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Abstract: With the increasing demand for high-performance and high-efficiency computing, cloud computing, 
especially serverless computing, has gradually become a research hotspot in recent years, attracting numerous 
research attention. Meanwhile, MapReduce, which is a popular big data processing model in the industry, has 
been widely applied in various fields. Inspired by the serverless framework of Function as a Service and the 
high concurrency and robustness of MapReduce programming model, this paper focus on combining them to 
reduce the time span and increase the efficiency when executing the word frequency counting task. In this 
case, the paper use a MapReduce programming model based on a serverless computing platform to figure out 
the most optimized number of Map functions and Reduce functions for a particular task. For the same amount 
of workload, extensive experiments show both execution time reduces and the overall efficiency of the 
program improves at different rates as the number of map functions and reduce functions increases. This paper 
suppose the discovery of the most optimized number of map and reduce functions can help cooperations and 
programmers figure out the most optimized solutions.

1 INTRODUCTION 

In order to meet the growing demand for computing 
resources and high-end chipsets in real-world 
applications (McGrath et al., 2017; Baldini et al., 
2017), cloud computing technology has attracted 
increasing research interest in recent years, forming 
various classic cloud service models such as 
Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS), and Software as a Service (SaaS). 
However, these models mentioned above rely on high 
levels of professional knowledge, which are costly 
and cannot achieve a balance between management, 
expansion, and cost-effectiveness indicators. In order 
to alleviate the above problems, serverless computing 
has emerged, aiming to reduce the burden of server 
management and save cloud service costs (Vincent et 
al., 2019).  

The basic unit of serverless computation is a 
function. When receiving a user request, the 
serverless platform calls the relevant functions on the 
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platform based on the parameters in the request, such 
as the URL of the function. This service model is 
commonly referred to as Function as a Service 
(FaaS), which is usually paired with the Backend as a 
Service (BaaS). Compared with traditional 
centralized monolithic applications, FaaS services are 
composed of independent functions explicitly 
arranged, which can intuitively represent the business 
logic control and data flow of the application. 
Additionally, serverless computing is much more 
economical and cost-friendly as users no longer need 
to pay for extra idled computing resources, the 
maintenance of used resources as well as the security 
of the used resources. Serverless computing enables 
users to focus more on the logic of their programs. As 
for the maintenance of the backend servers, it is all up 
to the service provider. (McGrath et al., 2017; Jeffrey 
et al., 2004) Serverless computing features more 
scalability and elasticity than traditional local 
computing servers, since the dynamic allocation of 
computing resources makes it possible for users to 
handle sudden surge in workloads and data 
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processing demands. Currently, there are many 
serverless computing platforms that provides state-
of-the-art cloud computing services, such as AWS 
Lambda, Google Cloud, Microsoft Azure, Alibaba 
Cloud etc.  

MapReduce is currently the most popular model 
for processing massive amounts of data, which 
mainly includes four stages: Map, Partition, Shuffle, 
and Reduce. MapReduce is widely used for parallel 
processing across distributed systems and generating 
large-scale datasets. First, it is user-friendly, even for 
beginners, as it conceals the specific intricacies 
involving parallelization, fault-tolerance, optimizing 
locality, and balancing workloads. Second, many 
complex problems in the real world are highly 
expressible in the MapReduce programming model, 
such as word counting, word frequency analysis etc. 
(Baldini et al., 2017) However, MapReduce is often 
constrained by the data transmission method. 
Specifically, due to the need for the mapper to be 
completed as soon as possible, there may be a risk of 
timeout for the mapper while the reducer is still 
working. Therefore, it is not feasible to directly 
transfer data between mappers and reducers. In this 
context, combining serverless and MapReduce 
frameworks shows promising application prospects. 

Inspired by these two cutting-edge and matured 
technologies, this paper focus on combining them to 
reduce the time span and increase the efficiency when 
executing the word frequency counting task. This 
paper uses a MapReduce programming model based 
on a serverless computing platform to figure out the 
most optimized number of Map functions and Reduce 
functions. Though it seemed obvious that the more 
map and reduce functions are implemented, the 
higher the overall efficiency the program may 
achieve. This paper’s goal, however, is to figure out 
the trend at which the overall efficiency is increasing. 
The results indicate that, when executing the same 
amount of workloads, as the number of map functions 
and reduce functions increases, both execution time 
reduces and the overall efficiency of the program 
improves but at different rates. This paper hopes to 
find out the most optimized number of map and 
reduce functions so as to help cooperations and 
programmers figure out the most optimized solutions 
when implementing the MapReduce programming 
model on their tasks and workflows. 

Focusing on above aspects, this paper starts with 
a brief overview of the basic principles of the 
MapReduce programming model, the operating rules 
of serverless computing platforms as well as services 
and the overall framework of the experiment (Section 
2). Then, the paper discusses relevant methodologies 

as well as evaluations and presents the result of the 
experiment conducted by giving in-depth evaluations 
and conclusions based on existing research data and 
results (Section 3). Lastly, the paper discusses current 
drawbacks of the experiment framework used in this 
paper, analyses the strengths and weaknesses of the 
results and envisions possible solutions and new 
research areas based on current experiments (Section 
4). This paper also summarizes in Section 4. 

2 METHOD 

2.1 Revisiting MapReduce and 
Serverless 

In this section, the paper presents a brief overview of 
the basic principles of MapReduce programming 
model as well as the operating rules of the serverless 
computing platform. 

MapReduce. The overall MapReduce 
programming model mainly consists of two 
functions, two phases as well as three categories of 
files. In terms of three categories of files, there are 
input files, intermediate files as well as the output 
files. The input file contains data that needs to be 
processed. The intermediate files contain important 
data that are needed during the MapReduce executing 
process and the output files hold the final result of the 
program. In terms of the two functions and two 
phases, there is the Map function, which relates to the 
Map phase, and the Reduce function, which relates to 
the Reduce phase. The Map function is responsible 
for reading data from the input files and process these 
data into key-value pairs, which are later stored in 
intermediate files. These intermediate files forward 
these key-value pairs to the Reduce function, where 
these key-value pairs are sorted, partitioned and 
processed into final results and are written into the 
output files, which later are available and accessible 
to the user (Jeffrey et al., 2004).  

Serverless. The operating rules of serverless 
computing platform consists of four main stages, 
which are: Event Trigger, Function Execution, 
Function Processing and Response Return. In the 
Event Trigger stage, there is a local client, which runs 
locally on the user’s device. The client triggers an 
event, such as an HTTP request, file upload or a 
message queue. Then, the trigger passes the event to 
the function on the cloud, entering Function 
Execution stage. Once the function on the cloud is 
triggered, the serverless computing platform will 
dynamically allocate and scale the computing 
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resources to start executing the function. In the 
Function Processing stage, codes in functions are 
executed and outputs are generated. During this 
process, the function on the platform will be 
authorized to access and manipulate the storage, 
databases and other related services requested by the 
user in advance. Lastly, in the Response Return stage, 
the function returns the output to the local client of 
the user. The response can be anything, such as 
response data, state updates and notifications in 
various forms etc. Often, the results generated by the 
functions are stored in the storage services provided 
by the serverless computing platform. 

 
Figure 1: The framework of proposed method. 

2.2 Overall Framework 

The main goal of this paper is word frequency 
analysis using MapReduce based on serverless 
computing. To perfectly combine MapReduce 
programming model and serverless computing and 
word frequency analysis altogether, this paper 
implemented the following methods and made 
miniscule changes to the MapReduce programming 
model.  

The entire experiment is firstly conducted with 
controlled variables method. This paper manages to 
analyse the same set of word documents, which are in 
the text document format, but use MapReduce 
frameworks in different parameters. The parameters 
are different in areas such as the number of 
MapReduce functions, the configuration of CPUs and 
RAMs on the serverless network etc. Therefore, 
during the entire process of the experiment, 
performances can be analysed via the changes applied 
to these parameters. 

Secondly, here is the devices used in the entire 
experiment process. As is shown in Figure 1, the 
serverless MapReduce framework of this paper 
contains a local python client, which is deployed in 
PyCharm. This client is responsible for calling 
functions deployed on the serverless platform and 

receiving completion signals once MapReduce 
functions are executed successfully. The serverless 
computing platform used during the experiment is 
Alibaba Cloud Platform. The services this paper uses 
in particular is the Alibaba Cloud Function Compute 
(FC), where the team deploys MapReduce functions, 
and Alibaba Cloud Object Storage Service (OSS), 
where the team stores the files related to this 
experiment temporarily so that any process that 
requires reading and writing files stays on the 
serverless platform, ensuring that data transfer speeds 
between local and cloud does not affect the execution 
time significantly. 

Lastly, the to-be-analysed files this paper uses are 
of the same quality. Each file is roughly about 
1,000,000. It is critical to keep the word count of these 
files roughly the same, as different workloads can 
also contribute to the performance difference of each 
test. 

2.3 MapReduce Functions 

In terms of the miniscule changes to the MapReduce 
functions, this paper customized how Map functions 
read the data. Each Map function in this experiment 
contains a set of parameters, which are “file ids”, 
“number of files” and “index”. These parameters help 
the Map functions read the correct group of files 
stored in the Alibaba Cloud OSS so as to make sure 
that each file is only processed once throughout the 
execution. 

3 EXPERIMENT 

3.1 Experiment Settings 

In the field of modern technology, the improvement 
of computing speed has always been a focus of 
attention for researchers and technical engineers 
(Zhenyu et al., 2023). In order to achieve more 
efficient computing, this paper adopted a new 
strategy in this experiment (Jeffrey et al., 2004), 
which is to use multi-threaded technology to replace 
single threading, in order to optimize computing 
speed. Multi-threading technology, in simple terms, 
means executing multiple tasks simultaneously to 
complete more work at the same time. Compared to 
single threading, multi-threading can complete more 
tasks in a relatively short period of time, thereby 
improving overall computing speed. This technology 
has achieved significant results in the field of 
computer science, especially in processing large 
complex mathematical models, large-scale data 
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analysis, and real-time communication, with 
significant advantages. 

Since this paper aim to investigate the serverless 
MapReduce based on the application of multi-
threading technology to enhancing computing speed, 
the team first analyzed existing single-threaded 
programs and identified the bottleneck parts that 
require optimization in subsequent multi-threaded 
designs. Subsequently, the team devised 
corresponding multi-threaded algorithms and 
conducted detailed analysis and testing on them. 
Throughout the experiment, the team continuously 
adjusted and refined the multi-threading strategy to 
achieve the most significant improvement in 
computing speed. There is an encoding file named 
client written locally on the computer. The team 
found FC in the console and created a function in its 
service. In the Function Services, the team have 
written down the map function and the reduce 
function. 

In the experiment, there were 50 files that were 
used in the experiment. Each of the files contained 
roughly about 1,000,000 words. The files were 
initially uploaded to Alibaba Cloud Object Storage 
Service (OSS) using a local string of code and 
network protocols stored in OSS. Then the team 
create the Mapper functions and Reducer functions in 
advance in Alibaba Cloud Function Compute (FC). 
Each function on the platform is deployed on vCPU 
0.35 with 512MB of RAM configured. Later, the 
team enable pre-prepared client code locally, 
allowing 50 files stored in OSS to be called into 
Alibaba Cloud Function Compute (FC) so as to start 
the program running. 

Previous works (J Jiang et al., 2021; Prasoon et al., 
2024) have shown that it is plausible to evaluate the 
MapReduce programming model and serverless 
computing performance based on their execution 
timespan and memory usage. For one thing, execution 
time is the direct reflection of the performance of the 
program. For another, memory usage implies the 
resource management and allocation during the 
execution, enabling the team to observe the results in 
a clearer way. Furthermore, the team are able to 
optimize the workloads assigned to each function and 
enhance the algorithms simultaneously, therefore 
improving the methods throughout the experiment 
process (Rodrigo et al., 2024; Q Liu et al., 2024).  

Table 1: Model performance comparison under different 
numbers of MapReduce functions (with 50 files). 

Func 
Num  

Average Execution 
Time /ms 

Average RAM 
Usage /MB 

Mapper Reducer Mapper Reducer 
1 40816.58 51624.64 1604.26 1021.02 
2 7716.69 15133.26 821.54 533.82 
5 2455.69 4269.94 351.06 246.82 
10 1464.97 2198.27 194.01 139.54 

3.2 RAM Usage for Different Numbers 
of MapReduce Functions 

The team first quantitatively compared the impact of 
different MapReduce functions on RAM usage, 
whose results are shown in Table 1. In the first case 
of the experiment, the team utilized only one 
MapReduce function. The average execution time of 
the Mapper function was 40816.58ms, the average 
execution time of the Reducer function was 
51624.64ms, and the RAM utilized by the Mapper 
and Reducer amounted to 1021.02 MB and 1604.26 
MB, respectively. In the following case of the 
experiment, two sets of MapReduce functions are 
deployed. The average execution time of the mapper 
function is 7716.69ms. The average execution time of 
the Reducer function is 15133.26ms. The RAM used 
by the Mapper and Reduce is 533.82MB and 
821.54MB. In the third case of the experiment, the 
team use five MapReduce functions. The average 
execution time of the Mapper function is 2455.694ms, 
and the average execution time of the Reducer 
function reached 4269.94ms. The RAMs used by 
Mapper and Reducer are 246.824MB and 
351.066MB. In the last case of the experiment, the 
team use 10 MapReduce functions. The average 
execution time of the Mapper function is 1464.974ms 
and the average execution time of the Reducer 
function reached 2198.27ms. The RAMs used by 
Mapper and Reducer are 139.545MB and194.016MB. 

3.3 Time Cost for Different Numbers 
of MapReduce Functions 

As shown in Figure 2, the results indicate that as the 
number of MapReduce functions increases, the 
average execution time gradually decreases. This 
indicates that in the process of big data processing, 
increasing the number of MapReduce functions 
reasonably can effectively improve the efficiency of 
data processing and reduce execution time (J Cai et 
al., 2023). However, these results also indicate that 
improving the number of MapReduce functions 
aimlessly is not an effective way, since the rates at 
which the execution time is decreasing are dropping. 
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So, the team come to a brief conclusion that when 
configuring the number of MapReduce functions, it is 
best to suit the workload and the existing resources, 
as this way can generate the most ideal result possible 
without consuming too much resources or being too 
costly. 

 
Figure 2: Average Execution Time of MapReduce 
Functions. 

3.4 Comparison for Memory Usage 
and Average Usage Time 

After completing all the experimental work, the team 
focused on the memory usage during the runtime of 
the MapReduce function. As the number of 
MapReduce functions increases in Figure 3, the 
average memory usage also shows a decreasing trend. 
This may be because as the number of functions 
increases, the system can execute tasks in parallel on 
more cores, thereby reducing the memory footprint of 
individual tasks. In addition, by optimizing the 
writing and execution strategies of the MapReduce 
function, the team can further reduce memory usage 
and improve system resource utilization.  

The team analyses the average usage time ratio of 
Mapper and Reducer in each experiment. Through 
comparison, the team found that it cannot be simply 
assumed that as the number of MapReduce functions 
increases, the time consumed by Mapper processing 
data will become longer. During the experiment, the 
team use different numbers of MapReduce functions 
to conduct detailed timing analysis for each 
experiment. The results showed that there were 
certain differences in the proportion of usage time 
between Mapper and Reducer in different 
experiments. This indicates that an increase in the 
number of MapReduce functions does not necessarily 
lead to a decrease in Mapper processing time. 

 
Figure 3: Average RAM Usage of Functions. 

 
Figure 4: Workload Percentage of MapReduce Functions. 

3.5 Impact Analysis for the 
MapReduce Implementation 

As is Figure 4 shown above, the team also explored 
the impact of the internal implementation of the 
MapReduce function on the time ratio of Mapper and 
Reduce usage. By comparing the code 
implementations in different experiments, the team 
found that the optimization of the internal 
implementation of the MapReduce function may 
change the usage time ratio of Mapper and Reduce. 
This means that when increasing the number of 
MapReduce functions, optimizing the internal 
implementation can effectively reduce the processing 
time of the Mapper, thereby improving overall 
computational efficiency. To this end, in order to 
improve overall computing performance, the team 
need to pay attention to data size, internal 
implementation of MapReduce function, and other 
influencing factors, in order to achieve more efficient 
distributed computing in practical applications. 

4 CONCLUSIONS AND FUTURE 
WORKS 

This paper has introduced multi-threaded 
MapReduce framework based on serverless 
computing platforms in order to boost overall 
efficiency of the program as well as minimizing local 
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server maintenance thanks to the user-friendly 
serverless computing platform. When it comes to 
analysing word frequency with MapReduce based on 
serverless platform, the team first identified that as 
the number of MapReduce functions, also referred to 
as thread, increases, the speed at which the program 
is executing increases simultaneously. However, 
there is a peak in the rate at which the speed is 
increasing, meaning that increasing the number of 
MapReduce functions aimlessly is likely to result in a 
waste of computing resources or lead to lower 
efficiency in utilizing the serverless computing 
resources. 
  To this aim, this paper conducted a series of 
experiment of serverless MapReduce in terms of 
MapReduce function numbers and assess the results 
based on the average execution time and average 
memory usage during the execution. The team 
speculated that the rate at which the execution time is 
dropping experiences a major drop and then starts to 
slow down. Therefore, the team come to a conclusion 
that increasing the number of MapReduce functions 
aimlessly does not always contribute to the efficiency 
of the program, and that for different tasks, the 
number of MapReduce functions should be calculate 
respectively and carefully so as to utilize the 
computing resources to its full potential (Prasoon et 
al., 2024). 
  The team also notice that there are some limitations 
when extending this work to real-life applications, 
which mainly comes from the ideal setting that each 
word file has the approximately the same workload. 
Besides, the word frequency analysis task the team 
perform is not universally reliable, as it is a low 
demanding task in terms of computing resources. 
Therefore, furthermore types of tasks are required to 
complete the research. The team’s future work 
includes how to dynamically allocate MapReduce 
functions to different workloads so that for each word 
file, a sufficient number of MapReduce function is 
implemented in order to achieve a better efficiency 
when executing a task that is not evenly distributed 
among files. 
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