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Abstract: Utilizing neural network models to detect icing and snow accumulation on aircraft surfaces can significantly 
reduce the workload of maintenance personnel, enhance operational efficiency, and lower aircraft operating 
costs. This proposal marks the first application of the transformer-based object detection model DETR to the 
detection of icing and snow on aircraft surfaces. To address the issue of significant boundary box prediction 
deviations in DETR, the RefineBox localization optimization network was employed for improvements. 
Performance was compared and analyzed on a custom dataset, revealing a 1.8% increase in the mAP metric 
for the enhanced model. Ground trials were conducted to validate the accuracy and feasibility of the improved 
model in detecting aircraft surface icing and snow. The results demonstrate that the enhanced model performs 
well, exhibits strong environmental adaptability, and can operate stably on mainstream devices. 

1 INTRODUCTION 
Snow, frost, and ice accumulation on the surfaces of 
aircraft can compromise the clean aerodynamic state 
critical for flight, posing a threat to flight safety. Not 
only in snowy weather, but whenever meteorological 
conditions reach icing thresholds, aircraft must 
undergo rigorous de-icing procedures before takeoff. 
Therefore, checking for surface icing during the pre-
flight walk-around is essential. 

Currently, aircraft surface icing checks are 
primarily conducted through manual inspections and 
contact-type icing sensors. Manual inspections 
depend on the visual acuity and judgment of 
maintenance personnel, making this method 
subjective. It's impractical to comprehensively 
inspect an entire aircraft's exterior solely by human 
height, requiring tools and presenting significant 
limitations; moreover, inspecting an aircraft, 
especially large ones, is time-consuming, involves 
multiple personnel, is costly, inefficient, and prone to 
issues during handover. Contact-type icing sensors 
can only detect icing at a single point or small area. 
For detecting widespread surface icing, these 
methods often require the installation of numerous 
sensors (Zhou et al, 2021). 

In contrast, computer vision-based detection 
methods are unrestricted, relying on camera-captured 

images to perform inspections without directly 
contacting the aircraft surface and capable of wide-
area detection. This approach offers good protection 
for the aircraft, allowing for quantitative 
representation of detection results. Before 2014, 
traditional algorithms dominated computer vision-
based object detection. Subsequently, deep learning-
based object detection algorithms rapidly evolved. 
Convolutional Neural Networks (CNNs) utilize fixed 
weights in convolutional layers to extract features 
from specific parts of an image, then apply these 
invariant weights across the entire image through 
convolution. This approach has two main benefits: 
First, the invariance of weights ensures that the same 
features are extracted from any sub-image within the 
same image; second, it significantly reduces the 
amount of input data for the image. These advantages 
are crucial for the training speed and robustness of the 
neural network and have been proven to far surpass 
traditional feature-based image recognition methods 
in accuracy (Wei, 2022). 

In 2020, Glenn Jocher (Carion et al, 2020) 
released the YOLOv5 model, and the Facebook AI 
Research team proposed the DETR neural network 
model. Li Gang (Li et al, 2023) from North China 
Electric Power University and others integrated 
DETR with prior knowledge to address the issue of 
sample imbalance in bolt defect detection. In 2023, 
Zhou Jing and Li Xin (Zhou and Li, 2023) used the e-
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fficientNet network to extract image features, which 
were then merged via the BiFPN network and 
analyzed using DETR, enhancing the detection 
efficiency in tasks involving the inspection of anti-
vibration hammers on power transmission lines. 
Representative models such as DETR and YOLOv5 
have proven their effectiveness in a broad range of 
object detection tasks. 

DETR’s self-attention mechanism endows it with 
strong global contextual awareness, beneficial for 
fully considering the relationships between ice/snow 
targets and the aircraft, and operates without the need 
for preset anchor boxes, thus flexibly adapting to ice 
formations of varying sizes and shapes. Given these 
advantages, applying the DETR model to the task of 
detecting ice on aircraft surfaces holds great potential. 
However, during its application in detecting ice and 
snow accumulation on aircraft surfaces, issues such 
as positioning deviations, especially for small targets 
like icicles and clear ice, were noted, indicating that 
the model’s localization performance needs 
enhancement. In 2023, Chen Y (Chen, 2023). from 
the Institute of Artificial Intelligence, Chinese 
Academy of Sciences and the University of Chinese 
Academy of Sciences proposed a localization 
optimization network tailored to the DETR model and 
its derivatives. This network extracts multi-scale 
features from DETR’s Resnet backbone using a 
Feature Pyramid Network (FPN) and uses these 
features alongside Ground Truth to correct predicted 
bounding boxes, thereby improving the localization 
accuracy of the DETR model. This development is 
significant for addressing the aforementioned 
application issues. Employing advanced deep 
learning techniques for detecting ice on aircraft 
surfaces to enhance flight safety and efficiency 
provides maintenance personnel with a precise, 
efficient, and automated icing detection method, 
offering reliable decision support and further 
elevating flight safety standards. 

2 IMPROVED DETR MODEL 
BASED ON REFINEBOX 

2.1 DETR Model 

DETR (Detection Transformer) is an object detection 
network based on the Transformer architecture. 
Unlike traditional object detection methods, DETR 
adopts an end-to-end approach, outputting the classes 
and positions of objects directly through the 
Transformer network, thus accomplishing the task of 
object detection. 

DETR provides a novel approach to end-to-end 
object detection algorithms by combining CNNs and 
the Transformer model to predict the class 
information of N objects, including both targets and 
background, in parallel. Leveraging the 
Transformer's focus on global features, the DETR 
model possesses powerful global feature learning 
capabilities (Zhang et al, 2022). Specifically, DETR 
first encodes the input image into feature vectors via 
a CNN, which are then combined with positional 
encodings. The computation of positional encodings 
is as follows (Chen et al, 2023): 
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In the formula, "pos" represents the position of the 
image block; "d" represents the dimension of the 
vector; and "2i" and "2i+1" represent the even and 
odd dimensions within "d", respectively. After the 
positional encoding, the feature vector is processed 
by the encoder which modifies the feature map. 
Through a linear layer and a multi-head self-attention 
mechanism, DETR generates a set of encoded vectors 
of specific sizes, representing the objects present in 
the image. These encoded vectors are matched with 
known category vectors, thus determining the 
probability distribution of classes for each object. 

The Encoder in DETR receives feature vectors 
and processes them through a series of self-attention 
layers and feedforward neural networks, encoding 
them to extract high-level feature representations. 
These representations are then passed to the Decoder, 
serving as inputs for subsequent processes. The 
Decoder receives these feature representations from 
the Encoder and generates the object detection results. 
Typically, the Decoder is composed of a series of 
self-attention layers and feedforward neural networks, 
which allow it to merge and process features at 
different levels. In each Decoder layer, the model 
generates new predictions based on the current 
feature representations and previous prediction 
outcomes. These predictions include information 
about the object's class and location. 

The interaction between the Encoder and Decoder 
is facilitated by a cross-layer multi-head self-attention 
mechanism. This mechanism allows the model to 
exchange information across different levels, thereby 
better capturing the global context and the 
relationships between objects (Fan and Ma, 2023; 
Vaswani, 2017; Chen et al, 2018). The design of the 
Encoder and Decoder in DETR aims to utilize the 
Transformer's self-attention mechanism and 
feedforward neural networks to accomplish end-to-
end object detection tasks. This architecture not only 
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improves the efficiency of object detection by 
reducing the reliance on traditional detection steps 
such as region proposal generation but also enhances 
the model's ability to understand and interpret 
complex scenes where multiple objects interact or 
overlap. 
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Figure 1: The structure of the transformer in DETR. 

In order to improve the performance of the DETR 
model during training, it is necessary to use a loss 
function to measure the difference between the 
predictions and the actual targets. DETR employs a 
method called the Hungarian algorithm to match 
predicted bounding boxes with their corresponding 
ground truth values, then calculates the cross-entropy 
loss for the classes and the Smooth L1 loss for the 
bounding boxes to achieve the minimal loss. The 
formula for the cross-entropy loss is (Huang et al, 
2019): 
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N  is the number of actual targets in the image, 
C  represents the number of categories (including the 
background), 𝑦௜௝  is the predicted value for the j-th 
category in the i-th prediction box, and 𝑦∧௜௝  is the 
actual value for the j-th category in the i-th prediction 
box. 

Smooth L1loss function： 
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ib  represents the coordinates of the i-th predicted 
box, ib

∧
 represents the coordinates of the i-th actual 

box, and im
∧

represents the existence indicator of the 
i-th actual box (1 for present, 0 for absent). 
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Figure 2: The structure of DETR. 

2.2 RefineBox Location Optimization 
Network 

RefineBox Localization Optimization Network is a 
method used for localization enhancement in object 
detection. It effectively improves the accuracy of 
object localization in the DETR model by optimizing 
bounding boxes without affecting the classification 
results. By utilizing multi-scale features and a series 
of Refiner modules, this network efficiently refines 
the bounding boxes predicted by the detector, further 
enhancing model performance. This approach adopts 
a two-stage detection philosophy. However, unlike 
typical two-stage methods, the RefineBox 
Localization Optimization Network is built upon a 
well-trained detection model with frozen parameters. 
It can be directly applied to pre-trained models 
without the need for retraining, significantly reducing 
time and computational costs. 

First, the Feature Pyramid Network (FPN) is used 
to extract multi-scale features from the DETR's 
Backbone, reducing the channel count to a specific 
number C, considered as the model dimension. These 
features, along with the bounding boxes predicted by 
the Detector, serve as inputs. This enables the 
RefineBox to perform effectively in detecting both large 
and small objects. Subsequently, through a series of 
Refiner modules, the extracted multi-scale features 
are fully utilized to improve the bounding boxes 
predicted by the Detector, as shown in Figure 3. The 
weights of the Refiner modules are shared. 
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Figure 3: Structure of the RefineBox Localization 
Optimization Network. 
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The Refiner component consists of an ROI Align 
layer, a residual block, and a Multi-Layer Perceptron 
(MLP). Its internal structure is shown in Figure 4. The 
FPN extracts multi-scale features from the Backbone 
and inputs them into the ROI Align for feature 
alignment across different scales. Subsequently, the 
bounding boxes are optimized through the residual 
block and the MLP. 
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Figure 4: Structure of the Refiner. 

3 EXPERIMENTS AND 
ANALYSIS 

3.1 Dataset and Experimental Setup 

In order to compare the performance of the models 
before and after the improvement, a custom dataset of 
icing or snow on the surface of an airplane was used 
to train and test the models before and after the 
improvement. A high-quality dataset is required to 
contain a large variety and sufficient number of 
images covering a rich range of application scenarios, 
such as variations in different angles, lighting 
conditions, and so on. 493 image data of icing snow 
on the surface of the airplane were obtained by 
collecting online and taking field photos on the ramp, 
and data augmentation methods such as flipping and 
adding noise were used to balance the categories and 
reduce overfitting. The total amount of data after 
augmentation was 800. LabelMe was chosen as the 
annotation software, the decision to use LabelMe was 
driven by the need for a reliable tool that can handle 
complex annotations with ease, facilitating the 
preparation of high-quality training data., and a 
COCO-format dataset was created for training the 
model and testing the model's performance metrics. 

Neural network training environment and 
configuration: 

Table 1: Environment and configuration. 

Learning Rate 1e-4 

Encoder+Decoder 6+6 

Epochs 250 

Device NVIDIA Quadro P6000 

Operating System Windows10 

Framework Pytorch2.0.0+cuda11.8 

Programming Language Python 

3.2 Experimental Results and 
Analysis 

In the field of object detection, evaluating the 
performance of models is crucial, directly impacting 
the effectiveness and feasibility of models in practical 
applications. This experiment aims to conduct a 
detailed data analysis and comparison to 
comprehensively assess the performance of several 
mainstream object detection models and the 
RefineBox DETR model on a dataset of aircraft 
surfaces covered with ice and snow. A horizontal 
comparison not only showcases the unique 
advantages and potential limitations of each model 
but also highlights the effectiveness of the 
improvement methods and the advantages of the 
improved model. 

The design of this experiment strictly adheres to 
scientific evaluation standards and principles of fair 
comparison. Tests are conducted under identical 
experimental conditions, including the same dataset, 
hardware, and software configurations, to ensure the 
objectivity of the results. This approach not only 
helps to verify the improvements made to the 
RefineBox DETR model but also provides valuable 
data support and theoretical guidance for future 
technological innovations in this field. 

Table 2: Results. 

Method F1-
Score Recall mAP(%) Precision 

Faster-
RCNN 0.872 0.861 82.5 0.815 

YOLOv5 0.859 0.778 79.6 0.863 
DETR 0.863 0.932 81.9 0.802 
ours 0.880 0.953 83.7 0.837 
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From the experimental data in Tables 2, it is 
evident that under the same environmental 
configurations and using the same training dataset, 
the two-stage object detection algorithm Faster-
RCNN shows moderate recall and precision, with 
higher F1-Score and mAP, indicating its good 
performance and balanced recall and precision. 
However, due to the more complex structure of the 
two-stage detection algorithm compared to single-
stage algorithms, it requires more computation time. 
The YOLOv5 object detection model has the lowest 
recall and highest precision, indicating that this model 
is less likely to produce false positives in the context 
of detecting icing and snow accumulation on aircraft 
surfaces, but it has a higher rate of false negatives, 
suggesting that it is prone to under-detecting the 
actual number of targets, leading to missed detections. 
The performance of the DETR model is more 
balanced compared to YOLOv5. Contrary to 
YOLOv5, it has higher recall but lower precision, 
indicating that it is less likely to miss detections, but 
more prone to false positives, and its higher mAP 
score also demonstrates its superior overall 
performance. 

The improved RefineBox DETR model achieves 
the best results in all three metrics, proving the 
stability and effectiveness of its enhancements. The 
high recall ensures the reliability of the detection 
results, and the highest mAP score demonstrates its 
superior overall performance. 

3.3 Application Testing 

To validate the practicality of the model, it was 
chosen to conduct field tests on the apron after 
snowfall. The test environment included two lighting 
conditions: morning and evening. Factors such as the 
shooting angle, location of ice and snow on the 
aircraft, and the conditions of ice and snow 
accumulation were considered. The test subjects were 
two types of aircraft: a silver-grey skinned J-5 and a 
milky-white skinned An-24. The purpose of 
introducing these variables was to fully verify the 
impact of environmental factors on the accuracy of 
detection results. 

The results presented in Table 3 show the 
detection performance of RefineBox DETR in real-
world applications. The first group of photos and the 
second group were taken under conditions of shadow 
and direct sunlight, respectively; from angles of top-
down and bottom-up views; with different skin 
colours; ice and snow located on the upper surface of 
the wing and the leading edge of the wing; under 
conditions of snow + transparent ice and snow + 

icicles. These varying conditions were used to test the 
performance of the RefineBox DETR Detector in 
different real-world scenarios. 

The test results indicate that RefineBox DETR 
achieves good detection results in various real-world 
scenarios under different conditions, reaching a high 
level of accuracy. This demonstrates the model's 
robustness and effectiveness in practical applications, 
particularly in challenging environmental conditions 
encountered in aircraft operations on snow-covered 
aprons. 

Table 3: Application test results. 

Capture images Results 

  

 
 
The results in Table 3 demonstrate the detection 

effectiveness of the RefineBox DETR in practical 
applications. From the results, it is evident that the 
improved RefineBox DETR object detection model 
exhibits strong performance in the application 
scenario of detecting ice and snow on aircraft surfaces, 
achieving high accuracy and recall rates. This 
indicates that the model is capable of reliably 
identifying areas of icing and snow accumulation, 
essential for maintaining aircraft safety and 
operational efficiency. 

4 CONCLUSIONS 

This article aims to enhance the accuracy of the 
DETR model in the application scenario of detecting 
ice and snow on aircraft surfaces by integrating the 
localization optimization network RefineBox with 
DETR. This integration improves the model's 
prediction of bounding boxes, reduces loss values, 
and increases the accuracy of the results. 

A custom dataset of images showing ice and snow 
on aircraft surfaces was created to train and test the 
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metrics of RefineBox DETR. After selecting suitable 
hyperparameters for training, the final results 
demonstrated that RefineBox DETR exhibits higher 
robustness and accuracy compared to the original 
DETR model, proving the effectiveness of the 
improvements. 

To verify the real-world performance of 
RefineBox DETR, it was tested in an engineering 
application on the apron. The testing process involved 
different lighting conditions, shooting angles, aircraft 
skin colours, positions of ice and snow, and ice and 
snow conditions, to highlight RefineBox DETR's 
inclusivity to different environments during practical 
applications. Field test results indicate that RefineBox 
DETR has good environmental inclusivity, high 
detection accuracy, and minimal errors, accurately 
detecting snow, transparent ice, and icicles. 
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