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Abstract: The paper presents an H∞ state feedback type design method for a class of periodic discrete-time stochastic
systems subject to multiplicative white noises. It is shown that the gains of the control law for the considered
problem may be expressed in terms of the solution of a specific system of linear matrix inequalities with
periodic coefficients. The design method is illustrated by an application for the detumbling subsystem of a
cubesat in which a linearized model with parametric modeling uncertainties is considered.

1 INTRODUCTION

The design of the satellites AOCS (Attitude and Or-
bit Control System) is an important direction of re-
search in aerospace applications due to the wide mis-
sion profiles and the specific requirements in their dif-
ferent stages. One of the effective approaches to de-
sign control laws used in such applications is based
on the so-called H∞ type techniques which became
over the last decades a mature design method for
a large number of engineering applications (see e.g.
(Doyle,1989, Skelton, 1998, Zhou, 1999) for theoret-
ical fundamentals) and for instance, (Simplicio, 2016,
La Ballois, 1996, Souza, 2019), for some applications
in aerospace engineering. Early results concerning
the H∞ norm minimization referred to the case when
the controlled system dynamics is approximated by
linear models with constant coefficients. Further, the
H∞ type design methodology was extended to other
classes of dynamic systems, including models with
time-varying parameters, stochastic systems and non-
linear systems (see e.g. (Dragan, 2010, Zhang, 2017,
Coutinho, 2002, Aliyu, 2017)).

In the present paper, an H∞ type control prob-
lem is considered for stochastic discrete-time linear
systems with periodic time-varying parameters cor-
rupted with multiplicative white noises. This class
of systems extend the results presented for instance
in (Lovera, 2000, Lovera, 2002), derived in the ab-
sence of the stochastic terms. The interest for stochas-
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tic models including multiplicative white noise terms
is motivated both for specific applications in which
such terms naturally appear (see e.g. (Gershon, 2005,
Xing, 2020, Avital, 2023)) but also in the representa-
tion of parametric modeling uncertainties (Petersen,
2017). The design approach presented in this paper
aims to determine a state feedback control law ensur-
ing an H∞ performance for systems with time peri-
odic coefficients subject to multiplicative noises. It is
shown that the gains of this H∞ control law depend
on the solution of a specific system of coupled linear
matrix inequalities (LMIs) with periodic coefficients.
The theoretical results are illustrated for the design of
the detumbling subsystem of a cubesat.

Throughout the paper, the following notations will
be used: R denotes the set of real numbers, Z+ is the
set of nonnegative integers, E[·] stands for the expec-
tation, |x| represents the Euclidean norm of the vector
x and P(·) denotes the probability of an event.

2 PROBLEM FORMULATION

Consider the discrete-time stochastic system

x(k+1) = (A0(k)+∑
r
ℓ=1 wℓ(k)Aℓ(k))x(k)

+
(
B10(k)+∑

r
ℓ=1 wℓ(k)B1ℓ(k)

)
u1(k)

+
(
B20(k)+∑

r
ℓ=1 wℓ(k)B2ℓ(k)

)
u2(k)

y1(k) =C(k)x(k)+D(k)u2(k);
y2(k) = x(k), k = 0,1, ...

(1)

where x ∈ Rn denotes the state vector, u1 ∈ Rm1

is the exogenous input, u2 ∈ Rm2 stands for the
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control variable, y1 ∈ Rp1 is the quality output
and y2 denotes the measured output. w(k) =[

w1(k) . . . wr(k)
]T are random vectors which

components wℓ(k), ℓ = 1, ...,r are independent, zero
mean variables on a probability space (Ω,F ,P ) with
supk∈Z+

E[|w(k)|2] < ∞ and E[w(k)wT (k)] = Ir×r for
all k ∈ Z+. Throughout the paper it will be assumed
that all matrices are time-periodic functions with the
positive integerperiod N. A motivation for the consid-
ered model will be given in Section 4 where an appli-
cation for the periodic control law design of a cubesat
detumbling is presented.

Remark 1. In the above stochastic system (1) the
same noises wℓ, ℓ= 1, ...,r were considered in the ex-
pressions of the state and the control matrices. In the
situation when these matrices are perturbed with dif-
ferent independent multiplicative noises, one may de-
fine a vector w obtained by concatenating all noises
in a single vector w and setting accordingly the coef-
ficients Aℓ, Bℓ, ℓ= 1, ...,r.

The problem consists in determining a periodic
state feedback gain F(k), k = 0,1... such that the re-
sulting system obtained with u2(k) = F(k)x(k) is ex-
ponentially stable in mean square (ESMS) and it sat-
isfies for a given γ > 0, the H∞ type condition

∞

∑
k=0

E
[
|y1(k)|2 − γ

2|u1(k)|2
]
< 0 (2)

for all u1 ∈ L2[0,∞;Rm1 ], where L2 denotes the
space of all sequences u1 with ∑

∞
k=0 |u1(k)|2 < ∞.

It is reminded that a discrete-time stochastic system
with time varying coefficients of form x(k + 1) =
(A0(k)+∑

r
ℓ=1 wℓ(k)Aℓ(k))x(k), k ∈ Z+ is ESMS if

there exist α ∈ (0,1) and β ≥ 1 such that E[|x(k)|2]≤
βαk|x0|2 for all x0 ∈ Rn (see e.g. (Morozan, 1997, El
Bouhtouri, 1999)).

3 TIME-PERIODIC H∞ STATE
FEEDBACK CONTROL LAW

The next result which proof may be found in (Mo-
rozan, 1999) is a version of the Bounded Real Lemma
for discrete-time time-varying systems with multi-
plicative noises.

Theorem 1. The following assertions are equivalent
i) The system

x(k+1) = (A0(k)+∑
r
ℓ=1 wℓ(k)Aℓ(k))x(k)

(B0(k)+∑
r
ℓ=1 wℓ(k)Bℓ(k))u(k)

y(k) = (C0(k)+∑
r
ℓ=1 wℓ(k)Cℓ(k))x(k)

+(D0(k)+∑
r
ℓ=1 wℓ(k)Dℓ(k))u(k)

is ESMS and its associated input-output operator has
the norm less than γ;
ii) The system of linear matrix inequalities[

R11(k,k+1) R12(k,k+1)
R T

12(k,k+1) R22(k,k+1)

]
< 0 (3)

where

R11(k,k+1) = ∑
r
ℓ=0

[
AT
ℓ (k)X(k+1)Aℓ(k)

+CT
ℓ (k)Cℓ(k)

]
−X(k)

R12(k,k+1) = ∑
r
ℓ=0

[
AT
ℓ (k)X(k+1)Bℓ(k)

+CT
ℓ (k)Dℓ(k)

]
R22(k,k+1) = −

[
γ2I −∑

r
ℓ=1

(
DT
ℓ (k)Dℓ(k)

+BT
ℓ (k)X(k+1)Bℓ(k)

)]
has a bounded positive definite solution {X(k)}k∈Z+ .
Moreover, if the coefficients are periodic then the sys-
tem (3) has a periodic positive definite solution with
the same period.□

Based on the above theorem, the state feedback
periodic gain solving the H∞ type control problem is
given by the following result.

Theorem 2. If there exist Y (k) ∈ Rn×n, Y (k)> 0 and
Z(k) ∈ Rn×m2 , k = 0,1, ...,N with Y (N) = Y (0) solv-
ing the system of linear matrix inequalities

−Y (k) 0 M (k) N (k)
0 −γ2Im1 B 0

M T (k) BT −Y (k+1) 0
N T (k) 0 0 −Ip1

< 0, (4)

k = 0,1, ...,N −1 where

M (k) :=
[(

Y (k)AT
0 (k)+Z(k)BT

20(k)
)
, . . .

. . . ,
(
Y (k)AT

r (k)+Z(k)BT
2r(k)

)]
N (k) := Y (k)CT (k)+Z(k)DT (k)
B :=

[
BT

10, . . . ,B
T
1r
]

Y (k+1) := diag(Y (k+1), . . . ,Y (k+1)) ,

then the stabilizing state feedback periodic gains for
which the H∞ type condition (2) is fulfilled are given
by F(k) = ZT (k)Y−1(k), k = 0,1, ...N −1.
Proof. For u2(k) = F(k)x(k), the system (1) becomes:

x(k+1) = [A0(k)+B20(k)F(k)
+∑

r
ℓ=1 wℓ (Aℓ(k)+B2ℓ(k)F(k))]x(k)

+(B10(k)+∑
r
ℓ=1 wℓB1ℓ(k))u1(k)

y(t) = (C(k)+D(k)F(k))x(k), k = 0,1, ...

Using Theorem 1 for the above closed loop system,
direct algebraic computations based on Schur com-
plements arguments, give (4) after multiplication of
the equivalent inequality to the left and the right
with diag(Y (k), I, ..., I), where one denoted Y (k) :=
X−1(k) and Z(k) := X−1(k)FT (k).□
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4 CUBESAT DETUMBLING
TIME-PERIODIC CONTROL
LAW

The attitude dynamics of a rigid satellite is expressed
by the known angular momentum equation (see e.g.
(Wertz, 1978, Wie, 1998))

ω̇(t) = −ω(t)× Iω(t)+Tc(t)+Td(t) (5)

where ω ∈ R3 denotes the angular rate expressed in
the body frame, I∈R3×3 is the inertia matrix, Tc ∈R3

stands for the control torques and Td ∈R3 includes the
exogenous disturbances torques. The control torque is
given by the cross product between the geomagnetic
field vector B and the magnetic dipole moment gener-
ated by magnetic coils of the magnetorquer actuator.
The external disturbances are generated by the forces
acting on a satellite in low-earth orbit as gravity gradi-
ent, solar radiation pressure, magnetic torques and air
drag (see e.g. (Wisniewski, 1999, Wallado, 2001)).

The attitude kinematics is parametrized as follows
(Wertz, 1978, Wie, 1998)

q̇(t) = 1
2 W(ω)q(t), (6)

where q ∈ R4 is the quaternion vector with unit Eu-
clidian norm and the skew matrix W ∈ R4×4 has the
expression

W(ω) =

 0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0


in which ωx, ωy and ωz denote the components of the
angular rate ω. An important phase of the satellite
mission after its ejection from the launch vehicle is
the so-called ”detumbling”, consisting in reducing its
angular rate to a value close to zero. A linear ap-
proximation of the dynamics and kinematics equa-
tions (5) and (6) around equilibrium conditions for
the state x := [qT ωT ]T , namely for q = [0 0 0 1]T and
ω = [0 0 0]T , respectively, leads to the following ap-
proximative model with time-varying coefficients

ẋ(t) = Ax(t)+B(t)u(t) (7)

where one denoted by u the magnetic dipole moment
vector generated by the magnetic coils aligned with
the principal inertia axes and where (see e.g. Lovera,
2000, Silano, 2005)

A =

[
∂q̇
∂q

∂q̇
∂ω

∂ω̇

∂q
∂ω̇

∂ω

]
=

[
03×4

1
2 I3×3

04×4 04×3

]
B(t) =

[
04×3
I−1

]
B(b(t))

where ∂q̇
∂q , ∂q̇

∂ω
, ∂ω̇

∂q , ∂ω̇

∂ω
represent the derivatives of the

right hand sides of equations (6) and (5), respectively,
and

B(b(t)) =

 0 bz(t) −by(t)
−bz(t) 0 bx(t)
by(t) −bx(t) 0


in which bx(t), by(t) and bz(t) are time-periodic com-
ponents of the geomagnetic field vector. They may
be measured on board using magnetometers but they
also be determined using the International Geomag-
netic Reference Field (IGRF) models based on the lat-
itude, longitude and altitude of the satellite. In Figure
1, the time variation of the components of the Earth
magnetic field are presented, corresponding to a polar
low Earth orbit (LEO) of a cubesat at 500 km altitude
and 87o longitude.
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Figure 1: Geomagnetic field components for a polar orbit at
500 km altitude and 87o longitude.

These components of the magnetic field may be
approximated by simplified expressions derived us-
ing the Fourier coefficients, for an orbital period T =
90min, as follows

bx(t) = 10−6
(
10.7150+2.4674 sin 2π

90 t
+4.1390 cos 2π

90 t −9.7118 sin 4π

90 t +11.5496 cos 4π

90 t
)

by(t) = 10−6
(
−34927+5.9779 sin 2π

90 t
+42.7726 cos 2π

90 t −1.8465 sin 4π

90 t +1.0177 cos 4π

90 t
)

bz(t) = 10−6
(
1.2491+48.5761 sin 2π

90 t
+20.594 cos 2π

90 t −3.7489 sin 4π

90 t +11.5496 cos 4π

90 t
)
.

For the application presented in Sec-
tion 4, a cubesat with the inertia matrix
I = diag(0.005,0.005,0.002)kg m2 has been consid-
ered, for which the time varying control matrix B(t)
has the expression

B(t) =

 04×1 04×1 04×1
0 200bz(t) −200by(t)

−200bz(t) 0 200bx(t)
500by(t) −500bx(t) 0

 .

One can see that in the above model, the con-
trol matrix B(t) is time periodic with the orbital pe-
riod T . Another aspect taken into account in the
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considered application is the influence of the para-
metric modeling uncertainties. One may represent
such uncertainties using white multiplicative noise
terms. Thus, if for instance, the element B(5,2) which
equals 200bz(t), has a variation of ±10% around its
nominal amplitude b̄52 = 200 due to modeling un-
certainties or to the satellite mass change, then this
uncertainty may be represented as b52 = b̄52 + ξ1(t)
where ξ1 is a Gaussian white noise. Its variance
σ2

ξ1
may be determined using the 3σ rule stating that

P
(
|b52 − b̄52| ≤ 3σξ1

)
≥ 0.997 from which it results

that σξ1 = 6.67. Similarly, for b63 = b̄63 + ξ2(t) and
b71 = b̄71 + ξ3(t), where b̄63 = 200 and b̄71 = 500,
considering the same level of uncertainty ±10%, one
obtains the following representation of the control
matrix Bu(t) with modeling uncertainties

Bu(t) = B(t)+ξ1(t)B1(t)+ξ2(t)B2(t)
+ξ3(t)B3(t)

(8)

where

B1(t) =

 04×1 04×1 04×1
0 200bz(t) −200by(t)
0 0 0
0 0 0



B2(t) =

 04×1 04×1 04×1
0 0 0

−200bz(t) 0 200bx(t)
0 0 0

 .

and

B3(t) =

 04×1 04×1 04×1
0 0 0
0 0 0

500by(t) −500bx(t) 0

 ,

and where the noises have the standard deviations
σξ1 = σξ2 = 6.67 and σξ3 = 11.67, respectively. For
this application, the matrices B2ℓ, ℓ = 0, ...,3 of the
generalized discrete-time model (1) were obtained
by discretization of the above matrices A, B(t) and
Bℓ(t), ℓ = 1,2,3 with a sampling period Ts = 15min.
Taking into account the average magnitude of the dis-
turbances torques (see e.g. (Wisnievski, 1999, Wal-
lado, 2001)), the matrix coefficients of u1(k) in (1)
where considered 10−2 B2ℓ, ℓ = 0, ...,3. As concerns
the quality output, one defined

y1(k) =
[

W1 ω(k)
W2u2(k)

]
with the positive scalar weights W1 and W2. Solv-
ing the system of LMIs (4) one obtained for W1 =
100,W2 = 1 and for an attenuation level γ = 0.5,

the following time-varying gains for an orbital period
T = 90min:

F(1) =

 01×4 −0.0001 0.00301 −0.0011
01×4 −0.0225 0.0001 0.0776
01×4 0.0006 −0.0415 0


F(2) =

 01×4 0 0.0467 −0.0021
01×4 −0.0467 0.0000 0.0017
01×4 0.0008 −0.0007 0


F(3) =

 01×4 −0.0009 0.0438 −0.0031
01×4 −0.0345 0.0009 0.0308
01×4 0.0016 −0.0157 0


F(4) =

 01×4 −0.0059 −0.0403 0.0117
01×4 0.0213 0.0059 0.0410
01×4 −0.0100 −0.0352 0


F(5) =

 01×4 −0.0022 −0.0505 0.0299
01×4 0.0484 0.0022 −0.0188
01×4 −0.0108 0.068 0


F(6) =

 01×4 −0.0080 −0.0435 0.0159
01×4 0.0302 0.0079 0.0336
01×4 −0.0113 −0.0240 0

 ,

corresponding to the moments of time
{0;15;30;45;60;75}min. With the above time-
periodic gains, the following time responses of
the angular rates and of coil’s magnetic dipoles
illustrated in Figure 2, have been obtained. These
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Figure 2: Angular velocities and dipoles moments at the
sampling instants for two orbits.

time-responses indicate the cubesat stabilization with
a reduced control effort together with disturbances
attenuation. The time response performance may be
adjusted by changing the ratio between the weights
W1 and W2 in the quality outputs according with the
AOCS requirements.
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5 CONCLUDING REMARKS

The problem of stable feedback H∞-control of linear
discrete-time systems with periodic coefficients and
corrupted with state dependent noise has been ana-
lyzed and illustrated for a small satellite using only
magnetic coils as actuators. The main result states
that the time-varying optimal state feedback gains are
periodic functions expressed in terms of the solution
of a specific system of linear matrix inequalities. The
theoretical result is used for a detumbling application
of a cubesat subject to parametric modeling uncertain-
ties, aiming to stabilize it with a low control effort.
Further developments will be devoted to synthesis of
time-periodic optimal control laws for satellite forma-
tion.
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