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Abstract: In order to improve the accuracy of short-term traffic flow prediction and overcome the shortcomings of 
single prediction model and the limitations of traditional depth learning based on experience to set 
hyperparameters, a time convolution network (TCN) model based on improved dung beetle algorithm 
(DBO) is proposed. In order to solve the problem of slow convergence of traditional TCN model, the dung 
beetle algorithm is introduced, and the Bernoulli chaotic mapping algorithm is used to improve the initial 
value, considering the randomness and diversity of the initialization of dung beetle algorithm, the traffic 
flow prediction model based on BDBO-TCN is constructed. To verify the predictive effect of the 
experiment, experiments were conducted on two different real data sets, the multi-step prediction is 
compared with the TCN model optimized by DBO based on various chaotic mapping algorithms to further 
verify the prediction performance of the model. This model is superior to other models. 

1 INTRODUCTION 

Traffic flow prediction is the basis of traffic control 
and traffic guidance. At present, the common short-
term traffic flow prediction models are LSTM(Ma et 
al., 2015), GRU (Wu et al., 2018), TCN(Lea et al.) 
etc., in the field of traffic flow prediction, the 
common optimization algorithms such as particle 
swarm optimization (Kennedy and Eberhart) , 
genetic algorithm (Goldberg, 1989)etc., in this 
paper, dung beetle Optimizer algorithm(Xue and 
Shen, 2023) is used to solve the hyperparameters of 
TCN model, and chaos mapping algorithm(Yu et al., 
2018)is introduced into intelligent optimization 
algorithm to increase population diversity. Chaotic 
mapping algorithms include Tent mapping(Zhao, 
2012), Logistic mapping(Zhang and Liang, 2012) 
Bernoulli mapping(Saito and Yamaguchi, 2016)and 
so on. The hyperparameters of TCN are optimized 
by DBO algorithm of dung beetle, and the traffic 
flow prediction of TCN is made by the optimal 
hyperparameters. The main contributions are as 
follows:  

(1) Aiming at the problem that the 
hyperparameters of TCN are difficult to determine in 
the traffic flow prediction, in this paper, TCN traffic 
flow prediction model based on improved dung 
beetle algorithm is designed by combining TCN 
with improved dung beetle algorithm. The 

simulation results show that the proposed model is 
superior to other optimized TCN prediction models.  

(2) Using the method of randomly generating the 
initial population in traditional dung beetle 
algorithm, the distribution of the initial population is 
not uniform, which leads to the decrease of the 
population diversity and the low quality of the 
population, the problem of unbalanced global 
exploration and local development capability affects 
the convergence speed of the algorithm. In this 
paper, chaotic maps are introduced to improve the 
quality of initial population distribution in the search 
space, thus strengthening the global search 
capability. 

2 MODEL 

2.1 Dung Beetle Optimizer 

Dung Beetle Optimizer (DBO) is a new heuristic 
swarm intelligence optimization algorithm inspired 
by the behavior of Dung beetles in nature. The dung 
beetle algorithm selects the optimal solution by 
modelling dung beetle, survival behavior，  ball 
rolling and dancing behavior, foraging behavior, 
breeding behavior and stealing behavior. 

The rolling behavior of dung beetles can be 
divided into barrier mode and barrier-free mode. The 
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rolling behavior of dung beetles is influenced by 
celestial cue navigation, and the rolling position path 
of dung beetles is changed by the change of light 
intensity. The location update formula is shown 

1 ( )t t t
i i ix X S g x X x X+ ′′ ′ ′′= + × × − + −  (1) 

Where t is the number of current iterations, 
which  1t

ix + is the position information of the first 
dung beetle during the t iteration, k is the deflection 
coefficient and b is the natural coefficient,  
| |t t

i Gx x−  indicates the change of light intensity,  
t
Gx is the worst position in the current population. 

The natural coefficient α  of -1,1, when α = 1 
means the natural environment does not affect the 
original direction, when  α  = -1 means the natural 
environment deviates from the original direction. 
The α value is determined by the probability   
λ value. 

When a dung beetle encounters an obstacle and 
is unable to move forward, it changes the direction 
and position of its ball by dancing. Update such as 
type: 

1 1tant t t t
i i i ix x x xθ+ −= + −   (2) 

The position of the dung beetle does not change 

when the angle of deflection of θ = 0,
2
π , π   

Reproductive behavior dung beetles hide their 
dung balls by rolling them to a safe area, providing a 
boundary selection strategy to simulate the female 
dung beetles spawning and brood areas. Female 
dung beetles lay their eggs and raise their young. 𝑈𝑏′ = 𝑚𝑖𝑛(𝑋 ′ × (1 + 𝑅),𝑈𝑏𝐿𝑏′ = 𝑚𝑎𝑥(𝑋 ′ × (1− 𝑅), 𝐿𝑏)𝑅 = 1−  (3) 

Among them,Ub′ , Lb′ is the upper and lower 
bounds of the spawning region,Ub , Lb  is the upper 
and lower bounds of the search space, respectively, 
X ′ is the optimal positions of the current population, 

R is the dynamic selection factor, and maxT  is the 
optimal iteration order.  

Once the female has identified the area where 
she will lay her eggs, she will incubate the ball and 
only produce one egg per iteration, thus, the position 
of the oocyte changes dynamically with the iteration 
of the spawning area, it is defined as follows: 

1
1 2( )t t

i iB X b B Lb b+ ′ ′= + × − +  (4) 
Where, t

iB  is the position of the i oosphere at 
the t iteration, 1b  , 2b are the independent random 
variable of D for the optimization problem. 

Foraging behavior after hatching, young dung 
beetles need to be guided to a limited optimal 
foraging area. The boundary of the optimal foraging 
area is defined as follows: 

min( (1 ), )
max( (1 ), )

Ub X R Ub
Lb X R Lb

′′ ′′= × +
 ′′ ′′= × −

 (5) 

For X ′′ is the global optimal position,  Ub′′ ,  
Lb′′ is  the upper and lower limits of the optimal 
foraging, the position of the small dung beetle can 
be defined after the location update as shown: 

1
1 2( ) ( )t t t t

i i i ix x C x Lb C x Ub+ ′′ ′′= + × − + × −  (6) 
Where,  t

ix is the position information of the i 
little dung beetle in the iteration of the t generation,  

1C is a random number following normal 
distribution, and 2C is a random vector of (0,1).  

 Some dung beetles don't want to play their own 
game, they want to play for free, the best place in the 
world, the best place to eat. Assuming that the 
thieving dung beetles are competing for food nearby, 
during the iteration, the thieving dung beetle 
position updates as follows: 

1 ( )t t t
i i ix X S g x X x X+ ′′ ′ ′′= + × × − + −  (7) 

Where  t
ix  is the position information of the i 

thief dung beetle in the t generation iteration, g is a 
random variable of size 1*D with a normal 
distribution and S represents a constant. 

2.2 Chaotic Algorithm 

In order to improve the diversity of population 
initialization, chaotic maps are used to generate the 
diversity of initial population in the initialization 
stage of DBO, the probability of the middle value of 
the Logistic map is uniform, but the probability of 
the two ends is very high, so it is disadvantageous to 
find the global optimal point when it is not at the 
two ends of the design variable space Secondly, Tent 
map has good ergodicity, but there are small periods 
and unstable period points in its iterative sequence, 
so if the sequence falls into it, the sequence tends to 
be stable and the algorithm is invalid Because 
Bernoulli mapping can affect the whole process of 
algorithm and obtain better optimization results, it 
has the characteristics of ergodic uniformity and 
moderate convergence speed, and is widely used in 
algorithm initialization. Therefore, Bernoulli map is 
used to initialize the population of DBO in order to 
improve the distribution quality of the initial 
population in the search space and enhance its global 
search ability. Bernoulli was used to map the initial 
position of dung beetle, the resulting values were 
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projected into the chaotic variable space, and then 
the resulting chaotic values were mapped into the 
algorithm initial space by linear transformation, the 
specific formula for the Bernoulli mapping is shown: 𝑍 = , 0 ≤ 𝑍 ≤ 1 − 𝛽( ) , 1− 𝛽 ≤ 𝑍 ≤ 1 (8) 

Where β is the mapping parameter. 

2.3 BDBO-TCN 

BDBO-TCN algorithm based on time convolution 
network can extract the temporal characteristics of 
traffic flow across time steps. TCN model is chosen 
as traffic flow prediction model, which has simple 
structure and can accurately capture and predict the 
inherent patterns and trends of sequence data. In this 
paper, the DBO algorithm based on Bernoulli map is 
used to optimize the TCN parameters, taking the 
time series of traffic flow as input and the prediction 
error as the fitness, the next stage of traffic flow 
forecast is the output matrix. An improved DBO-
TCN prediction model is convolutional neural 
network as follows: 

(1) firstly, the structure of TCN model is 
determined, the model structure diagram for this 
article is shown in Figure 2.2. 3, and then randomly 
initialize the parameters of the TCN model.  

(2) The initial population of DBO (suppose 
rolling ball dung beetle: foraging dung beetle: 
breeding dung beetle: larceny dung beetle: 20% : 
20%: 25%: 35%) , and the initial value is determined 
by chaos mapping method.  

(3) in this paper, the prediction error of TCN 
model is taken as the fitness function of dung beetle 
algorithm, so that the dung beetle algorithm is 
related to TCN model.  

(4) using the strategy of dung beetle algorithm 
introduced in Section 4.2, we get the updated value 
of super-parameter, and train the TCN model on the 
training set, and get the prediction error of the 
model. (5) if the current prediction error meets the 
set requirements or reaches the upper limit of the 
cycle, the optimal TCN superparameter is obtained.  

(6) if the end condition of step (5) is not 
satisfied, return to step (4) to continue until the loop 
end condition of step (5) is satisfied.  

A summary of the above steps results in an 
improved DBO-TCN traffic flow prediction 
flowchart as shown in Figure 1. 

 

3 EXPERIMENTAL ANALYSIS 

3.1 Data Description 

In order to verify the superiority of the proposed 
model. Experiments were performed using two real-
time California highway datasets PEMSD4 and 
PEMSD8 collected every 30 seconds by the Caltrans 
Performance Measurement System. This paper 
chooses the traffic flow data as the research object. 
Traffic flow data are collected every 5 minutes. The 
specific dataset statistics are shown in Table 1 

Table 1: Description of experience dataset. 

Datasets Number of 
sensors 

Edges  Time 
steps 

Time 
range 

PEMSD4 307 340 16992 1/1/2018-
2/28/2018 

PEMSD8 170 277 17856 7/1/2016-
8/31/2016 

The data sets are divided into training set, 
verification set and test set according to the ratio of 
6:2:2. And early stop method is used to prevent 
over-fitting. In order to eliminate the influence of 
different variables on the data set, the maximum-
minimum normalization method is used to process 
the data in [0, 1] interval. The normalization 
operation is as follows: 

min

max min

x x
x

x x
−′ =

−
     (9) 

where x′ is the normalized data, x is the original 
data, minx is the minimum value in the data sample, 
and maxx is the maximum value in the data sample. 

3.2 Experimental Environment and 
Parameter Settings 

This experiment is compiled and run on Windows 
Server (CPU: Intel (R) Core (TM) i5-8300H CPU @ 
2.30 GHz, GPU: NVIDIA GeForce GTX 1050 Ti) 
using PyTorch depth framework to complete in 
Pycharm development environment. The specific 
parameters are set as follows: Historical traffic flow 
window size is 6,num_channels= [128,64,32,16,4,1] 
in TCN, The loss function is MSELoss, Adam 
Optimizer, Batch size=64, epoch = 100, learned 
number =0.001, deflection coefficient k is 0.1, the 
natural coefficient b is 0.5,number of iterations is 
100 and use the early stop method with patience = 
10. 
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Figure 1: Traffic flow prediction flow chart of BDBO-TCN.

•Baseline Methods 
(1) TCN: Time convolutional network  
(2) DBO-TCN: Dung Beetle algorithm optimizes 

TCN 
(3) TDBO-TCN: The dung Beetle algorithm under 

Tent mapping optimizes TCN 
(4) LDBO-TCN: The dung Beetle algorithm under 

Logistic mapping optimizes TCN 
(5) BDBO-TCN:  The dung Beetle algorithm 

under Bernoulli mapping optimizes TCN 

3.2 Evaluation Index 

In order to quantitatively analyze the effectiveness 
of the model for data repair, this paper uses the 
complete traffic volume to verify it, and adopts the 

following evaluation indexes to measure the 
prediction and repair ability of the model. 

(1) Mean Absolute Error (MAE): 

 
1

1 n

i i
i

MAE y y
n =

′−＝  (10) 

(2) Root Mean Square Error (RMSE): 

 
2

1

1 n

i i
i

RMSE y y
n =

′−＝  (11) 

Where n is the number of true data, iy is the true 
value of the i-th true data, and iy ′  is the predicted 
value of the ith data. The smaller the above 
evaluation index, the better the prediction and repair 
ability of the model. 
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4 RESULTS 

Table 2: Short-term traffic flow forecast with 5-minute 
interval. 

model 
datasets PEMSD4 PEMSD8 

Metrics MAE RMSE MAE RMSE 
TCN 17.94 28.68 13.87 21.43 

DBO-TCN 15.88 26.36 12.25 19.57  

TDBO-TCN 15.36 25.88 11.94 19.23  

LDBO-TCN 15.48 25.62 11.83  19.32  

BDBO-TCN 15.21 25.23 11.73 18.72 

Table 3: Short-term traffic flow forecast with 10-minute 
interval. 

model 
datasets PEMSD4 PEMSD8 
Metrics MAE RMSE MAE RMSE 

TCN 18.96 30.32 14.97 23.26 

DBO-TCN 17.62 28.29 13.69 21.62 

TDBO-TCN 17.35 27.63 13.45  20.98 

LDBO-TCN 17.22  27.52 13.48  21.06 

BDBO-TCN 17.02  27.31 13.22 20.85 

Table 4: Short-term traffic flow forecast with 15-minute 
interval. 

model 
datasets PEMSD4 PEMSD8 
Metrics MAE RMSE MAE RMSE 

TCN 20.25 32.21  16.23 25.42 

DBO-TCN 18.87  30.14 14.95 23.61 

TDBO-TCN 18.68 29.56  14.85 23.32 

LDBO-TCN 18.54 29.75 14.77 23.18 

BDBO-TCN 18.33 29.26 14.51 22.88 

As can be found in the table, the accuracy of the 
model increases with the increase of the forecast 
time interval, because there are many factors 
affecting the traffic flow, when the number of 
forecast steps increases, the correlation between the 
data decreases, the performance of traffic flow 
prediction is reduced, and it can be found that the 
optimization algorithm can improve the accuracy of 
the model, but the chaos mapping algorithm has 
little influence on the optimization algorithm. 

5 CONCLUSIONS 

In this paper, a traffic flow prediction model of 
BDBO-TCN is proposed. The parameters of TCN 
(Temporal Convolutional Network) model were 
optimized by using the improved dung beetle 
algorithm, and the fitness objective was to minimize 
the predicted RMSE (root mean square error) value, 
thus, the model parameter configuration with the 
highest precision and efficiency can be found. In 
order to verify the performance of the model, 
experiments were carried out on PEMSD4 and 
PEMSD8 data sets, and the results were compared 
with the TCN model under other optimization 
algorithms. The experimental results show that 
BDBO-TCN model performs well in traffic flow 
prediction and is superior to other parameter 
optimization models. With the increase of time 
interval, the model can still maintain a high 
prediction accuracy. In addition, we also study the 
effect of different chaotic algorithms and different 
synchronization lengths on the prediction accuracy, 
and find that the selection of hyperparameters has an 
important effect on the model performance, 
moreover, it is a challenging task to determine the 
optimal hyperparameters. By combining the 
improved dung beetle algorithm with TCN model, 
the parameters are optimized with high precision and 
high efficiency. The model shows good adaptability 
in dealing with time interval variation. 
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