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Abstract: This paper evaluates the effectiveness of different feature importance algorithms employed on a neural net-
work, focused on target prediction tasks with varying data complexities. The study reveals that the feature
importance algorithms excel with data featuring minimal correlation between the attributes. However, their
determination considerably decreases with escalating levels of correlation, while the inclusion of irrelevant
features has minimal impact on determination. In terms of predictive power, DeepLIFT surpasses other meth-
ods for most data cases, but falls short in total infidelity. For more complex cases, Shapley Value Sampling
outperforms DeepLIFT. In an empirical application, Integrated Gradients and DeepLIFT demonstrate lower
sensitivity and lower infidelity, respectively. this paper highlights interesting dynamics between predictive
power and fidelity in feature importance algorithms and offers key insights for their application in complex
data scenarios.

1 INTRODUCTION

While machine learning techniques, particularly neu-
ral networks, have demonstrated tremendous poten-
tial across various applications, their adoption in aca-
demic research has been hindered by their ”black
box” nature (Castelvecchi, 2016). Despite their con-
siderable predictive power, these models often have
non-transparent functional forms. This is especially
challenging in fields like economics, finance, and so-
cial sciences, where understanding the relationships
between variables is crucial (Molnar, 2020). This
study aims to address this gap by investigating the ef-
fectiveness of feature importance methods in provid-
ing interpretable insights for machine learning mod-
els. Specifically, it contributes to the literature by as-
sessing these methods in a controlled simulation with
known ground truth and comparing their performance
in an empirical case study. By doing so, it seeks to
enable both academic researchers and industry prac-
titioners to interpret machine learning models and ex-
plain their predictions in understandable terms. The
opacity of machine learning models has driven re-
search in explainable machine learning (XML) and
explainable artificial intelligence (XAI). Feature im-

a https://orcid.org/0009-0005-0031-8355

portance methods, developed to calculate the signifi-
cance of individual features, have gained popularity,
especially in image analysis and pattern recognition.
However, a thorough examination of their explana-
tory power in economics and finance is lacking. This
study’s findings are crucial for advancing the inter-
pretability of machine learning in these domains by
highlighting strengths, weaknesses, and possible pit-
falls of various feature importance methods..

2 LITERATURE REVIEW

Using methods for explainability and interpretability
is widespread in the current research literature — this
subsection mentions the most relevant works. There
is a plethora of feature importance methods for neu-
ral networks and machine learning models in gen-
eral. Examples include Integrated Gradients (Sun-
dararajan et al., 2017), Shapley Additive Explana-
tions (Lundberg and Lee, 2017), Local Interpretable
Model-Agnostic Explanations (Ribeiro et al., 2016),
and Deep Learning Important FeaTures (Shrikumar
et al., 2017). Additional measures include RelA-
Tive cEntrality to prioritise candidate genetic variants
(Crawford et al., 2019). This framework was also ex-
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tended for highly collinear predictors (Ish-Horowicz
et al., 2019). Applications of feature importance
methods and neural networks in the fields of eco-
nomics and finance are widespread. Convolutional
neural networks (CNN) have been shown to be effec-
tive methods when it comes to financial time-series
prediction tasks (Chen et al., 2016). In the field of
feature importance, comparisons of feature selection
methods based on importance calculations for solv-
ing classification problems in finance exist (Xiaomao
et al., 2019). Research in finance also started to incor-
porate feature selection for financial stress predictions
(Liang et al., 2015). However, the current literature is
suffering from an interesting knowledge gap. Specifi-
cally, it is assumed that the feature importance attribu-
tion appropriately reflects the true underlying causal
link between the input features and the output predic-
tion. However, in empirical data, the true underlying
relationships between the target and the features are
generally not observable, and most of the time com-
pletely unknown. Therefore, feature importance at-
tributions are necessarily only approximations of the
underlying relationships. To gauge the relative deter-
mination and predictive power of feature importance
attribution, further research is therefore necessary. In
this paper, a synthetic data generating process (DGP)
is used to test various feature importance methods in
terms of predictive power, infidelity, and sensitivity.
This paper thus provides a comprehensive analysis
of the predictive power of various feature importance
methods. This paper also closes a methodological gap
by offering a comparative setup to justify the chosen
importance methods.

3 METHODS FOR FEATURE
IMPORTANCE ATTRIBUTION

This section provides an overview over some of the
most important feature importance attributions cur-
rently in use. Subsection 3.1 provides a general in-
troduction to the methodology, while Subsection 3.2
highlights the specific methods used in this study.
Subsection 3.3 briefly discusses limitations and draw-
backs.

3.1 General Overview

Feature importance methods are tools used to mea-
sure how much influence each feature in the data has
on the model’s predictions. This subsection briefly
highlights general concepts. More in-depth analyses
and reviews can be found in the surrounding litera-
ture (Gevrey et al., 2003), which reviews and com-

Table 1: Importance attribution method overview can gen-
erally be categorised by model-agnosticism and mechanism
of importance computation.

method agnosticism mechanism
IG no gradient

GSHAP yes perturbation
(gradient-boosted)

LIME yes perturbation
DeepLIFT no gradient-like

SVS yes perturbation

pares different feature selection methods, including
those based on neural networks, decision trees, and
regression models. Since this study is concerned with
(deep) neural networks, neural-network specific as
well as model-agnostic importance attribution meth-
ods are introduced. Feature importance methods
are divided into backward-based and forward-based
methods. Forward-based methods move from the in-
put to the output through the neural network, while
backward-based methods move backwards from the
output to input to compute importance. Forward-
based methods compute the importance of a feature as
the difference in the output between a trained model
where the feature is present versus a trained model
where the feature is missing. This can be under-
stood as a leave-one-out calculation of importance.
Backward-based methods measure the importance of
a feature through the gradient (or a gradient-similar
measure) of the output with respect to the inputs. Sub-
section 3.2 briefly introduces the relevant methods
and their theoretical frameworks.

3.2 Method Overview

The selected methods for this study are Integrated
Gradients (IG), GradientSHAP (GSHAP), Local In-
terpretable Model-Agnostic Explanations (LIME),
ShapleyValueSampling (SVS), and DeepLIFT. They
were chosen due to their concept heterogeneity and
popularity in previous applications. The follow-
ing paragraphs briefly discuss their methodological
frameworks.

IG. IG was proposed as a framework for interpret-
ing the predictions of deep neural networks by assign-
ing attribution scores to input features (Sundararajan
et al., 2017). IG back-propagates and calculates im-
portance through gradients. Assume that f : Rd → R
is a function that represents a neural network, x is the
input at hand, and x0 is a baseline input. In terms of
a single observation and considering the straight line
(in Rn) from the baseline x0 to the input x, one can
compute the gradients at all points along the path. In-
tegrated gradients are obtained by integrating over the
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computed gradients. The integrated gradient IGi(x)
along the ith dimension for a single observation input
x and baseline x0 is defined as(

xi − x0
i
)
·
∫ 1

0

∂ f
(
x0 +α ·

(
x− x0

))
∂xi

dα, (1)

where ∂F(x)
∂Xi

is the gradient of f (x) along the ith feature
dimension (Sundararajan et al., 2017).

LIME. LIME is a model-agnostic method that of-
fers local explanations for the prediction of any clas-
sifier (Ribeiro et al., 2016). LIME learns an inter-
pretable model around the prediction with the goal of
faithfully replicating the classifier’s behaviour in the
local region. The attribution method defines an expla-
nation model g ∈ G in order to explain the function f ,
where G is a class of potentially interpretable models.
LIME then produces a local explanation obtained by

ξ(xi) = argmin
g∈G

L ( f ,g,πxi)+Ω(g). (2)

L is a measure of how unfaithful a simplified expla-
nation model g is in explaining the function f in the
neighbourhood πxi and Ω(g) is a measure of com-
plexity of the explanation model. LIME can be used
with different model classes G, fidelity functions L ,
and complexity measures Ω. LIME is designed to be
model-agnostic and therefore does not make any as-
sumptions about f . Furthermore, it is a local method,
because it computes the importance of a feature with
respect to a prediction on a single observation. LIME
can also be aggregated to create a global understand-
ing of feature importance, as will be shown in Sec-
tion 4.6.

DeepLIFT. DeepLIFT was introduced as a tech-
nique to decompose the output prediction of a neu-
ral network by back-propagating the contributions of
all neurons in the network to every feature of the input
(Shrikumar et al., 2017). It assigns contribution C∆xi∆t
scores based on difference-from-reference neuron ac-
tivations. As described previously, reference activa-
tions are synonymous to baseline activations. For the
feature along the ith feature dimension, the difference-
from-reference between observation x and the refer-
ence x0 is denoted by by ∆xi. The difference in the
neuron output is given as

∆t = t − t0, (3)

where t is the activation of a neuron at x and t0 is the
reference activation of the neuron at x0. DeepLIFT
requires completeness of the form

n

∑
i=1

C∆xi∆t = ∆t, (4)

indicating that the sum of attributions must be
equivalent to the difference-from-reference activa-
tion. DeepLIFT is not model-agnostic because it is
only applicable to neural networks.

SHAP. SHAP is a forward-based importance
method that computes importance using perturbations
and differences in model outputs (Lundberg and Lee,
2017). SHAP is based on Shapley values from coop-
erative game theory, and it has several desirable theo-
retical properties. SHAP assigns importance by train-
ing two different models, one with the feature present
fS∪{d} and one with the feature withheld fS. It then
compares predictions from the two models

fS∪{d}
(
xS∪{d}

)
− fS (xS) . (5)

Since the effect of one feature depends on other fea-
tures in the set S, the difference described before-
hand is computed for all possible subsets S ⊆ F\{d},
where F is the complete set of all features. The Shap-
ley values φi are a weighted average of all possible
differences

φi = ∑
S⊆F\{d}

|S|!(|F |− |S|−1)!
|F |!

·
[

fS∪{d}
(
xS∪{d}

)
− fS (xS)

] (6)

and used as a proxy for feature importance. Due to the
computational complexity of Shapley values, multiple
approximations and boosted methods have been intro-
duced. Shapley Value Sampling (SVS) (Strumbelj and
Kononenko, 2010) is a sampling-based approach to
the calculation of SHAP that reduces computational
burden (Castro et al., 2009). In this study, it is used as
a proxy for SHAP values. GradientSHAP (GSHAP)
is an extension of the original SHAP method. It cal-
culates the gradient of outputs with respect to a cho-
sen baseline and input observation. The SHAP val-
ues can then be estimated using the expected values
of these gradients times the difference between inputs
and baselines.

3.3 Limitations, Drawbacks and
Extensions

Both forward-based and backward-based attribution
methods suffer from drawbacks and limitations. Gen-
erally speaking, all methods require baselines to cal-
culate the importance attribution of features, where
the baseline represents the normal or typical be-
haviour of the model. These baselines are crucial for
the calculation of importance attribution and must be
chosen carefully. Previous research has explored pos-
sible (dis-)advantages of different baselines for im-
age analysis (Sturmfels et al., 2020). Backward-based
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methods are limited by multiple issues. First, they
struggle with some activation functions of neural net-
works, for example the ReLu. ReLu zeroes out gradi-
ents which makes it hard to approximate importance.
Additionally, gradient-based methods often struggle
with modelling saturation, meaning that once a fea-
ture reaches a certain threshold where its importance
to the target stays the same, it may incorrectly be
given an importance score of zero. Forward-based
methods can be computationally expensive because
they require training of the model for every possible
subset of features. Sampling mechanisms, i.e. SVS,
or boosting procedures such as GradientSHAP may
be reduce the computational burden. However, the
analysis of high-dimensional still introduces signif-
icant computational burden. Additionally, forward-
based methods generate an out-of-distribution (OOD)
problem for the neural network because they force the
model to extrapolate it to a point of the multivari-
ate distribution that does not naturally occur in the
data. Finally, forward-based methods have from the-
oretical constraints. For example, SHAP assumes that
features are independent for the calculation of feature
importance. This is a strong assumption in the case
of a real-world application that is criticised in (Kumar
et al., 2020).

4 EXPERIMENTAL SETUP

This section explains the setup for the simulation
study. Subsection 4.1 elaborates on the general setup,
while Subsections 4.2, 4.3, and 4.4 discuss specific
details of the DGP, the neural network, and the impor-
tance attribution methods. Subsection 4.6 describes
the performance measurement for the synthetic and
empirical data.

4.1 General Setup

The setup of the simulation study in this paper con-
sists of three steps. In the first step, synthetic data
is generated from a pre-specified DGP. In the second
step, the neural network is trained on the synthetic
data. The third and last step consists of the computa-
tion of the importance attribution and the analysis of
determination. The goal of the data generation is to
create a data set where the underlying characteristics
are known in order to evaluate how well the impor-
tance attribution performs. Table 2 shows the differ-
ent cases of the DGP. The process for generating syn-
thetic data starts by creating a sample of features X
and a discriminator D as the underlying causal rela-
tionship between X and Y . A more detailed explana-

tion of the feature creation is found in Subsection 4.2.
The target variable is created as a noisy linear combi-
nation of the discriminator D and the features sample
X, formulated as

T = D ·X+ ε, (7)

where D is a vector of random integers and

ε ∼ N
(
µ̂T ,c2

σ̂
2
T
)
,

where c is a scaling factor for the variance of the
Gaussian noise term. The scaling factor is set to
c = 0.4. This level of noise in the DGP leads to a true
R2 of between 0.8 and 0.9, which is an appropriate
level of disturbance in the data, especially considering
that additional disturbances such as marginal transfor-
mations as well as spurious and irrelevant features are
added. The discriminant D is sampled from a discrete
uniform distribution U{−10,10}. This means that the
features with a negative (positive) discriminant coeffi-
cient have a negative (positive) influence on the target
T . To create regression targets, T is transformed us-
ing a logit transformation of the form

flogit(ti) = yi =
eti

1+ eti
∀i ∈ {1, . . . ,n}, (8)

to map the target to [0,1]. In order to introduce non-
linearity to the marginal distributions of the features,
the generated sample are transformed using a quan-
tile transformation of an arbitrary distribution. After
the target is created using the combination mentioned
in Equation (8), the features are transformed using a
column-wise quantile transformation

F−1
X j

(X j) =U j ∀ j ∈ {1, . . . ,m} (9)

where F−1
Xi

is the inverse of the row-wise cumula-
tive distribution function. This maps the normally-
distributed variables to [0,1]. Afterwards, the stan-
dard uniform sample is transformed by applying a
transformation on U such that

X j = FX j(U j) ∀ j ∈ {1, . . . ,m}. (10)

These two steps are a common procedure in sim-
ulation and data generation that allow an arbitrary
marginal distribution of the features while still pre-
serving the multivariate dependency between fea-
tures. This increases the data complexity and makes
the training process as well as the importance attribu-
tion more challenging.

4.2 Feature Creation

Three distinct types of features can be created in the
simulation study: Relevant, spurious, and irrelevant
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features. Relevant features are either continuously
or discretely distributed, while spurious and irrele-
vant features are always continuously distributed. The
continuously distributed features are sampled from a
multivariate normal distribution given by

p(X,µ,Σ) =
1

(2π)n/2|Σ|1/2 e−
1
2 (X−µ)′Σ−1(X−µ), (11)

where is Σ a randomly generated covariance matrix
and µ is a mean vector. The covariance matrix Σ is
used to control the correlation between the synthetic
features. The constraints for the maximum level of
allowed covariance depend on the specification of the
DGP. These features are at a later stage transformed
via a quantile transformation of a χ2

1 distribution to
introduce non-linearity to the classification task. Cat-
egorical features are created through converting some
numerical variables into distinct categories. The case
probabilities convert the numerical features into cate-
gorical ones and preserve the underlying dependence
structure of the data. To keep the DGP as close to a
real-world application as possible, these features are
encoded as dummy variables for use in the neural net-
work and are also multiplied with the discriminator D
in dummy form. The rationale is that these features
should represent an indicator, for example group or
sector membership, not linearly additive factors. In
addition to the relevant features described above, the
data-generating process also includes spurious fea-
tures in certain settings. Spurious features are corre-
lated to the relevant features through the multivariate
normal distribution described in Equation (11), but
do not influence the target variable via the discrim-
inant D. This increases the complexity of the pre-
diction or classification task for the neural network
and the feature importance attribution. Irrelevant fea-
tures are sampled from an independent distribution
and therefore are statistically independent from the
relevant and spurious features. They do not influence
the target variables Y and can therefore be considered
completely irrelevant. This differentiates them from
spurious features which do not influence the target di-
rectly but may not be statistically independent from
it. In theory, uncorrelated feature with an importance
score of zero should be easy to detect.

4.3 Neural Network
Hyperparameterisation

The neural network trained on the data is a three-
layer, fully-connected neural network. It consists of
three hidden layers with 5,4,2 nodes respectively, and
a batch normalisation layer before every hidden layer.
It is trained on 80% of the data set. The remaining

Table 2: The DGP can reflect six different cases with in-
creasing data complexity. The columns specify the number
of total, spurious, and irrelevant features as well as the cor-
relation bounds.

case features spurious irrelevant correlation
I 20 0 0 [-0.3,0.3]
II 20 0 0 [-1,1]
III 30 10 0 [-0.3,0.3]
IV 30 10 0 [-1,1]
V 35 10 5 [-0.3,0.3]
VI 35 10 5 [-1,1]

20% are used for testing and as input for the feature
importance algorithms. The network is trained for
200 epochs per experiment. The sigmoid activation
function is used in every layer. As described in Sec-
tion 3, the sigmoid function is chosen because other
activation functions may not be suited for all feature
importance methods . An overview of the hyperpa-
rameterisation is provided in Table 3.

4.4 Importance Attribution Methods

Most of the feature importance methods require some
hyperparameterisation, for example the setting of
baseline values against which the importance attribu-
tion is calculated. In this example, the baseline is set
to 1, because a χ2

k distribution has mean k (in this case,
k = 1). Additional possible configurations include us-
ing the training data as baselines for importance at-
tribution in the test set. The perturbation function
passed to the infidelity and sensitivity calculation is
given as

fpert(xi) = x̃i = xi −η ∀i ∈ {1, . . . ,n} (12)

where xi is one observation of the input and

η ∼ N(0,0.0009). (13)

The perturbation function has been chosen in ac-
cordance with the usage tutorials of the software
package used for feature importance calculation. Nu-
merical experiments show that the choice of perturba-
tion function does not significantly affect the compu-
tations and results.

Table 3: Hyperparameters for the neural network trained on
the synthetic and empirical data.

hyperparameter parameterisation
hidden layers and nodes 5,4,2

learning rate 0.003
batch size 50

epochs 200
dropout probability 0.2
activation function sigmoid

Feature Importance for Deep Neural Networks: A Comparison of Predictive Power, Infidelity and Sensitivity

19



4.5 Data Cases

There are six different scenarios for data creation and
the underlying DGP. The general idea is to replicate
data structures and anomalies that are most prominent
in real-world data with the two most frequent anoma-
lies being high levels of correlation and spurious fea-
tures. Table 2 shows an overview of the relevant char-
acteristics. Case I data is weakly correlated with cor-
relation bounds given through the covariance matrix Σ

with every off-diagonal entry being ∈ [−0.3,0.3]. The
total number of features is 20 with 17 discretely dis-
tributed features, three categorical ones and no redun-
dancies. Case II data has 20 variables with no spuri-
ous features and correlation bounded by [−1,1]. Case
III data has 30 features, 17 relevant continuous ones,
3 relevant discrete ones, and 10 spurious features. Be-
cause of the constraints of positive semi-definite ma-
trices for the covariance, the maximum correlation in
the off-diagonals is lower than the numerical bounds.
Case IV data combines complications and character-
istics from case II and III such that the data is cor-
related and the some of the numerical features are
spurious. This should imitate the presence of both
data anomalies, as would most likely be expected in
a real-world application. The last data anomaly — as
represented in case V and VI — is the presence of
irrelevant features. These features are statistically in-
dependent from the relevant and spurious X and the
target Y . The features are drawn from a separate mul-
tivariate distribution.

4.6 Performance Evaluation

This section briefly explains how the performance of
the feature importance methods is measured in the
synthetic and the empirical setup. In the study of syn-
thetic data with known ground truth, the performance
of the feature importance methods can be evaluated
directly. In the empirical application, the importance
attribution performance cannot be measured directly
because the causal link between Y and X is unknown.

Synthetic Data. This paragraph summarises how
performance is measured when the neural network is
trained on synthetic data. Four different components
are of interest: The first one is the performance of
the neural network in the prediction task. The sec-
ond component is the determination of the feature
importance methods with respect to the true under-
lying causal link D. The two remaining components
are the infidelity and sensitivity of the importance at-
tribution. To ensure the robustness of results, the
experiment described in the previous section is con-

ducted repeatedly. The neural network is retrained
and the importance attributions are calculated 100
times on a resampled or newly generated data set. The
first component can be measured using R2 — as one
usually would in the context of any regression task.
The second component (feature importance determi-
nation) is evaluated by regressing the discriminant D
on Θ = {θ1, . . . ,θm}, which is a vector containing the
importance attributions of every feature. These attri-
butions can be calculated as

θi =
∑

n
i=0 θi,d

∑
n
i=0|θi,d |

∀i ∈ {1, . . . ,D} (14)

which is an aggregation of individual attributions to
obtain a global impression of the data. The numerator
is the sum of the attributions, while the denominator
is the L1 norm of the attributions. This gives the nor-
malised sum of attributions. Given that D represents
the underlying causal structure of the DGP, the score
or the coefficient of determination

R2
i = 1− ∑

m
i=1 (θi −di)

2

∑
m
i=1

(
di − d̄i

)2 , (15)

where φi is the attribution of an individual feature, di
is the true importance of the synthetic feature, and
d̄i is the mean importance. This approximates how
well the average importance attribution serves as a
proxy of true global importance if φi is the impor-
tance attribution for an individual feature, whereas di
is the true causal importance of the feature. Ideally,
the R2 of the regression on the determinant should
be as close to 1 as possible, assuming that the fea-
ture importance coefficients describe the underlying
data structure sufficiently well. To determine the reli-
ability of the importance attribution, two components
have to be studied further. First, the fidelity of the at-
tributions with respect to the original model. Second,
the sensitivity of the attributions with respect to input
perturbations. Two appropriate measures, infidelity
and sensitivity of explanations, have been introduced
in previous research (Yeh et al., 2019). Infidelity is
the expected mean-squared error between the expla-
nation multiplied by a meaningful input perturbation
and the differences between the predictor function at
its input and its perturbed input. Infidelity is derived
from the completeness property, a property or axiom
all importance methods share. It requires that the dif-
ference between the output of f at input x and x0 must
be equivalent to the importance attributions. The infi-
delity INFD(Φ, f ,x) is formally defined as

Eη∼N

[(
η

T
Φ( f ,x)− ( f (x)− f (x−η))

)2
]

(16)

for a black-box function f , an explanation function
Φ, a random variable η distributed as described in
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Equation (13). The explanation function Φ is one
of the feature importance methods introduced be-
forehand. The calculation of infidelity requires the
trained model, the attribution, a perturbation func-
tion for the inputs, and the attributions calculated by
the importance method. Another interesting measure
is sensitivity, which measures the extent of expla-
nation change when the input is slightly perturbed.
The relevant metric here is so-called maximum sen-
sitivity which is computed using a black-box func-
tion f , an explanation function Φ, and a given input
neighbourhood radius r. The maximum sensitivity
SENSMAX(Φ, f ,x,r) is defined as

max
∥x̃−x∥⩽r

∥(Φ( f , x̃)−Φ( f ,x))∥, (17)

where x̃ is a slightly perturbed variation of the input x
in the neighbourhood of x with radius r. ∥. . .∥ is the
Frobenius norm. In this application, the perturbation
∆(x̃,x) is distributed as the random variable described
in Equation (13). Ideally, attribution methods should
exhibit low amounts of infidelity and sensitivity. A
lower infidelity score means that the explanation pro-
vided by the feature importance method closely aligns
with the actual behaviour of the model, which is desir-
able. Sensitivity measures how much the explanation
changes when small changes are made to the input. A
lower sensitivity score means that the explanation is
stable and does not drastically change due to minor
changes in input, which is also desirable. For the dis-
cussion of results in Section 5, the results are reported
as total infidelity and total sensitivity. Total infidelity
and maximum sensitivity are computed for every fea-
ture of every observation and to make results compa-
rable, these results are summed up and summarised as
total infidelity and total sensitivity.

Empirical Data. This subsection summarises how
performance is measured when the neural network is
trained on empirical data. In the empirical applica-
tion, a measure of predictive power is not available.
Since the underlying causal link D cannot be mea-
sured and is unknown, the determination of the impor-
tance attribution cannot be computed. The other three
measures (neural network performance, importance
attribution infidelity and sensitivity) can be computed
nonetheless. The latter two are used to compare the
performance of the attribution methods in an empiri-
cal application.

5 SIMULATION STUDY RESULTS

This simulation study with known ground truth serves
as a benchmarking tool for the capabilities of the im-

Table 4: R2 of neural network for 100 experiments includ-
ing true R2 shows satisfying in- and out-of-sample perfor-
mance, as compared to the true R2 of the DGP.

R2 training validation test true
case I 0.759 0.480 0.500 0.858
case II 0.811 0.605 0.610 0.856
case III 0.802 0.433 0.437 0.859
case IV 0.825 0.527 0.533 0.852
case V 0.804 0.405 0.423 0.866
case VI 0.835 0.509 0.501 0.862

portance attribution methods. The performance of the
feature importance methods is measured as described
in Subsection 4.6, while the neural network perfor-
mance is summarised in Table 4. The column for the
true R2 shows the R2 achieved by Maximum Likeli-
hood Estimation (MLE) when the underlying func-
tional form is known and the determinant D is es-
timated from the data. This estimated optimal R2

should theoretically be smaller than the training R2

(due to overfitting) and larger than the test R2 (due to
bias). The methods should ideally achieve high coef-
ficients of determination and low levels of infidelity
and sensitivity. The coefficients of determination for
the feature importance calculation are presented here-
after for the different setups of the data-generating
process. To ensure robustness of results, the experi-
ment as described in Section 4 is repeated 100 times.
For every experiment, a sample of synthetic data with
1000 observations is generated. The parameter speci-
fications for the individual data cases can be found in
Table 2.

Case I. For the first configuration, the correlation
levels are low. This should make it easier for a cor-
rect importance attribution since multicollinearity is
not an issue. The network’s performance in terms
of training, validation, and testing can be assessed
from Table 4. The data appears to be well compre-
hended by the feature importance methods used. As
can be inferred from Table 7, DeepLIFT shows the
highest determination, closely followed by SVS. In
terms of total infidelity, LIME stands out with the best
performance among the methods. DeepLIFT, despite
its strong determination, also presents noticeable infi-
delity. Regarding sensitivity, IG is best-in-class.

Case II. The second configuration does not gener-
ate any spurious features and allows for high corre-
lation levels between the features in the data. As
observed from Table 8, the network performance is
not significantly impacted by the strong correlation
in training, validation, and testing phases. Review-
ing the results from Table 8, introducing correlation
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has a discernible impact on attribution performance.
DeepLIFT maintains its lead in terms of determina-
tion. IG presents the lowest sensitivity, while LIME
shows the lowest infidelity. Notably, there is a tan-
gible drop in performance across all methods when
compared to non-correlated data configurations. Fur-
thermore, infidelity levels rise considerably for all
methods. Total sensitivity, as well, sees an uptick.
Backward-based methods such as DeepLIFT and IG
remain less sensitive to perturbations, while forward-
based methods, including GradientSHAP, LIME, and
SVS, show increased sensitivity.

Case III. For the third configuration, 10 additional
features are added. These continuously distributed
features have an importance score in the discrimina-
tor vector D of 0 and therefore do not influence the
target directly. Since the features are weakly corre-
lated, it is possible that there is non-zero correlation
between the spurious features and the target. As seen
in Table 4, the neural network performance for the
training data slightly decreases from case II, and the
validation and test performance decrease more sig-
nificantly compared to case II. This decrease shows
a wider performance gap between the training, vali-
dation, and testing stages. Despite this performance
decrease, when comparing Table 8 and Table 9, the
determination score does not decrease significantly.
Most notably, DeepLIFT still outperforms the other
methods in this category. Interestingly, determination
increases slightly for all methods except LIME. This
is most likely due to the fact that all methods can suf-
ficiently well differentiate spurious features from im-
portant ones. In terms of infidelity, LIME exhibits the
best performance, followed by IG. GradientSHAP has
the highest sensitivity.

Case IV. Case IV data introduces 10 spurious fea-
tures as well as possibly strongly correlated data. As
is shown in Table 4, the delta between training and test
performance is smaller compared to previous cases.
When correlation is high and 10 of the 30 original
features are spurious, determination — as measured
by feature importance R2 — decreases significantly.
DeepLIFT still performs best, closely followed by
SVS. Total infidelity does not change significantly
from case III (Table 9) to case IV (Table 10). To-
tal sensitivity significantly increases from case III to
case IV data for GradientSHAP and LIME. Integrated
Gradients and DeepLIFT show the smallest sensitiv-
ity, while the sensitivity of LIME and GradientSHAP
is largest.

Case V. In case V, the data set is expanded to ad-
ditionally include 5 irrelevant features. This change
leads to diminution in the model’s test and valida-
tion performance, compared to both cases II and III,
as per Table 4. For determination of feature impor-
tance, SVS overtakes DeepLIFT and now performs
best. When analysing total infidelity, DeepLIFT and
GradientSHAP show the highest levels of infidelity,
while SVS and LIME are the methods with the high-
est fidelity. Sensitivity shows comparable results to
previous cases: Integrated Gradients and DeepLIFT
perform well, while GradientSHAP and LIME are ex-
tremely sensitive.

Case VI. Case VI data is comparable to case IV
data since both sets are created using comparable lev-
els of correlation between relevant and irrelevant fea-
tures. Case VI data also introduces irrelevant features.
Determination, as shown in Table 12, decreases for
all methods except LIME. SVS performs best with
DeepLIFT as a close second. Integrated Gradients
and GradientSHAP are close, while LIME performs
worst. Total infidelity and total sensitivity remain un-
changed in relative terms:

Summary. Table 5 shows the results for all experi-
ments on synthetic and empirical data. For synthetic
data, it is clear that neural network-specific methods,
namely DeepLIFT and IG, perform best in terms for
determination and sensitivity. LIME shows the low-
est infidelity out of all the methods, even though the
difference to other methods is not that big. Tables 7 to
12 show that spurious features, with zero causal im-
portance, are less problematic than highly correlated
data. Correlated data cause a significant drop in deter-
mination coefficients, as seen in Table 8, even when
all features are relevant predictors. In contrast, case
III, despite having one-third spurious features, still
produced higher determination scores than case II. A
similar pattern was found in case V (Table 11), where
irrelevant features had little effect on the determina-
tion score. However, a mix of spurious features and
high correlation in case IV caused a drop in impor-
tance scores (Table 8 IV). This suggests the methods
used are robust against spurious features but strug-
gle with correlated data. Irrelevant features, while
not significantly impacting R2, do affect the sensitiv-
ity of some methods, highlighting the need for pre-
processing and dimensionality reduction to improve
feature importance methods in practice.
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Table 5: Best-in-class performance for synthetic and empir-
ical data.

case determination infidelity sensitivity
I DeepLIFT LIME IG
II DeepLIFT LIME IG
III DeepLIFT LIME IG
IV DeepLIFT LIME IG
V SVS LIME IG
VI DeepLIFT LIME IG

Ames DeepLIFT IG
California DeepLIFT IG

FF5 GSHAP LIME

Table 6: R2 of neural network for 100 iterations shows sat-
isfying performance and no significant overfitting.

dataset training validation test
Ames 0.699 0.693 0.698

California 0.603 0.570 0.592
FF5 0.195 0.131 0.133

6 EMPIRICAL RESULTS

The importance attribution methods previously used
on synthetic data are applied to empirical data to pro-
vide further insights. The data sets used are the Cali-
fornia house price dataset (Dheeru and Casey, 2017),
the Ames house price data set (Cock, 2010), and the
daily Fama-French-5 (FF5) factor dataset (Fama and
French, 2024). Since Section 5 showed that impor-
tance attribution is challenged by high levels of cor-
relation, it is worthwhile to analyse correlation in the
data at hand. As can be seen in the supplementary
documents to this study, most of the features do not
exhibit significant levels of correlation. However,
some combinations of features do show high levels
of correlation. Table 6 summarises the neural net-
work performance for all datasets in training, valida-
tion, and testing. To compute and compare infidelity
and sensitivity, the data from the corresponding data
sets is resampled for 100 repeated experiments. The
model is retrained for every resampling.

The results for 100 experiments on a sample with
1000 observations are shown in Tables 13 to 15. The
table shows that while the infidelity is almost identical
for all methods, the total sensitivity varies substan-
tially. While the maximum sensitivity of DeepLIFT
and IG is small, GSHAP and SVS show considerably
higher total sensitivity. This is again in line with the-
oretical findings: Forward-based methods are much
more sensitive to small input perturbations.

7 SUMMARY

This study shows that the five importance attribution
methods that were reviewed in the paper generally
perform sufficiently well at identifying relevant and
spurious features as well as their magnitude. In a sim-
ulation study with underlying ground truth, the meth-
ods are able to approximate the underlying connection
between the features and the target. Nonetheless, the
simulation study shows that even in a simple neural
network, the computed importance scores cannot per-
fectly explain the underlying causal structure. Addi-
tionally, not all methods are alike, and DeepLIFT pre-
dictive performance outperforms the other methods
for most data cases with SVS coming in as a close sec-
ond. For more complex cases, SVS sometimes out-
performs DeepLIFT. Total infidelity of DeepLIFT and
Integrated Gradients is usually higher, while the other
methods show a somewhat lower infidelity. It is es-
pecially noteworthy that infidelity of Integrated Gra-
dients and GSHAP sharply increased for more com-
plicated data structures. Total sensitivity of LIME,
GSHAP, and SVS is extremely high for all classes
under observation. On the other hand, DeepLIFT
and Integrated Gradients show low sensitivity for all
four data cases. This means that the attributed impor-
tance of the features varies less when the inputs are
slightly perturbed. This is in line with the current lit-
erature. Forward-based methods are more sensitive
to input perturbations than backward-based methods.
Adding irrelevant features to the data substantially in-
creases sensitivity of GSHAP and LIME. In the em-
pirical application, these results are partly replicated.
While neural network-specific methods, namely IG
and DeepLIFT perform well for the California house
price and the Ames house price data set, they are not
best-in-class for the FF5 data. On the one hand, this
shows that model-specific attribution methods can
provide substantial advantages over model-agnostic
methods. On the other hand, the suitability of the
method heavily depends on the specific task at hand
as well as the neural network hyperparameters. The
results discussed in Section 5 and 6 suggest that the
feature importance methods work well in understand-
ing the relationships between variables in synthetic
data. However, complex patterns in the data make it
difficult to accurately determine which variables are
most important, especially in real-world data. This is
particularly problematic for data with a high degree
of correlation. In more general terms, it is important
to observe that feature importance methods are not a
one-size-fits all toolbox. Before deciding on which
feature importance algorithms to use, it is necessary
to consider the underlying model specifications.
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7.1 Limitations

This research paper is only a limited analysis of
the aspect of feature importance in deep neural net-
works. Multiple things should be considered. First,
the choice of baseline values significantly influences
the feature importance calculation. In the case of im-
age analysis, research has shown how heavily the im-
pact of a feature attribution baseline influences the
computed importance scores (Sturmfels et al., 2020).
This is no different for data such as the one used in
this paper. Additionally, the data generation process
used in this paper leads to limited generalisability -
some of the results may be different for differing se-
tups. Finally, the neural network architecture heavily
influences the predictive power of a neural network.
For example, choosing a ReLu activation function (in-
stead of the sigmoid function in this paper) can lead
to significant problems for the utilised gradient-based
attribution methods. Another component to consider
is the computational burden implied by feature im-
portance attributions. The computations in this paper
were done on small-scale model. For bigger mod-
els, the computational complexity increases drasti-
cally. For large-scale, industry-standard applications,
this is an important factor to consider.

7.2 Extensions and Practical
Implications

This paper has given valuable insights into the predic-
tive power, infidelity, and sensitivity of various fea-
ture importance methods. Future research could im-
plement the insights gathered into practical research
in economics and finance. For example, adding met-
rics of uncertainty to feature importance can enhance
the insights gathered. Furthermore, seeing the robust-
ness of feature importance calculations over repeated
experiments can also be beneficial in the realm of
variable selection. Additionally, it creates a baselines
for researchers to understand that feature importance
methods are not one-size-fits-all solutions and should
therefore be chosen and calibrated carefully. Addi-
tionally, It is important to note that most current stud-
ies of feature importance focus mainly on image data.
In these cases, it is easy to visually check if the im-
portant areas identified by the network make sense.
But this kind of validation does not work for purely
numerical data. This means that feature importance
in finance and economics requires additional sanity
checks. Paths for new research in these fields could
concentrate on feature importance validation using
domain-specific knowledge. Looking forward, the
field of user-friendly and explainable machine learn-

ing can additionally benefit from studying the balance
between performance, complexity, and explainability.
As neural networks get more complex with deeper ar-
chitecture, they become harder to understand. This
is not in the best interest of the researchers and gen-
eral stakeholders if model predictions should also
stay explainable. This implies that future research
could focus on smaller, sparse models, that still of-
fer a certain level of interpretability. Looking beyond
feature-based attribution methods, researchers should
also focus on more high-level, human-friendly XAI
and XML methods. For example, Testing with Con-
cept Activation Vectors (TCAV) (Kim et al., 2018),
which explain importance not by features, but by so-
called concepts. Instead of focusing on single fea-
tures, TCAV analyses higher level ideas in the data.
In TCAV, these concepts are typically identified using
a separate model. This model is often a different neu-
ral network which is trained specifically to recognise
the concepts in the model’s internal representations
of the data. This can bring XAI closer to explanations
that are easily understandable and therefore human-
centric. Especially for high-dimensional input data,
the importance of a single feature may not be impor-
tant for humans to understand the prediction model.
They would probably be much more interested in the
importance of a concept for predictions. Since this
methodology is not yet popular in research in finance
and economics, it may be worthwhile to pursue re-
search concerning concept importance.
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APPENDIX

The appendix contains the experiment results de-
scribed in the paper. Note that the results are rounded
to three decimals unless a higher grade of granularity
is required for comparisons (most often for the infi-
delity metrics).

Table 7: Mean results (Standard Deviation) for 100 repeated
experiments on case I data. Best-in-class values are marked
with *.

determination infidelity sensitivity
IG 0.186 0.0035 2.782*

(0.118) (0.0020) (0.822)
GSHAP 0.183 0.0037 21808.902

(0.118) (0.0021) (41842.360)
LIME 0.107 0.0025* 921.865

(0.093) (0.0012) (5259.562)
SVS 0.223 0.0028 142.402

(0.144) (0.0013) (87.815)
DeepLIFT 0.236* 0.0040 7.512

(0.114) (0.0019) (1.200)

Table 8: Mean results (Standard Deviation) for 100 repeated
experiments on the case II data. Best-in-class values are
marked with *.

determination infidelity sensitivity
IG 0.129 0.0033 2.872*

(0.108) (0.0018) (0.911)
GSHAP 0.126 0.0036 24776.439

(0.106) (0.0018) (118520.80)
LIME 0.101 0.0026* 434.697

(0.089) (0.0012) (545.340)
SVS 0.146 0.0029 144.623

(0.119) (0.0014) (79.661)
DeepLIFT 0.174* 0.0041 7.537

(0.108) (0.0020) (1.441)
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Table 9: Mean results (Standard Deviation) for 100 re-
peated experiments on case III data. Best-in-class values
are marked with *.

determination infidelity sensitivity
IG 0.153 0.0030 2.816*

(0.117) (0.0010) (0.812)
GSHAP 0.148 0.0030 30712.477

(0.116) (0.0010) (77256.110)
LIME 0.066 0.0020* 446.402

(0.071) (0.0010) (451.300)
SVS 0.174 0.0030 176.937

(0.136) (0.0010) (135.055)
DeepLIFT 0.183* 0.0040 7.269

(0.111) (0.0010) (1.217)

Table 10: Mean results (Standard Deviation) for 100 re-
peated experiments on case IV data. Best-in-class values
are marked with *.

determination infidelity sensitivity
IG 0.116 0.0030 2.591*

(0.104) (0.0014) (0.674)
GSHAP 0.118 0.0032 71441.851

(0.103) (0.0014) (492030.40)
LIME 0.069 0.0022* 970.022

(0.066) (0.0009) (4515.176)
SVS 0.137 0.0025 173.937

(0.112) (0.0010) (120.617)
DeepLIFT 0.142* 0.0035 6.835

(0.101) (0.0015) (0.996)

Table 11: Mean results (Standard Deviation) for 100 re-
peated experiments on case V data. Best-in-class values are
marked with *.

determination infidelity sensitivity
IG 0.141 0.0029 2.517*

(0.112) (0.0013) (0.752)
GSHAP 0.139 0.0031 93285.070

(0.114) (0.0015) (599034.40)
LIME 0.052 0.0020* 549.692

(0.058) (0.0009) (1091.150)
SVS 0.179* 0.0023 165.701

(0.137) (0.0010) (119.806)
DeepLIFT 0.154 0.0032 6.700

(0.086) (0.0016) (1.035)

Table 12: Mean results (Standard Deviation) for 100 re-
peated experiments on case VI data. Best-in-class values
are marked with *.

determination infidelity sensitivity
IG 0.153 0.0030 2.816*

(0.117) (0.0015) (0.812)
GSHAP 0.148 0.0032 30712.477

(0.116) (0.0015) (77256.110)
LIME 0.066 0.0023* 446.402

(0.071) (0.0009) (451.300)
SVS 0.174 0.0025 176.937

(0.136) (0.0010) (135.055)
DeepLIFT 0.183* 0.0036 7.269

(0.111) (0.0015) (1.217)

Table 13: Mean results (Standard Deviation) for 100 re-
peated experiments on the Ames housing price data. Best-
in-class values are marked with *.

infidelity infidelity
IG 0.000591 10.586*

(0.00020) (1.751)
GSHAP 0.000597 309.495

(0.00020) (230.412)
LIME 0.000591 321.872

(0.00020) (1171.460)
SVS 0.000596 32.218

(0.00020) (5.283)
DeepLIFT 0.000587* 17.458

(0.00021) (3.197)

Table 14: Mean results (standard deviation) for 100 re-
peated experiments on the California housing price data.
Best-in-class values are marked by *.

infidelity sensitivity
IG 0.093 26.609*

(0.053) (14.956)
GSHAP 0.092 655.637

(0.054) (885.336)
LIME 0.092 260.244

(0.053) (252.150)
SVS 0.093 62.229

(0.055) (21.680)
DeepLIFT 0.091* 64.089

(0.055) (28.282)

Table 15: Mean results (Standard Deviation) for 100 re-
peated experiments on the FF5 data. Best-in-class values
are marked with *.

infidelity infidelity
IG 0.000151 23.564

(0.00006) (2.209)
GSHAP 0.000149* 312.104

(0.00006) (78.938)
LIME 0.000150 0.887*

(0.00006) (3.714)
SVS 0.000152 51.652

(0.00006) (12.362)
DeepLIFT 0.000152 33.935

(0.00006) (4.978)
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