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Abstract: This paper proposes an improved method for the traditional Adaptive Monte Carlo Localization (AMCL) 
algorithm, addressing issues such as long computation time and poor real-time updating ability. In the 
sampling phase, this method improves the traditional AMCL algorithm by using a parallel approach of 
stratified low variance sampling and KLD sampling. Additionally, the improved AMCL algorithm is 
integrated into the ROS-based SLAM package to reduce robot positioning errors and improve map accuracy 
in unknown environments during simultaneous localization and mapping. It is also integrated into the ROS-
based navigation package to enhance robot's localization accuracy in known environments and optimize both 
global and local path planning functionality when loading pre-built maps. 

1 INTRODUCTION 

Mobile robots have been integrated into society, but 
with the development of society, higher requirements 
are being put forward for the various performance of 
robots, and autonomous operation of robots is one of 
them, and autonomous positioning is one of the basic 
tasks of autonomous operation. The autonomous 
localization of robots is based on the pose estimation 
of the previous moment, utilizing environmental 
information and sensor data, and optimizing the 
algorithm to obtain the pose estimation of the current 
moment to locate the mobile robot. 

The AMCL (Adaptive Monte Carlo Localization) 
localization algorithm is the adaptive Monte Carlo 
localization algorithm. It is a classic algorithm in 
robot positioning algorithms, widely used in robot 
positioning, navigation, and path planning. However, 
the traditional AMCL algorithm has high 
computational complexity and large computational 
load, which cannot meet the real-time requirements of 
autonomous mobile robots, autonomous driving, and 
other scenarios that require high real-time 
performance and quick response. Therefore, this 
article proposes an improved AMCL algorithm to 
shorten the calculation time of the localization 
algorithm. 

The main research content of this article is as 
follows: In the sampling stage, the AMCL 
localization algorithm has been improved, which 
involves parallel implementation of Stratified Low 
Variance Sampling and KLD sampling. The 
improved AMCL localization algorithm not only 
shortens the calculation time of localization, but also 
improves the accuracy and real-time performance of 
localization. At the same time, the improved AMCL 
algorithm is loaded into the mapping and navigation 
function package of the ROS system (Robot 
Operating System). By adjusting the AMCL 
parameters and resampling rules, higher precision 
grid maps are created in unknown environments. At 
the same time, global and local planning are used to 
track the localization of robot humans. 

2 FUSION LOCALIZATION 
BASED ON IMPROVED AMCL 

2.1 AMCL Algorithm 

The AMCL algorithm is an improved version based 
on the MCL (Monte Carlo Localization) algorithm, 
which introduces an adaptive mechanism to improve 
the accuracy and robustness of localization. 
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Assuming the robot's pose is tx , The observed 
value is 1:tz , input is 1:tu , According to Bayesian 
theorem, it can be obtained that: 
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Among them, ( )1: 1:| ,t t tp x z u  is the pose state, 

1: 1 1:( , )| ,t t t tp z x z u− is a sensor observation model,  

1 11 ::|( , )t t tp x z u− is the motion model,  1: 1 1:( | , )t t tp z z u−

is a normalized constant. 
By using Bayesian filters, the above equation can 

be expressed in recursive form: 

( ) ( ) ( )( )1 1| * | ,t t t t t t tbel x p z x p x u bel x dx− −=  (2)

Among them, ( )|t tp z x  is the probability 

density function, and ( )( )1| ,t t tp x u bel x −  is the 
motion model. 

For particle filtering, use a set of state 
assumptions [ ] [ ]{ }

1
,
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 to approximate the 
posterior distribution ( )1: 1:| ,t t tp x z u , where [ ]i

tx  is 
the state assumption of the i-th particle, [ ]i

tw  is the 
weight of the i-th particle. By randomly sampling a 
group of particles in the state space, a rough state 
estimation can be obtained. 

Predicting each particle based on the motion 
model as the robot moves: 

[ ] [ ]( ) [ ]
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Among them, [ ]ε i
t  is a random disturbance from 

motion model noise. 
When the robot receives sensor observations, the 

weight of each particle is updated based on the sensor 
model: 
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Among them, [ ]( )| i
t tp z x  represents the 

observation probability of the given particle position 
by the sensor. 

The particles and their corresponding weights are 
resampled to update the state estimates. This process 
can be done by randomly sampling from the current 
particle distribution and generating a new set of 
particles according to the particle weight distribution. 

2.2 Stratified Low Variance Sampling 

In the AMCL algorithm, the resampling process has 
a significant impact on the accuracy and speed of the 

algorithm, but traditional polynomial resampling 
methods can lead to high variance in certain 
situations, making the estimation results unstable; At 
the same time, because polynomial resampling is 
done through polynomial distribution, it can cause 
some important samples to be discarded during the 
resampling process, thereby affecting the accuracy of 
the estimation. In order to ensure the stability and 
accuracy of the algorithm, the stratified low variance 
sampling method is selected in this paper. 

The main idea of stratified low variance sampling 
is to divide the population sample into several layers, 
and then conduct random sampling in each layer, so 
that the sample proportion of each layer is the same 
as the population. This can ensure the 
representativeness of the sample and reduce the 
variance of the sample. Assuming we have N 
particles, each with a weight of iw . We need to 
resample these particles to obtain new N particles that 
satisfy the relationship between weight and 
probability density function. Firstly, normalize the 
weights of all particles to obtain the probability 
density function ip : 
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Then integrate the probability density function 
and calculate the cumulative distribution function: 
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Next, generate a random number 1[0, )u N −∈ as 
the starting point for the first sampled particle, and 
define two variables j, k, both of which have an initial 
value of 1. 

Generate a uniformly distributed random number 
( )10,jr U N −� and use the following formula for 

resampling: 
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Repeat the above resampling until k>N. 
Finally, set the weights of all new particles to 1N −

. This completes the entire hierarchical low variance 
resampling process. 

2.3 KLD Sampling 

KLD sampling is a key technique for particle filter 
adaptation and is commonly used to determine 
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whether resampling is necessary. Its principle is 
based on Kullback-Leibler divergence, which 
measures the degree of difference between two 
probability distributions and can be used to evaluate 
the representativeness of particle sets. Assuming 
there is a target particle collection for KLD sampling 
to determine whether to resample, the weight of the 
target particle is first calculated by normalizing the 
particle weight: 

( )( ) 1
i iq w sun w

−
=  (8)

Among them, iq  represents the target weight of 
particle i, iw  represents the weight of particle i, and 

( )sun w  represents the sum of all particle weights. 
Calculate the KL divergence between the 

approximate distribution and the true distribution to 
determine if they are close: 

( ) ( ) ( ) ( )( )( )1|| log *KL P Q P x P x Q x dx
−

=   (9)

Among them, ( )P x  represents the probability 

density of the true distribution at x, and ( )Q x  
represents the probability density of the approximate 
distribution at x. 

Calculate the probability density function of an 
approximate distribution, expressed as: 

( ) ( )( )*i iQ x q x xδ= −  (10)

Among them, ( )ix xδ −  is the Dirac Delta 
function, represented ix x− , the value is 1, otherwise 
it is 0. 

Substitute the probability density function of the 
approximate distribution into the KL divergence 
formula and perform an integral operation on the 
entire space: 

( ) ( ) ( ) ( )( )( )1
|| log * *i iKL P Q P x P x q x x dxδ

−
 = −  (11)

Since the approximate distribution is represented 
by a set of particles, we can introduce an importance 
weight w_i for each particle. So that the approximate 
distribution can be represented as: 

( ) ( )( )*i iQ x w x xδ= −  (12) 
Substitute the probability density function of the 

approximate distribution with importance weights 
into the KL divergence formula and perform 
integration operations on the entire space: 

( ) ( ) ( ) ( )( )( )1
|| log * *i iKL P Q P x P x w x x dxδ

−
 = −  (13)

Due to the properties of the Dirac Delta function, 
the KL divergence formula can be further 
transformed into: 

( ) ( ) ( ) ( ) ( )( )1
|| log * *i effKL P Q P x P x w x xδ

−
 = −  (14)

Among them, ( ) ( )( ) 1
* *eff i i ix w x w

−
=   is 

the weighted average position. 
Define the number of effective particles effN  is: 

( ) 12( )eff iN w
−

=  , and then based on the relationship 
between KL divergence and the number of effective 
particles, it can be determined whether resampling is 
necessary. 

2.4 AMCL Based on Parallel 
Resampling and KLD Sampling 

Traditional KLD sampling involves resampling at a 
specific time and generating a new particle set after 
resampling is completed. Then perform KLD 
sampling on all particles one by one. When the 
number of sampled particles reaches the required 
number of particles according to the KLD criterion, 
the remaining particles will not participate in 
subsequent probability statistical operations, and the 
KLD sampling of these particles will also be 
terminated. Sampling termination requires 
resampling and KLD sampling, which will greatly 
increase calculation time and also cause positioning 
delay. In order to shorten calculation time, improve 
positioning accuracy and real-time performance, it is 
proposed to parallelize resampling and KLD 
sampling. In this method, a resampling operation is 
first performed while calculating the KL divergence 
of the particle set. Then, based on the results of KL 
divergence, determine whether resampling is 
necessary again. 

The AMCL algorithm process based on parallel 
resampling and KLD sampling is as follows: 

 
Figure 1: Improved AMCL Algorithm Process. 
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1) Firstly, initialize the filter, collect and generate 
an initial particle set, and assign equal weights to each 
particle. 

2) Based on the motion model of the robot, each 
particle is sampled and predicted to update its state. 
Assuming the linear velocity of the robot is v and the 
angular velocity of the robot is ω, Sports updates are 
as follows: 

( )1 * *cost t tx x t v θ+ = + Δ  (15)

( )1 * *sint t ty y t v θ+ = + Δ  (16)

1 *t t tθ θ ω+ = + Δ  (17)
Among them, tx  and ty  represents the position 

coordinate of the robot at time t, tθ  represents the 
orientation angle of the robot at time t, and ∆t 
represents the time step. 

3) Update the weight of each particle based on the 
sensor measurement information of the robot. Based 
on the particle's location and map, use the 
measurement model to calculate the probability 
density function ( )|t tp z x of the particle under the 
current measurement, and calculate the weight iw  of 
each particle by the total weight of all particles to 
obtain the normalized weight '

iw , and use the 
normalized weight '

iw  as the final weight of ix . 
Based on the normalized weight of each particle 

'
iw , resampling is performed to obtain a new particle 

set { }' ' '
1 2, , , Nx x x . Then, the KLD calculation 

method is used to compare the weight distribution of 
the new particle set with the target weight 
distribution, and the KLD value is calculated: 

( )
'

1' '

1
* log *

N

i i i
i

KLD w w w −

=

 =    (18)

Among them, 'N represents the number of 
particles obtained after resampling. 

Then evaluate whether resampling is necessary 
based on the set threshold. If the KLD value exceeds 
the threshold, resampling is performed; On the 
contrary, skip the resampling step. 

5) Repeat steps 2 to 4 for motion updates, 
measurement updates, parallel resampling, and KLD 
calculations to gradually adjust the particle set. 

6) Calculate the mean and variance of the robot's 
position estimation: 

'

' '

1
*

N

h i i
i

x w x
=

=  (19)

( ) ( )
' 2

' '

1
var *

N

h i i h
i

x w x x
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Among them, hx  represents the mean of robot 
position estimation, and the ( )var hx  table represents 
the variance of node position estimation. 

The algorithm resampling and KL divergence 
calculation are carried out in parallel, which can 
determine whether resampling is necessary in a more 
timely manner and reduce positioning delay. 
Meanwhile, since the calculation of KL divergence is 
performed before resampling, it is possible to 
determine whether resampling is necessary before 
resampling, avoiding unnecessary calculation time. 

2.5 Improved AMCL Algorithm and 
Multi-Sensor Fusion 

Improved AMCL algorithm and multi-sensor fusion 
steps: 

 
Figure 2: Steps for Improving AMCL Algorithm and Multi 
Sensor Fusion. 

1) Data collection: Use an encoder to measure the 
motion of robot wheels, in order to obtain the motion 
model of the robot, including translation and rotation 
information. At the same time, using LiDAR to 
perceive the surrounding environment and obtain 
environmental maps and obstacle information; 

2) Motion prediction: Using encoder data to 
predict the current position based on the robot's 
motion model; Use LiDAR data for map matching 
and particle filtering to obtain initial estimates of the 
robot's position; 

3) Perception update: Run steps 1 to 5 of the 
resampling and KLD parallel AMCL algorithm every 
time new LiDAR and encoder data is received to 
obtain the estimated mean and variance of the 
resampling particle set and robot position; 

4) Data fusion: Using an extended Kalman filter, 
the estimated values obtained from motion prediction 
are combined with the measurement data of LiDAR 
and encoder to obtain the final robot position 
estimation result; 

5) Output robot position estimation: Combining 
the fused data, output the final robot position 
estimation result, including the robot's position 
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coordinates and corresponding uncertainty 
information. 

By utilizing the motion information of encoders 
and the environmental perception of LiDAR through 
multi-sensor fusion, the positioning accuracy and 
robustness of robots have been greatly improved, 
enabling them to calibrate and locate in complex 
environments. 

3 EXPERIMENTATION 

3.1 Experimental Platform 

The mobile robot selected for this experiment is 
shown in Figure 3. The mobile robot is equipped with 
a 5840 Hall encoder DC deceleration motor that can 
provide high speed, a Silan S1 LiDAR, and a 24V15A 
lithium battery. The lower computer uses the 
STM32F407VGT6 main control board to control the 
low-level operation of the robot, while the upper 
computer uses the NVIDIA high-performance 
embedded development board. Install Ubuntu 20.04 
environment and ROS open-source robot operating 
system on the upper computer. 

 
Figure 3: Overall Structure of the Robot. 

3.2 Robot Localization Based on 
AMCL Fusion Algorithm 

This article selects the ROS system, which provides a 
large number of functional packages that can be used 
to handle common tasks of robots, such as sensor data 
processing, navigation, motion control, perception, 
etc. ROS adopts a distributed architecture, allowing 
multiple independent software modules (referred to 
as nodes) to communicate through information 
transmission. This distributed communication, where 
each node is independent of each other, greatly 

improves the system's fault tolerance and 
maintainability. 

In the ROS environment, build an environment 
map using the open-source SLAM algorithm 
Gmapping feature pack. The selection of the mapping 
environment is relatively simple, and the road surface 
is relatively flat on the external corridor of the 
laboratory. Firstly, test whether the entire system is 
running normally. After everything is normal, start 
the low-level control program of the robot, open the 
communication node and Gmapping mapping node, 
and simultaneously start the rviz node for 
environmental visualization and keyboard control 
program. Control the robot's movement through a 
remote keyboard to scan environmental information. 
On the visualization interface of rviz, information 
features of the surrounding environment can be seen. 
After the robot completes a circle in the relevant 
environment, it can complete map construction, as 
shown in Figure 4. 

 
Figure 4: SLAM Mapping Process. 

After the map construction is completed, start the 
map_ The server node saves the constructed map as a 
two-dimensional grid map. The constructed two-
dimensional grid map is shown in Figure 5. During 
the mapping process, the node continuously corrects 
the robot's posture in the environment based on the 
position estimation provided by the AMCL algorithm 
and the information conveyed by sensors to ensure 
the accuracy of map construction. 

 
Figure 5: Built Grid Map. 
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After the map construction is completed, start the 
underlying communication nodes, navigation nodes, 
and rviz visualization interface to assist in keyboard 
control. After determining the initial position of the 
robot, start setting navigation points on the map. The 
process of setting navigation points is shown in 
Figure 6. 

 
Figure 6: Navigation Point Settings. 

After completing the navigation point setting, 
start the path planning node, and the robot will use 
sensors such as LiDAR to start autonomous 
navigation based on the node information. After 
successful navigation, the window will prompt that 
the node has been successfully reached, as shown in 
Figure 7. 

 
Figure 7: Robot Autonomous Navigation. 

By comparing the error generated by using the 
traditional AMCL algorithm for positioning, as 
shown in Table 1, under the same environmental and 
hardware conditions, using the traditional AMCL 
algorithm for positioning resulted in a standard 
deviation of 7.7cm, while using the algorithm 
proposed in this paper resulted in a standard deviation 
of 5.8cm. 

Table 1: Positioning error statistics. 

Positioning Method 
Maximum 

distance error 
(cm) 

Distance 
standard 
deviation 

(cm) 
AMCL 32.4 7.7 

Proposed Method 14.7 5.8 

4 CONCLUSIONS 

In this paper, the mathematical models of AMCL 
algorithm, stratified low variance sampling and KLD 
sampling are analyzed. Based on the goal of reducing 
algorithm computation time and improving algorithm 
real-time performance, it is determined to adopt the 
AMCL algorithm with parallel hierarchical low 
variance resampling and KLD sampling. This 
algorithm improves the positioning accuracy of the 
ROS system during SLAM mapping, and when 
applied to the autonomous navigation module, it 
assists in positioning and also improves the efficiency 
of path planning. Of course, most of the sensors used 
in this article are two-dimensional sensors. If you 
want to achieve three-dimensional positioning, you 
need to add three-dimensional sensors such as 
cameras and three-dimensional LiDAR to perform 
positioning in a three-dimensional environment. 
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