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Abstract: Curved surface parts find extensive use in various applications, and their surface quality plays a crucial role 
in their performance. Industrial robot technology has advanced to the point where manual polishing can be 
replaced. However, most robots currently employ position control, which has low accuracy in force control 
and is unsuitable for the task. This paper aims to address the limitations of current research by focusing on an 
improved control strategy that uses a parameter optimization algorithm to enhance the system's dynamic 
performance. The main areas of research include the control of the end effector's contact force. Firstly, a 
mathematical model of the pneumatic control loop is established and the system transfer function is obtained 
through system identification. An improved optimization algorithm based on Particle Swarm Optimization 
and Tuna Swarm Optimization is proposed to enhance the mechanism's control performance when dealing 
with complex nonlinear systems. This algorithm has a faster convergence speed, higher convergence accuracy, 
and stronger searchability. 

1 INTRODUCTION  

There has been some progress in the research of flat 
automatic polishing due to the advancements in 
industrial robot application technology. However, 
there are still some problems to be solved in the 
application of robots in the field of large curved 
surface compliance polishing. 

Managing compliance force for large curved 
surfaces presents a challenging task due to strong 
coupling, nonlinearities, and frequent changes. The 
traditional control method's utilization is insufficient 
to allow for the real-time adaptive adjustment of the 
control proportional coefficient. This leads to 
inadequate system performance and the incapability 
to maintain a stable and consistent force processing 
target. To enhance the control effect, it is imperative 
to implement a control strategy that is combined with 
a parameter optimization algorithm. 

In the 21st century, robot technology has emerged 
as a major high-tech industry that is playing a crucial 
role in the lives and work of people across the globe. 
With rapid developments in other industries like 
automobiles and computers, robots are now widely 
used in electrical and electronics, automobile, metal 
and machinery manufacturing, plastics and chemistry, 

food and beverage, and other industries. Industrial 
robots are highly regarded in academia and industry 
because of their flexibility, excellent motion stability, 
and high-precision repetitive trajectory motion in a 
large workspace (Yu 2020). Despite COVID-19's 
impact on the industry in the first two years, the total 
number of industrial robots installed worldwide has 
continued to increase, with a ten-year growth rate of 
211%. It is predicted that the number of industrial 
robots installed globally will exceed 690,000 by 2025. 

In today's technological era, using robots for 
grinding and polishing is more popular than 
traditional manual methods. This is especially useful 
for large, curved parts that have complex and uneven 
surface profiles, requiring precision in both profile 
and surface finish. Nonetheless, it is worth noting that 
industrial robots have lower position accuracy and 
repeatability accuracy when compared to Computer 
Numerical Control (CNC) machine tools (Zhang 
2021). When it is located in different spatial poses, its 
stiffness difference (Wen & Pagilla 2021) and 
dynamic characteristic change (Amersdorfer et al. 
2020) are relatively large, which will lead to 
unpredictable processing vibration and structural 
deformation (Zhu et al. 2022) during the polishing 
process, and cannot achieve the expected processing 
target. Therefore, it is necessary to It is considered to 
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adjust and optimize the sensor technology to monitor 
the grinding and polishing process by designing and 
improving the control algorithm. 

In recent years, there has been substantial research 
conducted on the technology of curved surface 
polishing utilizing robots, both domestically and 
internationally. Many scholars have analyzed the 
limitations inherent in the existing tool contact state 
research and have proposed new and improved 
methods. For instance, Xie Liujie of South China 
University of Technology has enhanced the surface 
material removal depth model, proposing a multi-
directional three-dimensional curved surface grinding 
and polishing optimization cycloidal machining 
trajectory based on the Angle Based Flattening++ 
(ABF++) algorithm. This method was verified 
through experimentation to improve process control 
(Xie 2018). Furthermore, Zhang Sui of Soochow 
University has focused on refining the polishing path 
and process plan and processing Off-axis aspheric 
mirror elements with good form error (Zhang 2021).  

Yalun Wen et al. presented a new 3D path 
tracking control framework based on the Hermite-
Simpson collocation method, which determines the 
dynamically feasible Cartesian space processing path 
and the maximum constant translation speed. They 
built a robot for the 3D path tracking control grinding 
and polishing experimental platform, which 
improved the overall performance of the robot 
grinding and polishing system and met the surface 
finishing requirements of curved surface parts (Wen 
& Pagilla 2021). Finally, Manuel Amersdorfer et al. 
have proposed a method utilizing distance sensor data 
to create an approximate model of surface 
topography, replacing the traditional prior model. 
They have built a free-form surface force-controlled 
robot automatic polishing system for real-time path 
tracking, which accurately controls the normal 
contact force of grinding and polishing (Amersdorfer 
et al. 2020).   

To solve the problems in the above analysis, this 
paper conducts the following innovative research. 
Introducing a new parameter optimization algorithm 
called Improved Tuna Swarm Optimization - Particle 
Swarm Optimization (ITSO-PSO) combines tuna 
with particle swarm optimization. This algorithm 
boasts fast convergence speeds, high precision, and 
excellent search capabilities. It excels at dynamic 
tuning of control parameters and performs well on 
complex nonlinear multivariable systems with 
minimal overall error. 

 
 
 

2 PARAMETER OPTIMIZATION  

2.1    Particle Swarm Optimization 
Algorithm 

The Particle Swarm Optimization (PSO) algorithm is 
a type of swarm intelligence evolutionary algorithm 
utilized to optimize nonlinear functions. Its creation 
is credited to James Kennedy, an American 
psychologist, and Russell Eberhart, an electrical 
engineer, in 1995 (Kennedy & Eberhart 1995). 
Taking inspiration from the foraging behavior of 
birds, the algorithm treats a flock of birds as massless 
particles. The positions the particles pass through 
during flight are considered potential solutions to the 
optimization problem at hand. As particles fly, they 
search for viable solutions, their velocity and position 
being the key factors influencing their progress. 
Further, extend the particle to n-dimensional space, 
then the position vector 𝑋 = 𝑥 , 𝑥 , ⋯ , 𝑥 of 
particle i in n-dimensional space, and the flight 
velocity vector 𝑉 = 𝑣 , 𝑣 , ⋯ , 𝑣 . Choose the 
suitable fitness calculation function as the test 
function, assign the initial position and speed to the 
particle swarm randomly, identify the optimal 
position of an individual particle and the group of 
particles at present, evaluate the fitness of the particle, 
and progressively revise the position and velocity of 
the swarm until the ultimate position of the particle 
swarm is attained. 

The speed iteration of the classic PSO algorithm 
is shown in equation (1), and the position iteration is 
shown in equation (2), (𝑉_𝑖^(𝑘 + 1) = 𝑤𝑉_𝑖^𝑘 + 𝑐_1 𝑟_1 (𝑃_𝑏𝑒𝑠𝑡 − 𝑋_𝑖^𝑘 ) +𝑐_2 𝑟_2 (𝐺_𝑏𝑒𝑠𝑡 − 𝑋_𝑖^𝑘 ), )                                                                             (1) 

     𝑋 = 𝑋 + 𝑉 .                     (2) 
The equation includes several variables: k 

denotes the current iteration number of the particle, 
while w represents the inertia factor, which balances 
global and local optimization. Additionally, 𝑐  and 𝑐  
represent learning factors, which reflect individual 
and group cognitive abilities respectively, and 𝑟  and 𝑟  represent random numbers within the range [0,1]. 
Finally, uppercase 𝑃  represents the optimal 
position of a single particle, while uppercase 𝐺  
represents the optimal position of the entire particle 
group. 

To initiate the PSO algorithm process, the first 
step entails initializing the particle swarm. This 
includes randomly generating the starting position 
and velocity, as well as selecting appropriate values 
for the number of iterations, population size, particle 
dimension, inertia factor, and learning factor. In the 
subsequent step, a fitness function is adopted and 
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employed to compute the fitness value of each 
particle. The third step involves updating each 
particle by comparing its fitness with its historical 
optimal value. The fourth step involves updating the 
particle swarm by comparing each particle's fitness 
with its historical optimal value. In the fifth step, the 
velocity and position of the particles are updated 
according to equations (1) and (2). Finally, the loop 
end condition is evaluated to determine if it has been 
met. If not, the process returns to step 2 and continues 
to execute. 

2.2 Tuna Swarm Optimization 
Algorithm 

The Tuna Optimization Algorithm (TSO) is a global 
meta-heuristic optimization algorithm that simulates 

the spiral and parabolic foraging behaviors of tuna in 
a swarm-based approach (Xie et al. 2021). Tuna 
employs distinct foraging methods, namely the spiral 
and parabolic techniques. The spiral approach 
involves swimming in an upward spiral to contain 
their prey in a confined area for more efficient 
feeding, while the parabolic technique entails chasing 
the tuna in front of them to create a parabolic shape 
for capturing prey. As for initializing particles for the 
TSO algorithm, a precise calculation equation is 
implemented, 𝑌 = 𝑟𝑎𝑛𝑑 ⋅ (𝑏 − 𝑏 ) + 𝑏 , (3) 
where 𝑌  represents the initial position of the tuna, 
and 𝑏  and 𝑏  represent the maximum and 
minimum values of the search range. Further, the 
position of the tuna population during spiral foraging 
can be deduced, 

𝑌 =
⎩⎪⎪
⎨⎪
⎪⎧ 𝛼 ⋅ (𝑌 + 𝛽 ⋅ 𝑌 − 𝑌 ) + 𝛼 ⋅ 𝑌 , 𝑘 = 1；𝑟𝑎𝑛𝑑 < 𝑘𝑚𝛼 ⋅ 𝑌 + 𝛽 ⋅ 𝑌 − 𝑌 + 𝛼 ⋅ 𝑌 , 𝑘𝜖 2, 𝑚 ；𝑟𝑎𝑛𝑑 < 𝑘𝑚𝛼 ⋅ 𝑌 + 𝛽 ⋅ 𝑌 − 𝑌 + 𝛼 ⋅ 𝑌 , 𝑘 = 1；𝑟𝑎𝑛𝑑 ≥ 𝑘𝑚𝛼 ⋅ 𝑌 + 𝛽 ⋅ 𝑌 − 𝑌 + 𝛼 ⋅ 𝑌 , 𝑘𝜖 2, 𝑚 ；𝑟𝑎𝑛𝑑 ≥ 𝑘𝑚

. (4) 
The calculation equation of each coefficient is 𝛼 = 𝛼 + (1 − 𝛼 ) ∙ 𝑘𝑚, (5) 𝛼 = (1 − 𝛼 ) − (1 − 𝛼 ) ⋅ 𝑘𝑚, (6) 𝛽 = 𝑒 ⋅ ⋅ cos(2𝜋𝛽 ), (7) 𝑙 = 𝑒 , (8) where 𝑌 indicates the position of the jth particle 

after the (𝑘+1) th iteration; 𝑌  indicates the 
position of the current optimal particle; the subscripts 𝛼  and 𝛼  refer to weight coefficients that influence a 
particle's movement towards the optimal particle and 
its previous trend, respectively. These coefficients 
effectively control the particle's ability to conduct 
both global and local searches; 𝛼  indicates the 
degree to which the particle follows the optimal 
particle and the previous article in the initial state; k 
indicates the current iteration number; m indicates the 

maximum The number of iterations; 𝛽 represents the 
coefficient of the particle and the optimal particle or 
random particle, 𝛽  represents the random number in 
the value range [0,1]; 𝑙  represents the coefficient 
related to the maximum number of iterations m and 
the current number of iterations k, there is no actual 
physical meaning. 

It is assumed that when feeding, tuna has a 50% 
chance of choosing a parabolic path and a 50% 
chance of feeding randomly. The mathematical model 
is 𝑌 = 𝑌 + 𝑟𝑎𝑛𝑑 ⋅ (𝑌 − 𝑌 ) + 𝑞 ⋅ 𝑝 ⋅ (𝑌 − 𝑌 ), 𝑟𝑎𝑛𝑑 < 0.5𝑞 ⋅ 𝑝 ⋅ 𝑌 , 𝑟𝑎𝑛𝑑 ≥ 0.5 , (9) 

𝑝 = 1 − 𝑘𝑚 , (10) 
where the value of q is {-1,1}, which determines the 
direction of the particle swarm foraging; p reflects 
the process of foraging. 
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2.3 Improved Optimization Algorithm 
Based on Tuna and Particle Swarm 
Optimization 

When tackling intricate problems with numerous 
dimensions, the conventional PSO algorithm may 
present a few limitations. While it boasts a rapid 
search space velocity, it lacks local search 
capabilities, causing the optimization to potentially 

settle into a local optimum. Furthermore, insufficient 
information exchange between particles may lead to 
sluggish convergence, hindering the attainment of the 
optimal solution (Song et al. 2021). The ITSO-PSO 
algorithm combines the advantages of both 
algorithms to enhance global and local search 
performance. 

The speed and position iterative calculation 
equations of the ITSO-PSO optimization algorithm 
are 

𝕍 = ⎩⎨
⎧𝑤𝕍 + 𝑐 𝑟 𝑀 − 𝑍 + 𝑐 𝑟 𝑀 − 𝑍 , 𝑟𝑎𝑛𝑑 < 𝑡𝑚𝑎𝑥𝑔𝑒𝑛𝑤𝕍 + 𝑐 𝑟 𝑀 − 𝑍 + 𝑐 𝑟 𝐺 − 𝑍 , 𝑟𝑎𝑛𝑑 ≥ 𝑡𝑚𝑎𝑥𝑔𝑒𝑛 , (11) 

𝑍 = ⎩⎨
⎧𝑤 ⋅ 𝑍 + 𝑤 ⋅ 𝕍 ,            𝑟𝑎𝑛𝑑 < 𝑡𝑚𝑎𝑥𝑔𝑒𝑛𝑤 ⋅ 𝑍 + (1 − 𝑤) ⋅ 𝕍 , 𝑟𝑎𝑛𝑑 ≥ 𝑡𝑚𝑎𝑥𝑔𝑒𝑛 , (12) 

𝑀 = 𝑃 + 𝐺2 , (13) where 𝕍  and 𝑍  represent the speed and 
position of the gth particle after the (𝑡+1) iteration, 
maxgen represents the maximum number of iterations, 
and 𝑀  represents the particle's personal best best 
position and group best position average. 

The optimization capabilities of a particle swarm 
are influenced by the inertia factor and the learning 
factor. A larger inertia factor means weaker local 
optimization capabilities, while a smaller one leads to 

weaker global optimization. When the learning factor 𝑐  is small, particles may struggle with local search 
and become stuck in suboptimal situations, unable to 
reach the global optimal solution. Similarly, when 𝑐  
is small, particles may not communicate enough, 
slowing down convergence and preventing the 
discovery of an optimal solution. Therefore, it is 
necessary to properly improve and optimize the 
inertia factor and learning factor (Zhao et al. 2014), 
and the changes are 𝑤 = 0.5 ⋅ (𝑤 + 𝑤 ) + 0.5 ⋅ (𝑤 − 𝑤 ) ⋅ 𝑡𝑎𝑛ℎ −4 + 8 ⋅ (𝑚𝑎𝑥𝑔𝑒𝑛 − 𝑡)𝑚𝑎𝑥𝑔𝑒𝑛 , (14) 𝑐 = 𝑐 + (𝑐 − 𝑐) ⋅ 𝑡𝑚𝑎𝑥𝑔𝑒𝑛 , (15) 𝑐 = (𝑐 − 0.5) + (𝑐 − 𝑐 ) ⋅ 𝑡𝑚𝑎𝑥𝑔𝑒𝑛 , (16) 

where 𝑤  and 𝑤  represent the initial value and final 
value of the inertia factor respectively. 

To begin the ITSO-PSO algorithm, several 
parameters must be initialized, including the learning 
factor, inertia weight, maximum evolution times, 
population size, and fitness function dimension. 
Additionally, the value range of speed and position 
must be limited and a fitness function must be 
selected. Following this, a population is randomly 
generated and the speed and fitness of each particle 
are calculated. The best fitness values of the 
individual and the group are then calculated and 
updated accordingly. The algorithm then iteratively 
updates the inertia factor, learning factor, particle 
swarm velocity, and position using a ala while 
preventing them from exceeding their range. To avoid 
getting stuck at a local optimum, mutation seeds are 

added. The algorithm continues until the end 
condition is met, at which point the descending 
optimization curve is output. 

2.4 ITSO-PSO Algorithm Performance 
Test 

To compare the effectiveness of the ITSO-PSO 
algorithm with the PSO algorithm, we selected five 
classic test functions and conducted comparative 
testing to verify the performance change (Huang et al. 
2018). In total, there are five test functions. Two of 
them are unimodal test functions called Sphere and 
Schwefel's Problem 2.22, which aid in determining 
the algorithm's search accuracy and iteration rate. The 
remaining three tests are multimodal test functions - 
Griewank, Ackley, and Rastrigin - designed to 
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prevent the algorithm from converging prematurely 
by avoiding local optima. Table 1 provides the 
optimal values and value ranges for all five test 
functions, while Figure 1 visually represents the 
definition domain and value range of the test 
functions in three dimensions. 

Use MATLAB R2019b version for code writing 
and simulation testing, set the maximum number of 
population iterations 𝑚𝑎𝑥𝑔𝑒𝑛=200; population size 
G=100; inertia weight correlation coefficient w=0.9,  𝑤 =0.9, 𝑤 =0.4; learning factor correlation 
coefficient c=1.5, 𝑐 =1.49345, 𝑐 =1.44345; set the 
speed value range [-1,1]; set the position range 
according to Table 1. After defining the initial 

parameters, a specific test function is selected, and 
varying variable dimensions are independently tested 
for both algorithms, with each test run 30 times. For 
each test where the fitness function converges (i.e. 
when the fitness value is less than 0.001), the average 
(AVG), standard deviation (STD), maximum (MAX), 
minimum (MIN), and mean (MEAN) number of 
iterations are documented. In cases where the number 
of iterations is 200 and the fitness value is greater than 
or equal to 0.001, the function is classified as not 
having converged, and MAX, MIN, and MEAN are 
marked as DNE. The outcomes of each test are 
meticulously analyzed and documented in Table 2, 
Table 3, Table 4, Table 5, and Table 6. 

Table 1: The basic situation of 5 classic test functions. 

Name Equation Range Optimal 
value

Sphere 𝑓 = (𝑥 )  [-100,100] 0 

Schwefel 2.22 𝑓 = |𝑥 | + |𝑥 | [-10,10] 0 

Griewank 𝑓 = 14000 (𝑥 ) − cos 𝑥√𝑖 + 1 [-600,600] 0 

Ackley 
𝑓 = −20 ⋅ exp ⎝⎛0.2 1𝑁 (𝑥 ) ⎠⎞− exp (1𝑁 cos (2𝜋𝑥 )) + 20 + 𝑒 [-32,32] 0 

Rastrigin 𝑓 = 𝑥 − 10 cos(2𝜋𝑥 ) + 10 [-5.12,5.12] 0 

 

 

(a) Sphere (b) Schwefel 2.22 

Research on the Control of the end Effector of the Large-Scale Curved Surface Compliant Polishing Robot

603



(c) Griewank (d) Ackley (e)Rastrigin 

Figure 1: 3D visualization output of test function.

Table 2: Comparison of 2 optimization algorithms for solving 5 test functions (variable dimension D=3). 

Algorithm Index 𝑓  𝑓  𝑓   𝑓   𝑓  

ITSO-PSO 

AVG 0 0 0 0 0
STD 0 0 0 0 0 
MAX 55 99 56 100 82
MIN 32 91 31 94 51

MEAN 46 95 44 98 66

PSO 

AVG 0 0 0 0 0.13329
STD 0 0 0 0 0.33935
MAX 81 143 72 141 196
MIN 57 111 62 112 39

MEAN 73 128 67 130 110

Table 3: Comparison of 2 optimization algorithms for solving 5 test functions (variable dimension D=10). 

Algorithm Index 𝑓  𝑓  𝑓   𝑓   𝑓  

ITSO-PSO 

AVG 0 0 0 0 0
STD 0 0 0 0 0 
MAX 81 108 72 106 128
MIN 71 103 62 102 83

MEAN 76 106 68 104 89

PSO 

AVG 0 0.00395 0 0.00093 5.98740
STD 0 0.00662 0 0.00007 3.40882
MAX 138 200 140 137 DNE
MIN 109 119 104 96 DNE

MEAN 126 169 119 114 DNE

Table 4: Comparison of 2 optimization algorithms for solving 5 test functions (variable dimension D=30). 

Algorithm Index 𝑓  𝑓  𝑓   𝑓   𝑓  

ITSO-PSO 

AVG 0 0 0 0 0
STD 0 0 0 0 0 
MAX 88 112 80 109 99
MIN 84 110 74 106 95

MEAN 86 111 77 108 96

PSO 

AVG 0.00096 0.27348 0.00097 0.01208 23.64657
STD 0.00004 0.09489 0.00003 0.00351 9.75532
MAX 191 DNE 134 DNE DNE
MIN 138 DNE 91 DNE DNE

MEAN 168 DNE 115 DNE DNE
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Table 5: Comparison of 2 optimization algorithms for solving 5 test functions (variable dimension D=50). 

Algorithm Index 𝑓  𝑓  𝑓   𝑓   𝑓  

ITSO-PSO 

AVG 0 0 0 0 0
STD 0 0 0 0 0 
MAX 90 114 82 109 99
MIN 86 111 75 107 97

MEAN 88 112 78 108 98

PSO 

AVG 0.00723 0.91041 0.00098 0.05423 40.34964
STD 0.00207 0.17174 0.00002 0.00980 14.06941
MAX DNE DNE 192 DNE DNE
MIN DNE DNE 154 DNE DNE

MEAN DNE DNE 169 DNE DNE

Table 6: Comparison of 2 optimization algorithms for solving 5 test functions (variable dimension D=100). 

Algorithm Index 𝑓  𝑓  𝑓   𝑓   𝑓  

ITSO-PSO 

AVG 0 0 0 0 0
STD 0 0 0 0 0 
MAX 92 115 82 109 100
MIN 87 113 77 106 98

MEAN 89 114 79 108 99

PSO 

AVG 0.07823 2.64485 0.00169 0.14961 177.16030
STD 0.01089 0.22698 0.00023 0.01661 47.02125
MAX DNE DNE DNE DNE DNE
MIN DNE DNE DNE DNE DNE

MEAN DNE DNE DNE DNE DNE
 
Based on the simulation results outlined in the 

table, it's clear that both algorithms can achieve 
iterative test value convergence when the variable 
dimension is low. However, the traditional PSO 
algorithm requires more iterations, and as the 
variable dimension increases, some of its test 
functions fail to converge. If the variable dimension 
reaches a critical point, the PSO algorithm won't 
converge, and each evaluation performance 
indicator parameter will decline to varying degrees. 
By analyzing the change curves of the five test 
degree functions shown in Figure 2, we can see that 
the proposed ITSO-PSO optimization algorithm can 

achieve the theoretical optimal solution in all test 
scenarios, meaning that the test function can 
converge in any scenario. Compared to the 
traditional PSO algorithm, the ITSO-PSO algorithm 
achieves convergence with fewer iterations, 
indicating a faster convergence rate. Additionally, 
the ITSO-PSO algorithm is more robust, even when 
the variable dimension increases from 100 to 500. 
The average number of convergence times when the 
algorithm reaches convergence does not increase 
significantly, making numerical variable space 
parameter optimization a valuable reference point, 
as shown in Figure 3. 

 

 

(a) Sphere (b) Schwefel 2.22 
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(c) Griewank (d) Ackley 
 

(e) Rastrigin  

Figure 2: Five test function fitness change curves (D=100). 

 
Figure 3: ITSO-PSO algorithm convergence times and variable dimension function curve. 

In summary, the ITSO-PSO algorithm proposed 
based on the TSO algorithm and the traditional PSO 
algorithm solves the problem of premature 
convergence that may fall into local extreme points 
when solving complex nonlinear unimodal or 
multimodal function problems. The test results show 
that the ITSO-PSO algorithm has a fast convergence 
speed, good global search ability and local search 
ability, high convergence accuracy, and the ability to 
optimize complex system parameters. 

 
 
 
 
 

3 CONCLUSION 

This paper centers around the precise manipulation of 
the end effector on a polishing robot, specifically one 
designed for curved surfaces. This paper has yielded 
remarkable results thus far. This paper developed a 
mathematical model that enables me to establish a 
pneumatic control loop for each component and 
pinpoint the transfer function of the pneumatic 
control system. Ther proposed ITSO-PSO algorithm 
has outperformed traditional PSO algorithms in terms 
of faster convergence speed, increased accuracy, and 
superior capabilities for both global and local 
searches. Although the research has its limitations, 
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there is potential for future development using 
machine vision technology to track and monitor the 
robot's polishing path and surface processing in real 
time. This could enhance the system's intelligence to 
a higher level. 
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