconsistency in en-
tity annotation. This module employs regular
expressions (regex) to parse all SamFile entities
into MAL, FILE, MD5, SHA I, and SHA2. Sim-
ilarly, it categorizes all Exp entities into VUL-
NAME and VULID using regex. It’s important
to note that this module can also identify hacker
groups defined in the ATT&CK repository.

(e) The discovery module reveals indicators of
compromise (IoCs) such as IP, URL, DOM,
EMAIL, and PROT from the DNRTI that were
not originally considered. This was necessary
to augment the number of instances in the tar-
get dataset, as these entities were annotated in
APTNER. The module also identifies encryp-
tion algorithms (ENCR) and operating systems
(0S) in DNRTI by matching unlabeled entities
with pre-defined lists of encryptions and oper-
ating systems.

(f) The integration module merges both datasets,
combining DNRTI and APTNER into a single
dataset called 2APTNER.

This explains how we successfully completed the
annotation task that took several months in just a
few minutes.

The code of the whole TI-NERmerger framework
spans over 1000+ lines, and we plan to release it along
with various datasets to support continuous develop-
ment and improvement.

5.1 Results and Discussions

To evaluate the effectiveness of the TI-NERmerger
framework, we employed it to align the original
DNRTI with APTNER, resulting in DNRTI-STIX.
We compared the results with the manual process in
Table 9. It is important to note that APTNER re-
mained unchanged during the integration process un-
til the final stage, where it was merged with DNRTI-
STIX. APTNER was selected as the baseline for the
final dataset because it adheres to the STIX-2.1 data
exchange standard and offers a diverse range of entity
categories. Consequently, inconsistencies were re-
solved by aligning DNRTI-STIX with APTNER. For
example, as shown in Figure 1, the "financial organi-
zation" in dataset A, initially tagged as B-Org I-Org,
was mapped to B-IDTY [-IDTY to align with dataset
B during the merging process. In dataset B, the la-
bel category "IDTY" is used to identify the object or
victim entity targeted by malware and hacker organi-
zations.

Table 9 indicates that the framework successfully
extended DNRTI of 13 entity types to DNRTI-STIX

featuring 21 entity categories. Both the manual pro-
cess and the TI-NERmerger framework resulted in
datasets with the same number of entity types (21).
The total number of tokens in the datasets is almost
the same for both approaches, with a slight difference
of 111 tokens. This is because noisy words and in-
complete sentences were removed during the manual
approach (hence 6,580 for the manual process and
6,592 for the TI-NERmerger framework).

We observe more labelled entities (39,435) result-
ing from the manual process than the TI-NERmerger
framework (37,335). This is due to the discovery of
entities such as /P, URL, DOM, EMAIL, PROT, OS,
and ENCR that were not initially considered in the
original DNRTI dataset. The framework’s discovery
module faces challenges in uncovering an operating
system or encryption algorithm when the entity name
cannot be found in the predefined list of operating
systems or encryption methods. Both approaches re-
sulted in datasets with a similar number of sentences
(6,580 for the manual process and 6,592 for the TI-
NERmerger framework). The vocabulary size of the
datasets is also very close, with only a difference of 5
vocabulary items. These results deduce the figures de-
picted in Table 10 for the 2APTNER dataset, which is
the outcome of merging DNRTI-STIX and APTNER.
TI-NERmerger framework can produce datasets with
comparable characteristics to those obtained through
manual processes, demonstrating its effectiveness in
automating the dataset integration process. In just a
few minutes, the framework successfully accounted
for over 94.67% of the annotated entities, a task that
had previously taken several months using manual
methods. This result could improve further if no new
entities are uncovered from the dataset.

5.2 Evaluation and Discussions

The effectiveness of the datasets obtained using
our TI-NERmerger framework is displayed in Ta-
ble 11. The results from the manual approach serve
as baselines to evaluate the framework’s capability.
The TI-NERmerger framework performs similarly
to the manual approach, especially regarding Micro
and Weighted Averages for both BILSTM-CRF and
BERT models on both datasets.

Table 12 presents the classification reports for each in-
dividual entity class for the DNRTI-STIX dataset us-
ing the BERT model. We observed only slightly better
performance in favour of the manual approach. The
absence of a line for the EMAIL entity class indicates
that the framework did not uncover enough instances
of this class. Similarly, the framework successfully
identified 53 of 60 unique tags from the manual ap-
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Table 9: DNRTI-STIX: Manual process Vs Framework.

Approach # of ents type | # of tokens | # of labelled ents. | # of sents. | vocab size
Manual 21 175354 39435 6580 9444
TI-NERmerger 21 175465 37335 6592 9439
Table 10: 2APTNER: Manual Approach Vs Framework.
Approach # of unique tags | # of tokens | # of labeled ents. | # of sents. | vocab size
Manual 21 434150 79161 16691 16439
TI-NERmerger 21 434261 77,061 16,703 16023

proach. As stated earlier, the missing 7 tags result
from discovering entities that were initially ignored in
the original dataset. This demonstrates that the overall
performance of the framework remains above 94%.

5.3 Generalization, Advantages, and
Limitations

1. Generalization:
Our TI-NERmerger framework aligns with the
widely adopted STIX-2.1 data exchange stan-
dard in cybersecurity, which defines a set of
STIX Domain Objects (SDOs) and STIX Cyber-
observable Objects (SCOs). Each object cor-
responds to a unique concept commonly repre-
sented in CTI datasets. STIX ensures that orga-
nizations can share CTI consistently and machine-
readably, encouraging dataset owners to use STIX
objects as entity types for different downstream
tasks. Although these datasets may utilize dif-
ferent labelling and tagging schemes, their in-
tegration is facilitated once they establish map-
pings between entity categories and STIX base-
line objects. The identification of the four pos-
sible mappings, outlined in Table 2, is supported
by integrating MITRE ATT&CK within the STIX
framework. This integration offers a detailed be-
havioural context that significantly enhances the
understanding and differentiation of threat enti-
ties. This facilitates the effective alignment of
entity categories with the established STIX ob-
jects. As a result, our TI-NERmerger framework
claims strong generalizability across datasets uti-
lizing STIX objects or a subset of STIX objects to
define the entity categories. In other words, their
integration is assured as long as CTI data can be
mapped to the STIX standard. Conversely, in ar-
eas where these standard references are not guar-
anteed or are inapplicable, establishing mappings

flexible, and extensible, allowing them to be
adapted for different purposes.

Large datasets, often annotated by groups of
students, can be effectively combined using this
framework. It ensures quality annotation and
consistency when merging datasets from differ-
ent groups.

The framework significantly streamlines
labour-intensive work that typically takes
several weeks to only a few minutes.

Small to medium-sized NER datasets are typ-
ically well-annotated, and the tool can be em-
ployed to create a scalable and high-quality la-
belled dataset.

It is designed to conform to the STIX 2.1 data
sharing standard and functions effectively with
datasets encompassing a diverse range of entity
categories.

. Limitation. The TI-NER framework has certain

limitations:

* The framework merges two datasets at a time.
In the case of multiple datasets, the result of
the first two datasets is merged with the third
dataset, and so on. This requires running the
model multiple times, assuming each dataset
has peculiarities.

* Despite its capability to uncover artifact en-
tities initially overlooked in original datasets,
the framework relies on the MITRE ATT&CK
repository as the sole source of truth when clas-
sifying high-level security entities such as at-
tack groups, tools and malware.

6 CONCLUSION AND FUTURE

WORK

across CTI datasets or demonstrating their exis-
tence can be challenging.

. Advantages:

e The modules are independent of each other,

368

This study introduces TI-NERmerger, a semi-
automated framework integrating threat intelligence
named entity recognition (TI-NER) datasets in cyber-
security. It serves as a data augmentation tool de-
signed to timely tackle the scarcity of scalable and
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Table 11: Manual Approach vs TI-NERmerger: Classification Report using BILSTM and BERT.

Manual TI-NERmerger Manual TI-NERmerger
DNRTI-STIX DNRTI-STIX 2APTNER 2APTNER
Model Metrics P R F1 | P R F1 | P R FI | P R F1
Micro Avg 0.65 0.74 0.69] 0.65 0.61 0.63| 0.60 0.61 0.63] 0.61 0.62 0.62
BiLSTM- Macro Avg 0.56 0.50 0.54| 0.45 047 046|041 0.46 0.42| 044 047 045
CRF
Weighted Avg | 0.66 0.74 0.69| 0.59 0.61 0.60| 0.60 0.60 0.60| 0.61 0.63 0.62
Micro Avg 0.78 0.84 0.81]| 0.80 0.84 0.90| 0.76 0.80 0.78] 0.75 0.79 0.77
BERT Macro Avg 0.84 0.87 0.85| 0.77 0.80 0.78| 0.81 0.82 0.81| 0.79 0.80 0.79
Weighted Avg | 0.79 0.84 0.81| 0.80 0.84 0.80| 0.76 0.80 0.78| 0.77 0.79 0.77

Table 12: DNRTI-STIX (Manual process Vs Framework):
Classification Reports using the BERT model.

Manual TI-NERmerger
# of unique 60 53
tags
Class P |[R [FI |P R Fl
ACT 0.72] 0.80| 0.76| 0.78 0.83 0.80
APT 0.80| 0.88| 0.84| 0.80 0.86 0.83
DOM 1.00| 0.80| 0.89| 0.83 1.00 0.91
EMAIL 0.80| 1.00| 0.89
ENCR 0.75]| 0.60| 0.67| 0.70 0.56 0.68
FILE 0.78] 0.89| 0.83] 0.94 095 0.95
IDTY 0.78| 0.81| 0.79] 0.75 0.82 0.78
1P 0.67| 1.00| 0.80| 1.00 1.00 1.00
LOC 0.85( 0.91| 0.88]| 0.83 0.88 0.86
MAL 0.79] 0.83| 0.81| 0.88 0.87 0.88
MD5 1.00| 1.00| 1.00| 1.00 1.00 1.00
oS 0.84| 0.95| 0.89| 0.84 1.00 0.92
PROT 0.94| 0.64| 0.76| 1.00 0.83 0.91
SECTEAM | 0.87| 0.87| 0.87| 0.90 0.91 0.90
SHA2 1.00| 1.00| 1.00| 1.00 1.00 1.00
TIME 0.85| 0.90| 0.87| 0.84 0.87 0.85
TOOL 0.62| 0.68| 0.65| 0.69 0.75 0.72
VULID 1.00| 0.99| 1.00| 1.00 1.00 1.00
VULNAME | 0.86| 0.90| 0.88| 0.93 0.96 0.95
Micro Avg | 0.78] 0.84| 0.81| 0.80 0.84 0.80
Macro Avg | 0.84| 0.87| 0.85| 0.77 0.80 0.78
Weighted 0.79] 0.84| 0.81| 0.80 0.84 0.80
Avg

diverse annotated NER datasets suitable for building
robust Al systems efficiently. The framework’s per-
formance and capabilities are demonstrated by merg-
ing two prominent open-source NER datasets, DNRTI
and APTNER, as a practical case study. By compar-
ing against the manual approach as a baseline, TI-
NERmerger efficiently covers over 94% of the man-
ual work within a few minutes, a task that initially
required several months to complete manually. The
effectiveness of the resulting datasets (DNRTI-STIX
and 2APTNER) from both approaches was evaluated

using BiILSTM and BERT models. Merging DNRTI-
STIX with APTNER produced the Augmented APT-
NER dataset, denoted as 2APTNER, which signifi-
cantly surpasses existing TI-NER datasets. 2APT-
NER comprises 434,150 tokens, 79,161 labeled en-
tities, 16,691 sentences, and 16,439 unique terms
compliant with the STIX 2.1 data exchange stan-
dard. Looking forward, TI-NERmerger leverages the
MITRE ATT&CK repository as the primary source
of truth to address annotation inconsistency issues
across datasets. This approach can be expanded to
include other repository references to enhance model
reliability and generalizability. Furthermore, the re-
sulting datasets adhere to STIX 2.1 standards, cover-
ing diverse entities, making them valuable resources
for extracting cyber threat intelligence (CTI) from se-
curity reports.
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