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Abstract: This research addresses the critical need for advanced diagnostic methodologies in heart disease, a leading 
cause of mortality worldwide. Traditional diagnostic models, which often analyze genomic, clinical, and 
medical imaging data in isolation, fall short in providing a holistic understanding of the disease due to their 
fragmented approach. Such methods also grapple with significant challenges including data privacy concerns, 
lack of interpretability, and an inability to adapt to the continuously evolving landscape of medical data 
samples. In response, this study introduces an innovative approach known as Deep Multimodal Feature Fusion, 
designed to integrate genomic data, clinical history, and medical imaging into a cohesive analysis framework. 
This method leverages the unique strengths of each data modality, offering a more comprehensive patient 
profile than traditional, one-dimensional analyses. The integration of Explainable Artificial Intelligence with 
Clinical Data Interpretation enhances model transparency and interpretability, crucial for healthcare 
applications. The use of Transfer Learning with Pre-trained Models on medical imaging data and Continual 
Learning for Adaptive Genomics ensures diagnostic accuracy and model adaptability over temporal instance 
sets. Federated Learning for Privacy-Preserving Analysis is employed to address data privacy, allowing for 
collaborative model training without compromising patient confidentiality. Testing across diverse datasets 
demonstrated substantial improvements in diagnostic Precision, Accuracy, Recall, and other metrics, 
indicating a major advancement over existing methods. Practically, it exemplifies the application of advanced 
AI techniques in clinical settings, narrowing the gap between theoretical research and practical healthcare 
solutions. 

1 INTRODUCTION 

The domain of cardiovascular diagnostics stands at a 
pivotal juncture, challenged by the complexities 
inherent in heart disease—the leading cause of 
mortality globally(Ullah et al., 2023). Traditional 
diagnostic paradigms have relied on siloed analyses 
of genomic data, clinical records, and medical 
imaging. This fragmented approach, while 
contributing valuable insights individually, often fails 
to capture the intricate, multifaceted nature of heart 
disease. Recognizing this gap, the advent of 
integrative multimodal genomics heralds a 
transformative shift, aiming to synthesize diverse data 
modalities for a comprehensive understanding of 
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heart disease(Arneson et al., 2017; A. Durge & 
Shrimankar, 2023). 

The necessity for an integrative approach stems 
from the nuanced interaction between genetic 
predispositions and environmental or lifestyle factors 
in the manifestation of heart disease. Genomic data, 
for instance, provides insights into hereditary risks, 
whereas clinical histories and medical imaging (such 
as MRI and CT scans) offer context on the disease's 
progression and anatomical impact. However, the 
integration of these data streams presents significant 
challenges, including but not limited to data privacy 
concerns, the interpretability of complex models, and 
the adaptability of diagnostic tools to evolving 
datasets(Said et al., 2019; Usova et al., 2021). 
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This research introduces the Design of an Iterative 
Method for Deep Multimodal Feature Fusion 
(DMFF), an innovative framework that leverages the 
strengths of genomic data, clinical histories, and 
medical imaging to forge a comprehensive patient 
analysis. This fusion goes beyond mere aggregation, 
employing sophisticated algorithms to extract and 
harmonize features from each modality, thereby 
providing a holistic patient profile that significantly 
enhances diagnostic accuracy. 

Central to enhancing the DMFF model's utility is 
the incorporation of Explainable Artificial 
Intelligence (XAI) (Amann et al., 2022) with Clinical 
Data Interpretation (CDI), which ensures that the 
diagnostic process is transparent and interpretable. 
This integration is crucial in healthcare, where the 
rationale behind diagnostic decisions must be 
understandable to clinicians and patients alike. 
Moreover, the application of Transfer Learning with 
Pre-trained Models (TLP) specifically to medical 
imaging data like echocardiograms exemplifies the 
method's innovative use of existing Artificial 
Intelligence (AI) resources to improve diagnostic 
precision. 

Addressing the dynamic nature of genomic and 
clinical data, the research introduces Continual 
Learning for Adaptive Genomics (CLAG), a method 
ensuring that the diagnostic model remains accurate 
and relevant over time by adapting to new data 
samples. In parallel, Federated Learning for Privacy-
Preserving Analysis (FLPPA) offers a solution to data 
privacy concerns, enabling collaborative model 
training across institutions without compromising 
patient confidentiality(A. R. Durge & Shrimankar, 
2024; Loftus et al., 2022). The iterative design of 
DMFF not only addresses the limitations of 
traditional diagnostic models but also paves the way 
for precision medicine, where personalized treatment 
strategies are informed by a deep, multidimensional 
understanding of heart disease. 

2 REVIEW OF EXISTING 
MODELS FOR GENOMIC 
ANALYSIS 

The exponentially expanding field of heart disease 
diagnostics and treatment has witnessed an 
unprecedented integration of genomic data, machine 
learning algorithms, and imaging techniques. The 
exploration of genetic predispositions, alongside 
environmental and lifestyle factors, has become 
central to understanding and combating this leading 

cause of mortality worldwide(Ahuja et al., 2023; A. 
R. Durge et al., 2022). Despite remarkable progress, 
existing methodologies often grapple with challenges 
such as data integration, interpretability, privacy, and 
adaptability to new data samples. This landscape 
presents fertile ground for innovative approaches that 
leverage multimodal data to provide a holistic 
understanding of heart disease, thus guiding the 
motivation behind the current research. 

Recent studies in biomedical and machine 
learning fields have provided significant insights into 
disease classification, genetic analysis, and novel 
modeling techniques. For instance, (Manduchi et al., 
2022) utilized a tree-based automated machine 
learning approach with biology-based feature 
selection to investigate the genetic factors 
contributing to coronary artery disease. This study 
advanced the understanding of the genetic basis of the 
disease, although its focus on coronary artery disease 
may have overlooked broader cardiovascular 
conditions. In a different study, (Zheng et al., 2022) 
applied a graph-transformer method to classify 
whole-slide images, particularly in lung cancer 
pathology. (Xu et al., 2022)  introduced an innovative 
tissue engineering technique by generating heart 
microtissues in a Möbius strip configuration. This 
novel approach showed promise for advanced disease 
modeling. 

Further studies have explored genetic and 
phenotypic aspects of heart diseases. (Soibam, 2022) 
identified super-enhancers and long noncoding RNAs 
(lncRNAs) during mouse heart development, 
contributing to our understanding of heart 
development and disease. However, this research is 
based on mouse models, and its implications for 
human health need further validation. (Yu et al., 
2022) used machine learning to analyse electronic 
health records (EHR) and genetic data, predicting 
heart failure risk in cancer patients with high 
accuracy. While effective, this study is limited to the 
cancer patient population, leaving its broader 
applicability unexamined. (Wang et al., 2022) 
explored the genetic correlation between coronary 
heart disease and electrocardiogram (ECG) traits, 
suggesting a genetic causality. 

Advanced machine learning techniques have also 
been applied in classification tasks related to heart 
disease. (Bao et al., 2023) utilized diffusion-based 
synthetic image augmentation to improve the 
classification of rare heart transplant rejection events, 
demonstrating enhanced sensitivity in identifying 
such rejections. Despite its success, the study focuses 
solely on heart transplant rejection, with no 
discussion of broader applications. Similarly, (Jose 
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Triny et al., 2023) optimized biomarkers for cancer 
prognosis using microarray-based genomic analysis. 
While this research enhanced the accuracy of disease 
prediction and severity analysis, its relevance to heart 
disease remains uncertain due to its cancer-specific 
focus. 

The literature reviewed provides a foundational 
understanding of current methodologies and their 
limitations, offering a backdrop against which the 
contributions of this research are highlighted. This 
research not only addresses the critical challenges 
identified in the literature but also pioneers a path 
towards personalized, precise, and privacy-
preserving diagnostics in heart disease. 

3 DESIGN OF AN ITERATIVE 
METHOD FOR DMFF IN 
HEART DISEASE 
DIAGNOSTICS UTILIZING 
EXPLAINABLE AI 

To overcome issues of low efficiency & high 
complexity, the proposed model uses integration of 
pre-trained U-Net for segmentation coupled with 
VGG19 for classification process. This delineates a 
novel approach towards diagnosing heart disease 
types using MRI and CT scans. The U-Net 
architecture, initially devised for biomedical image 
segmentation, operates on the principle of a 
convolutional network that is symmetric, facilitating 
precise localization and the use of context in the 
segmentation process. This is augmented by the 
incorporation of a VGG19 model, renowned for its 
depth and simplicity, primarily comprising 3x3 
convolutional layers stacked in increasing depth, 
culminating in three fully connected layers for 
classification. 

As per figure 1, the segmentation process 
begins with the U-Net model, which employs a series 
of convolutional operations to extract features from 
input images. Let I represent the input image and Fl 
the feature map at layer l, the operation within each 
convolutional layer is mathematically represented      
via equation 1, 𝐹𝑙 = 𝜎(𝑊𝑙 ∗ 𝐹(𝑙 − 1) + 𝑏𝑙)                 (1) 

Where, Wl and bl are the weights and biases at layer 
l, σ is the ReLU activation function, and ∗ represents 
the convolution operation. U-Net's architecture 
allows for the capture of context and fine-grained 
details through its contracting and expansive paths, 

respectively. The contracting path follows the typical 
architecture of a convolutional network, involving 
successive convolution and pooling operations, 
thereby compressing the input image into a feature-
rich representation for this process. 

 
Figure 1: Model Architecture of the Proposed Privacy 
Inspired Classification Process. 

The expansive path then employs transposed 
convolutions to project these features back onto the 
pixel space, aiming to reconstruct the segmentation 
map corresponding to the input image samples. This 
process is encapsulated via equation 2, 𝐹𝑙ᇱ = 𝜎(𝑊𝑙ᇱ ⋅ 𝐹(𝑙ᇱ + 1))                  (2) 

Where, Fl′ and Wl′ are the feature maps and weights 
in the expansive path, respectively, and ⋅ signifies the 
transposed convolution operation. Transitioning to 
the classification phase, the segmented images are 
then processed through the VGG19 model, which 
comprises multiple convolutional layers followed by 
fully connected layers. The initial layers of VGG19 
are designed to capture image features such as edges 
and textures, which are then progressively combined 
into more complex patterns in subsequent layers. The 
final classification is achieved through the dense 
layers of the network, where the feature 
representation FL′ obtained from the last 
convolutional layer is transformed into class 
probabilities via equation 3, 
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𝑃( 𝐶 ∣ 𝐹𝐿ᇱ ) = ௘௫௣൫ி௅ᇲ⋅ௐ௖ା௕௖൯ୣ୶୮ ∑(ி௅ᇲ⋅ௐ௖ᇲା௕௖ᇲ)              (3) 

Where, P(C∣FL′) represents the probability of class C 
given the features FL′, Wc and bc are the weights and 
biases corresponding to class C, and the summation 
in the denominator extends over all possible classes. 

The synergy between U-Net's segmentation 
prowess and VGG19's classification capabilities 
enables the precise delineation and categorization of 
heart disease types from MRI and CT scans. Through 
the sequential application of these models, the 
methodology not only ensures the accurate 
segmentation of heart structures but also leverages 
deep learning's feature extraction capabilities to 
classify the segmented images into specific heart 
disease types. This dual-stage process, encapsulated 
by the seamless integration of segmentation and 
classification operations, represents a comprehensive 
approach to diagnosing heart diseases, embodying a 
significant advancement in the application of deep 
learning techniques within the realm of medical 
imaging operations. 

Next, the model aims to classify genomic scans, 
specifically mRNA sequences, into disease types 
employs a sophisticated process combining Single 
Nucleotide Variant (SNV) analysis with a 1D 
Convolutional Neural Network (CNN) comprising 20 
layers. This methodological framework is pivotal for 
deciphering the complex genomic underpinnings of 
heart diseases, leveraging the granular specificity of 
SNVs mutations that occur at a single nucleotide 
position in the genome, which is instrumental in 
disease classification operations. 

The classification process initiates with the 
extraction of SNVs from the genomic samples. Let S 
represent a sequence of nucleotides, where S={s1,s2
,...,sn} and each si represents a nucleotide (A, C, G, 
or T) for different use cases. The detection of SNVs 
within these sequences is formalized as identifying 
positions i where 𝑠𝑖 ≠ 𝑠𝑖′, with si′ representing the 
corresponding nucleotide in a reference sequence 
process. This comparison yields a binary sequence 
B={b1,b2,...,bn}, where bi=1 if an SNV is detected at 
position i and bi=0 otherwise. 

Following SNV extraction, the binary sequence B 
is input into the 1D CNN, which is designed to 
capture and learn patterns associated with specific 
heart disease types. The architecture of the 1D CNN 
is composed of convolutional layers that perform 
feature extraction, followed by pooling layers that 
reduce dimensionality, and fully connected layers that 
accomplish the classification task. The convolutional 

operation in the k-th layer is mathematically via 
equation 4, 𝐹𝑘 = 𝜎(𝑊𝑘 ∗ 𝐵 + 𝑏𝑘)                    (4) 

Where, Fk represents the feature map produced by 
layer k, Wk and bk are the layer's weights and biases, 
respectively, σ is the ReLU activation function, and ∗ 
symbolizes the convolution operation. 

The depth of the network, with its 20 layers, 
allows for the extraction of increasingly abstract 
features from the input sequence. In this context, the 
depth encompasses multiple convolutional layers, 
each followed by an activation function, defined via 
equation 5, 𝜎(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                       (5) 

This enables the model to introduce non-linearity 
into the model. Pooling layers interspersed among the 
convolutional layers serve to reduce the spatial size 
of the representation, thereby decreasing the number 
of parameters and computation in the network. The 
max pooling is represented via equation 6, 𝑃𝑘 = 𝑚𝑎𝑥(𝐹(𝑘, 𝑖: 𝑖 + 𝑝))                (6) 

Where, Pk is the pooled feature map, 𝐹(𝑘, 𝑖: 𝑖 + 𝑝) 
represents a segment of the feature map Fk, and p is 
the pooling size for this process. 

The culmination of the convolutional and pooling 
layers is followed by one or more fully connected 
layers, which integrate the high-level features 
extracted by the preceding layers for the purpose of 
classification. The operation in a fully connected 
layer is expressed via equation 7, 𝐶𝑗 = 𝜎(𝑊𝑗 ⋅ 𝐹𝐿 + 𝑏𝑗)                     (7) 

Where, Cj represents the output of the j-th fully 
connected layer, FL is the flattened feature map from 
the last convolutional or pooling layer, and Wj and bj 
are the weights and biases of the fully connected 
layers.  

Finally, the classification output is generated 
through a softmax layer, which converts the logits 
from the fully connected layer into probabilities for 
each heart disease type. The softmax function is 
defined via equation 8, 𝑃( 𝑐𝑖 ∣ 𝐶 ) = ௘஼௜∑௘஼௝                        (8) 

Where, P(ci∣C) represents the probability of class ci 
given the output vector C, and Ci is the logit 
corresponding to class ci sets. Through this intricate 
process of SNV extraction and subsequent pattern 
learning via a deep 1D CNN, the proposed 
methodology adeptly classifies genomic samples into 
specific heart disease types. The combination of 
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precise genetic mutation identification with advanced 
feature extraction and classification techniques 
represents a significant leap forward in the domain of 
genomic-based heart disease diagnostics, offering a 
nuanced and highly effective tool for understanding 
and combating these conditions. 

Next, the integration of XAI with CDI represents 
a paradigm shift, enhancing the transparency and 
interpretability of complex models used for analyzing 
classified scans and genomic samples. A cornerstone 
of this integration is the application of Gradient-
weighted Class Activation Mapping (GradCAM), a 
technique that provides visual explanations for 
decisions made by CNNs, thereby elucidating the 
model's focus on specific features within the input 
data that influenced its predictions (Selvaraju et al., 
2020).The GradCAM process commences by 
identifying the feature maps generated by the final 
convolutional layer of the CNN, which are 
instrumental in the classification decision. Let Ak 
represent the k-th feature map in the final 
convolutional layer, where k ranges from 1 to K, with 
K being the total number of feature maps in that layer. 

The importance of each feature map Ak towards a  
specific class c is determined by calculating the 
gradient of the score for class c (represented as yc) 
with respect to the feature map activations. This 
gradient, averaged across the width and height 
dimensions (indexed by i and j, respectively), yields 
the neuron importance weights αkc, which is formally 
expressed via equation 9 𝛼𝑘𝑐 = ଵ௓ ∑∑ డ௬௖డ஺௜௝௞                         (9) 

Where, Z represents the total number of units in the 
feature map, and డ௬௖డ஺௜௝௞  signifies the gradient of the 
class score with respect to each unit of the feature 
maps. The next step involves computing the weighted 
combination of forward activation maps, followed by 
a ReLU function to obtain the GradCAM heatmap, 
LGradCAMc. This heatmap highlights the regions of 
the input image most influential for the model’s 
prediction of class c. Mathematically, LGradCAMc is 
derived via equation 10, 𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝑐 = 𝑅𝑒𝐿𝑈(∑𝛼𝑘𝑐 ∗ 𝐴𝑘)         (10) 

The application of the ReLU function ensures that 
only features with a positive influence on the class of 
interest are visualized, thereby focusing on the 
regions of the input that contribute most significantly 
to the model's predictions. For genomic samples, the 
interpretation via GradCAM adapts to the 1D nature 
of the data samples. Although originally designed for 
2D images, the core principle of highlighting 

influential regions is applied to genomic sequences by 
visualizing the segments of the sequence that led to 
specific classifications. This requires adjusting the 
GradCAM process to handle 1D convolutional 
outputs, yet the foundational equations remain 
applicable, demonstrating the method's versatility for 
clinical use cases. The outcome of the GradCAM 
process is a set of visual heatmaps that is 
superimposed on the original medical scans or 
genomic sequences, providing clinicians and 
researchers with intuitive visual cues about the 
regions or segments most critical to the model’s 
diagnostic decisions. Furthermore, by revealing the 
model's focus areas, GradCAM facilitates the 
identification of potential biases or errors in the 
model's reasoning, enabling continuous refinement 
and improvement of the diagnostic tool. 

The model initiates an FLPPA Mechanism, which 
stands at the forefront of innovative methodologies 
designed to safeguard patient confidentiality while 
facilitating collaborative model training across 
disparate healthcare entities. The essence of FLPPA 
is to decentralize the learning process, thereby 
ensuring that sensitive patient data remains within the 
confines of its origin, such as a hospital or a clinical 
laboratory, while still contributing to the collective 
intelligence of a global model. At the core of the 
FLPPA process, the interaction between the local and 
global models is governed by a series of mathematical 
operations designed to optimize model performance 
while preserving privacy. Let Mg represent the global 
model, and Mli represent the local model associated 
with the i-th participant. The global model is 
initialized and disseminated to all participants, who 
then adapted this model based on their local datasets, 
Di, through a series of training epochs. The update 
from each local model, ΔMli, is represented by the 
difference between the parameters of the locally 
updated model and the initial global model 
parameters, formalized via equation 11, ΔMli = Mlinew − Mg                   (11) 

Each local model's update is then securely 
transmitted to a central server, where an aggregation 
algorithm, typically Federated Averaging (FedAvg), 
is employed to update the global model. The 
aggregation process is mathematically expressed via 
equation 12, 𝑀𝑔𝑛𝑒𝑤 = 𝑀𝑔 + 𝜂 ∑ ௡௜ே  𝛥𝑀𝑙𝑖ே௜ୀଵ             (12) 

Where, N is the total number of participants, ni is 
the size of the i-th local dataset, and η is a learning 
rate parameter that influences the extent to which 
local updates affect the global model.  
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To further enhance privacy, Differential Privacy 
(DP) techniques are integrated into FLPPA, 
introducing stochastic noise to the model updates 
before aggregation. This is represented via equation 
13, 𝑀𝑙𝑖𝐷𝑃 = 𝛥𝑀𝑙𝑖 + 𝑁(0, 𝜎ଶ𝐼)               (13) 

Where, N(0,σ2I) represents the addition of noise 
drawn from a Gaussian distribution with mean 0 and 
variance σ2, and I is the identity matrix corresponding 
to the dimensions of the model parameters. 

The iterative nature of FLPPA allows for 
continuous refinement of the global model, with each 
cycle of local training and aggregation bringing the 
model closer to optimal performance. The 
convergence of the global model, Mg, is evaluated 
through a loss function, L(Mg, D), where D 
represents the aggregated dataset from all 
participants.  The objective is to minimize this loss 
function, which is represented via equation 14, 𝑚𝑖𝑛𝐿(𝑀𝑔, 𝐷) = ଵே ∑ 𝐿(𝑀𝑔, 𝐷𝑖)ே௜ୀଵ            (14) 

The security and privacy of the FLPPA process 
are bolstered by encryption protocols during the 
transmission of model updates, ensuring that data 
remains confidential and secure against potential 
breaches. Encryption is modeled as a function  
E(ΔMli), where the encrypted update is decrypted by 
the central server before aggregation. Upon receiving 
the aggregated and enhanced global model, 
participants apply the XAI results to this model to 
generate privacy-preserved insights for clinical 
inference operations. This application involves 
mapping the GradCAM interpretability layer onto the 
global model to elucidate decision- making processes 
without exposing sensitive data samples. The final 
output, privacy-preserved results, embodies the 
culmination of collaborative learning and 
interpretability, ensuring that stakeholders can glean 
actionable insights with the assurance of patient data 
privacy. 

4 RESULT ANALYSIS 

The experimental setup for validating the proposed 
method was meticulously designed to assess its 
performance comprehensively across multiple 
datasets and samples. This section outlines the key 
components of the experimental setup, including the 
datasets utilized and training parameters. 
 

4.1 Datasets 

The experimental evaluation was conducted on three 
diverse datasets, each representing a distinct aspect of 
heart disease: 

Genomic Dataset (https://cardiodb.org/):  
This dataset comprises mRNA expression profiles 
obtained from a cohort of patients diagnosed with 
various forms of heart disease. It includes genomic 
features such as gene expression levels, SNVs, and 
gene-disease associations. 

Clinical Dataset (https://www.kaggle.com/datasets 
/sulianova/cardiovascular-disease-dataset):  
The clinical dataset consists of patient demographic 
information, medical history, and diagnostic records 
obtained from electronic health records (EHRs) and 
clinical databases. This dataset provides crucial 
context and patient-specific information for 
enhancing diagnostic accuracy. 

Imaging Dataset(https://www.kaggle.com/datasets/ 
rahimanshu/cardiomegaly-disease-prediction-
using-cnn): 
The imaging dataset contains a collection of MRI and 
CT scans of patients' hearts, capturing detailed 
structural and anatomical information. These imaging 
modalities offer valuable insights into cardiac 
morphology and pathology. 

4.2 Training Parameters 

The model was trained using the following 
parameters: 
Batch Size: 32 
Learning Rate: 0.001 
Optimizer: Adam optimizer with momentum (β1 = 
0.9, β2 = 0.999) 
Loss Function: Binary cross-entropy loss for 
classification tasks 
Regularization: L2 regularization (weight decay = 
0.001) to prevent overfitting. 

4.3 Used Values 

Genomic Dataset: 10,000 samples with 20,000 gene 
expression features. 
Clinical Dataset: 5,000 patient records with 
demographic information and medical history. 
Imaging Dataset: 2,000 MRI and CT scans with 
256x256 pixel resolution.  

The paper  addresses the problem of disjoint 
datasets about different patients through an 
innovative data fusion process. In this regard, the 
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DMFF-XAI model presented here comes up with a 
multi-modal integration framework that can handle 
and align the heterogeneous datasets even in the 
scenario when the data source is multiple.  

In this results section of the study, the 
performance of the proposed model DMFF-XAI is 
meticulously compared against three established 
methods: Tree based Pipeline Optimization Tool 
(TPOT) (Manduchi et al., 2022), Empirical Fuzzy 
Multiobjective Multifactor Dimensionality 
Reduction (EFMOMDR) and Graph Transformer 
(GT) (Zheng et al., 2022).  The comparative analysis 
is encapsulated in four figures, each elucidating 
different facets of performance metrics including 
Accuracy, Precision, Recall, Specificity, AUC and 
Computational efficiency. 

Figure 2 showcases the superior Accuracy and 
Precision of DMFF-XAI over the referenced 
methods. The enhanced Accuracy (94.5%) and 
Precision (93.8%) of DMFF-XAI underscore its 
efficacy in correctly identifying and categorizing 
heart disease types, significantly outperforming the 
comparative models. This improvement is attributed 
to the model's ability to synergistically integrate 
multi-modal data, leveraging the strengths of 
genomic, clinical, and imaging data to provide a more 
nuanced and comprehensive analysis. 

 

 

Figure 2: Diagnostic Accuracy and Precision. 

In figure 3, DMFF-XAI demonstrates a 
remarkable Recall (95.2%) and Specificity (94.1%), 
indicating not only its proficiency in identifying true 
positive cases but also in minimizing false positives. 
This is particularly crucial in medical diagnostics, 
where the cost of false negatives is high. The DMFF-
XAI's performance in these metrics reflects its 
robustness and reliability in clinical settings. 

 
Figure 3: Recall and Specificity. 

Figure 4 presents the AUC values, with DMFF-
XAI achieving an AUC of 0.961, surpassing the 
comparative methods. This high AUC value implies 
that DMFF-XAI possesses a superior ability to 
discriminate between the disease classes across all 
possible thresholds, highlighting its effectiveness in 
varying clinical scenarios. 

 
Figure 4: Area under the curve(AUC). 

Table 1 below evaluates the Computational 
efficiency of DMFF-XAI against the referenced 
methods. Despite its sophisticated integration of 
multi-modal data and the added complexity of 
explainable AI components, DMFF-XAI exhibits 
competitive training and inference times. The 
relatively short training time (6.5 hours) and swift 
inference time (0.45 seconds) are indicative of the 
model's optimized architecture and algorithmic 
efficiencies, making it viable for real-world 
applications where time is of the essence. 

 
 

82
84
86
88
90
92
94
96

Accuracy (%) Precision (%)

Accuracy and Precision

DMFF-XAI TPOT EFMOMDR GT

80
82
84
86
88
90
92
94
96

DMFF-XAI TPOT EFMOMDR GT

Recall and Specificity

Recall (%) Specificity (%)

0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96
0,98

DMFF-XAI TPOT EFMOMDR GT

AUC
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Table 1: Computational Efficiency. 

Model Training Time 
(hrs) 

Inference Time 
(sec) 

DMFF-XAI 6.5 0.45 

TPOT 8.2 0.67 

EFMOMDR 7.9 0.62 

GT 7.4 0.59 
 

The results obtained collectively illustrate the 
significant performance enhancements achieved by 
DMFF-XAI. Its ability to deliver higher accuracy, 
precision, recall, and specificity, alongside 
impressive AUC values and computational 
efficiency, underscores the model's potential to 
revolutionize heart disease diagnostics. These 
advancements highlight the critical role of integrating 
multimodal data and explainable AI to improve 
diagnostic outcomes and patient trust in automated 
systems. 

4 CONCLUSION AND FUTURE 
SCOPE 

In conclusion, the research presented herein 
introduces a groundbreaking method, DMFF-XAI, 
which significantly advances the domain of heart 
disease diagnostics. Through a sophisticated 
integration of multimodal data—encompassing 
genomic information, clinical histories, and medical 
imaging—coupled with the transparency afforded by 
explainable AI, DMFF-XAI has demonstrated 
superior performance across a range of critical 
metrics when compared to existing methodologies. 

 The empirical results underscore the efficacy of 
DMFF-XAI, highlighting its enhanced diagnostic 
accuracy, precision, recall, specificity, and 
computational efficiency. Notably, the model 
achieved a diagnostic accuracy of 94.5% and a 
precision of 93.8%, outperforming referenced 
methods by a substantial margin. Such improvements 
are pivotal, particularly in the realm of heart disease, 
where early and accurate diagnosis can significantly 
influence patient outcomes. The integration of 
Explainable AI not only augments the model's 
interpretability but also fosters a greater degree of 

trust among clinicians and patients alike, ensuring 
that the diagnostic process is both transparent and 
accountable. 

Looking to the future, the scope for extending and 
refining DMFF-XAI is vast. One immediate avenue 
of exploration is the application of this model to other 
complex diseases, where the integration of 
multimodal data could unlock new insights and 
diagnostic capabilities. Additionally, the potential for 
incorporating real-time data, such as from wearable 
health devices, into the DMFF-XAI framework could 
further enhance its predictive accuracy and utility in 
ongoing health monitoring and preventive medicine. 
DMFF-XAI sets a new benchmark for future research 
and development, promising to revolutionize the 
landscape of medical diagnostics and patient care use 
cases. 
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