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Abstract: Human Activity Recognition (HAR) involves recognising and classifying human activities from data 
collected by sensors through machine learning (ML) techniques. The assessment of athletic movement via 
HAR has benefited sport performance analysis by identifying technical and tactical performance indicators. 
Hurling is a dynamic stick and ball invasion team sport that involves high-impact movements. Sensor 
placement and feature selection in HAR tasks impact the classification accuracy of the ML model during 
testing and training. This study aims to determine the optimal inertial measuring unit (IMU) sensor placement 
for recognizing hurling movements and to identify the most important features for accurate classification. 
Time-domain and frequency-domain features of accelerometer data were computed and were used to train 
and test three classification models: Support Vector Machine (SVM), Random Forest (RF) and k-Nearest 
Neighbour (k-NN). A RF model achieved the highest mean accuracy in the recognition of four hurling specific 
movements, for sensors located at the forearm (86%) and the thigh (84%). Features extracted from the z-axis, 
specifically zero crossing rate (ZCR), standard deviation (STD), and root mean square (RMS) were most 
discriminative in classifying hurling sport movements with a RF model using a forearm-mounted IMU.   

1 INTRODUCTION 

Hurling is a stick and ball team sport that is 
predominantly played in Ireland and involves high 
intensity, intermittent activity (Mullane et al., 2018). 
The sport involves a multitude of advanced technical 
skills and requires the proficient use of a stick (Hurl) 
to control and strike a ball (sliotar) at high velocities 
(Leddy et al., 2023). Hurling encompasses a broad 
range of skills and physiological considerations such 
as explosive power, striking a ball in the air, jumping, 
and sprinting (Collins et al., 2022). Successful 
performance outcomes in hurling match-play are 
linked with an understanding and knowledge of 
physical and physiological demands (Keane et al., 
2021). Activity monitoring of team sports leads to 
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increased knowledge of physical and physiological 
in-game demands and assists in performance 
profiling, training prescription and reduces the 
likelihood of injury (Ribeiro et al., 2020). The 
increased desire to understand sports motion has led 
to motivated research in sports activity recognition 
which has examined the frequency, intensity, 
duration, and type of activity performed during 
competitive and training events (Pfeiffer et al., 2023; 
Ren et al., 2016).  

Monitoring and automatic recognition of physical 
activities is often referred to as a human activity 
recognition (HAR) task (Bulling et al., 2014). HAR is 
a challenging time-series task that has been used in 
team sports such as Australian football (Cust et al., 
2021), field hockey (Shahar et al., 2020) and cricket 
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(McGrath et al., 2021) to detect and identify actions 
of athletes. HAR in sports applications has been 
shown to be beneficial for measuring training volume 
(Hendry et al., 2020), player performance evaluation 
and assessing biomechanical factors of sports 
movement (McDevitt et al., 2022; Roslan & Ahmad, 
2020). The continuous and coupled developments in 
technology and artificial intelligence (AI) over the 
past two decades has enabled sports activity 
recognition that is robust, accurate and increasingly 
automated (Chmait, & Westerbeek, 2021). An inertial 
measuring unit (IMU) is a sensor system that 
combines a gyroscope, accelerometer and often a 
magnetometer for measurements of angular velocity, 
acceleration, and orientation, and are commonly used 
as data inputs for classification of human movement 
(Kranzinger et al., 2023). A review of wearable 
technology in sport reported that IMU and its 
subcomponent accelerometer were the main 
keywords featured in 2568 research articles which 
were indexed in the Social Sciences Citation Index 
(SSCI) or the Science Citation Index Expanded (SCI-
E) (Seçkin et al., 2023). Tri-axial accelerometers are 
particularly suited to activity recognition due to their 
ability to measure acceleration proportional to 
external force allowing for measurements of dynamic 
movements reflecting changes in activity intensity 
and frequency (Twomey et al., 2018).  

The HAR framework is depicted in Figure 1. 
Typically, the following steps are involved: data 
acquisition, data preprocessing (signal processing and 
segmentation techniques), feature extraction, 
classification through AI techniques and performance 
evaluation (Bento et al., 2022). The application of AI 
in the form of a machine learning (ML) or deep 
learning (DL) model for classification of activities 
and an associated performance evaluation of said 
model is an integral component of the HAR 
framework (Kulsoom et al., 2022). Studies have 
shown that each step of the ML modelling process are 
iterative, and classification accuracy depends on the 
specific characteristics of the movement being 
analysed (Gil-Martín et al., 2020). 
 Traditional supervised ML models such as Support 
Vector Machine (SVM), Random Forest (RF) and k-
nearest neighbour (k-NN) have been extensively 
employed for activity recognition tasks based on 
accelerometer data (Slim et al., 2019) and in the 
classification of human motion data based on IMUs 
in sports (Kranzinger et al., 2023). SVM is widely 
reported in the literature for the classification of 
spatiotemporal features into activity categories in 
sensor-based sport activity recognition (Cust et al., 
2021). Naïve bayes (NB), Decision Tree (DT) and 

Convolutional Neural Networks are also commonly 
applied ML models in the HAR research area (Pajak 
et al., 2022). The k-NN algorithm has demonstrated 
strong performance in the classification of human 
activities (Mohsen et al., 2022). A weighted k-NN 
model achieved 82.5 ± 4.75% accuracy in the  
prediction and classification of performance 
indicators attributed to  the shooting score in archery 
(Muazu Musa et al., 2019). In HAR research, it is 
common to apply several ML models to determine the 
best fit for the recognition and classification of the 
activities (Preatoni et al., 2020), as the classification 
performance of the ML model will be dependent upon 
the characteristics of the dataset under investigation. 

 
Figure 1: Sports Activity Recognition Framework. 

The data pre-processing is the second step in sport 
activity recognition where the data is filtered and 
segmented to define activity boundaries through 
techniques such as overlapping windows. The 
statistical and mathematical features are then 
extracted from each window to prepare for use with 
ML models. Feature extraction captures the relevant 
information required to differentiate activities 
represented by the sensor signals during sports 
movement. Feature premutation refers to the 
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assessment of the impact of feature relevance on a 
model’s performance on given datasets (Vallance et 
al., 2020).  For HAR tasks from IMU data, features 
are typically extracted from the time-domain and 
frequency-domain (Gomaa & Kamas, 2023; Rosati et 
al., 2018). Features extracted from the time domain 
reveal statistical information about the signal and are 
the most utilised method in HAR tasks (Rosati et al., 
2018). Studies have shown that time-domain features 
may be sufficient to classify an activity class (Chong 
et al., 2021). Frequency-domain features reveal 
information about the signal’s periodicity, such as 
underlying oscillations which is beneficial in the 
recognition of activities with distinct periodic 
patterns (Dehkordi et al., 2020). To obtain high 
performance accuracy, the input features must be 
representative of the movement being analyzed. The 
selection of appropriate features has been of interest 
in HAR research (Allik et al., 2019; Bennasar et al., 
2022). Studies have found that the number of features 
(Brzostowski and Szwach, 2018) in addition to the 
type of features (McGrath et al., 2021) have an 
influence on the classification performance of ML 
models in sport activity recognition tasks.  

Performance evaluation metrics are quantitative 
methods used at the end of the HAR pipeline to 
determine the effectiveness of the classification 
model. Performance is generally assessed using 
accuracy, which is a measure of the number of correct 
predictions divided by the total number of predictions 
and is derived from a confusion matrix (Ward et al., 
2011). Accuracy may be over predicted when the 
classes in a dataset are imbalanced, or if there is 
insufficient information on the instances of false 
positives and false negatives. Precision and recall are 
metrics which can be used to supplement accuracy 
when evaluating a model’s classification 
performance. Precision focuses on minimizing false 
positives, while recall aims on minimizing false 
negatives (Ward et al., 2011). The classification 
accuracy is highly dependent on the incoming data, 
and as such the sensor location should correspond 
with the movement being analyzed. For example, 
ankle-mounted IMUs produced high accuracy of 80-
83%, in the in-situ classification of Australian 
football kick types (Cust et al., 2021). An 
investigation into the optimal sensor placement for 
badminton found that a sensor placed on the bottom 
of the rackets grip provided the best recognition 
accuracy when examining stroke types (Steels et al., 
2020). Other studies investigating the influence of 
sensor location on the recognition of complex 
movements found that a combination of sensors 
achieved the highest performance of 96.7% accuracy 

(Shahar et al., 2020) and 97.6% (Preatoni et al., 2020) 
respectively. The placement of sensors at varying 
body segments and sensor combinations should be 
explored to determine classification accuracy for 
optimised sport activity recognition (Xia & Sugiura, 
2021). 

Extensive research has been conducted on the use 
of accelerometer data and ML techniques for accurate 
sport activity recognition and classification (Cust et 
al., 2019; Pfeiffer et al., 2023). However, to the best 
of current knowledge, the investigation of HAR to 
classify hurling movements has not yet been 
conducted. This study aims to determine the optimal 
IMU sensor placement for recognizing hurling 
movements and to identify the most important 
features for accurate classification using three ML 
models; SVM, RF, k-NN.  

2 METHODS 

2.1 Data Collection 

A total of four hurling specific sport activities were 
performed for 1-min each, over an 8-min period, with 
1-min intervals of rest between each activity type. 
Five hurling players (age 22.0 ± 5.61 years; height 
178.4 ± 5.64 cm; body mass 83.6 ± 17.73 kg) with an 
average training age (Myer at al., 2013) of 16.8±4.09 
years participated in this study. The activities 
included (1) jab lift, (2) overhead catch, (3) soloing, 
and (4) striking. A description of these activities is 
detailed in Table 1 below. Ethical approval was 
obtained from the South East Technological 
University Research Ethics Committee 
(Ethical approval code: 332).  

The dataset analysed in this study was a primary 
dataset collected utilising the Xsens Motion 
Visualization and Navigation (MVN) link inertial 
measuring system (Movella Technologies B.V., 
Enschede, Netherlands). The Xsens MVN link is a 3D 
motion capture system which consists of 17 IMUs 
that are wired and tightly affixed to body segments in 
a Lycra suit. The data used in this study was 
accelerometer derived data obtained from the IMUs 
located at the forearm, and right upper leg, which will 
be referred to hereafter as ‘thigh’. The forearm sensor 
is positioned on the dorsal (posterior) side of the 
forearm, just above the wrist joint. The thigh sensor 
is positioned a few centimetres above the mid-thigh, 
or on the iliotibial band on the external side of the leg 
(Movella, 2022). The 23 segments of the kinematic 
model are defined according to the international 
Society of Biomechanics (ISB) recommendations, 
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and detailed sensor placement information can be 
found in the MVN user manual (Movella, 2024).  

 The accelerometer range for Xsens MVN link 
system is MTx: ± 160 m/s2 (16 g) MTw: ±160m/s2 
(16g) (Movella, 2024). The movements were 
simultaneously recorded by a Panasonic HX-WA20 
camera with a resolution rate of 1920px X 1080px and 
a frame rate of 30fps. The cameras, which were 
mounted on stationary tripods, were used to establish 
ground truth. All statistical and visual analysis were 
conducted in a Python environment (Python, 3.8.12). 

Table 1: Hurling Activities Description. 

Activity Description 

Jab Lift 

 
Player slides the hurl under the 

ball and scoops it into the hand in 
one swift action. 

 

Overhead 
catch 

Player positions themselves under 
the flight path of the sliotar, 
anticipating its descent. The 

player then jumps into the air off 
one leg, bending the opposite leg, 

and the ball is caught with a 
cupped hand. 

 

Soloing 

Player balances the sliotar on top 
of the hurl as they take steps. The 

hurl is held out in front of the 
player. 

 

Striking 

Player positions their dominant 
hand at the top of the handle and 
their non-dominant hand further 

down the handle. The hurl is 
swung above the head until it 
meets contact with the sliotar, 

where it is struck. 
 

2.2 Data Preprocessing 

IMU sensors measuring dynamic movements may be 
susceptible to noise and drift in the signals due to 
magnetic disturbances and offset errors owing to the 
participants’ unintentional shaking or movement. 
These movements may present as slight and 
potentially repetitive fluctuations which distort the 
signal, affecting the quality of the movement data 
captured and the classification performance of the 
associated machine learning model (de Cheveigné & 
Nelken, 2019). Correspondingly, the application of 
lowpass filtering is an integral component of the 

activity recognition framework following on from 
data acquisition (Hsu et al., 2018). The purpose of a 
filter is to remove interference noise, miscellaneous 
signal fluctuations, and low-frequency components 
(Yin et al., 2021). A low pass filter only allows lower 
signal frequencies that are below its cutoff frequency 
to pass through, while attenuating all signals above 
the cut off frequency, effectively extracting the useful 
components of the signal relating to physical activity 
which lie within a specific frequency range (Shouran 
& Elgamli, 2020). Fridolfsson et al. (2019) suggested  
that accelerations related to human movements are 
typically found between 1 and 10 Hz. The comparison 
between filtered and unfiltered accelerometer data (x, 
y, z axes) recorded from the forearm mounted IMU 
of a participant during 60 seconds of striking is 
displayed in Figure 2.   

 
Figure 2: Comparison of Unfiltered (blue line) and Filtered 
(red line) Acceleration Data for Striking Movement 
obtained by the Forearm IMU sensor. 

In this study, a low-pass 4th order Butterworth 
filter with a cut-off frequency of 10 Hz using a 
second-order filter two times to the time series was 
implemented to smooth the signal by attenuating 
frequencies higher than 10 Hz. A fourth-order 
Butterworth filter is commonly used in 
biomechanical applications (Crenna et al., 2021) and 
in motion recognition (Liu et al., 2022). Additionally, 
a moving average filter with a window size of 5 
samples was applied to smooth the data. Once the 
data has been filtered, it is segmented into 
overlapping windows to facilitate feature extraction 
and model training (Cero Dinarević et al., 2019). The 
optimal window size and overlap depends on the 
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specific characteristics and application of the dataset. 
Bonomi et al. (2009) found that reducing the segment 
size decreased the machine learning classification 
accuracy for physical activity recognition. 
Conversely, Brzostowski and Szwach (2018) 
reported that increasing the window size to 80 
samples improved the classification performance of 
k-NN and Logistic Regression for classification of 
stroke type in tennis.  

 
Figure 3: Sport Activity Recognition Framework applied in 
this research. 

For this study, a sliding window approach of 2.5s 
with a 50% overlap was applied. The 2.5s window 
size demonstrates the most accurate detection 
performance for common sports activity for 
supervised machine learning models (Ghazali et al., 
2018). The features were extracted from each window 
segment in both the time domain and frequency 
domain for the x, y, and z axes. The extracted features 
are detailed as follows: mean, standard deviation 
(SD), root mean square (RMS), skewness, kurtosis, 
zero crossing rate (ZCR), dominant frequency, and 
total power. These features have been widely adopted 

in previous studies examining accelerometer-based 
activity recognition (Gomaa & Khamis, 2023). The 
time-domain features in this study are simple features 
extracted through  basic statistical analysis providing 
characteristics of the signal over time and are highly 
effective in discriminating activities from 
accelerometer signal (Erdaş et al., 2016). Simple 
statistical features have shown outstanding 
classification accuracy in differentiating static and 
dynamic activities (Coelho et al., 2022). Frequency-
domain features are extracted through spectral 
analysis and compliment time-domain features 
(Erdaş et al., 2016) for robust feature representation 
(Nguyen et al., 2021). The hurling activities 
examined in this research exhibit a combination of 
rotational and linear movements with varying 
intensities and as such, features with high 
discriminative abilities are required to accurately 
recognise and classify different activities. For 
example, striking movements often involve rapid, 
intense movements leading to greater variability and 
distinct skewness and kurtosis values compared to 
more uniform activities. Additionally, frequency 
domain features reveal underlying oscillations and 
energy distributions in the data.  Activities such as 
jogging (soloing) and jumping (Overhead catch) have 
indicative frequency components that can be detected 
through these features.  

The train/test split of the data was 80/20%, where 
80% of the data was used to train the machine learning 
models (SVM, RF, and k-NN), and the remaining 20% 
was used for performance evaluation. In this study, a 
5-fold cross validation was implemented. K-Fold cross 
validation involves randomly partitioning the data in k-
equal subsets, training the data on k-1 subset, and using 
a different fold for testing (Dehghani et al., 2019). This 
process is repeated k times and when the k iterations 
are completed, performance metrics such as accuracy, 
precision and recall are calculated by averaging the 
results of all k folds. The sport activity recognition 
framework implemented in this study is shown in 
Figure 3.  

3 RESULTS AND DISCUSSION 

Each of the five participants performed  each activity 
for 1 minute, which corresponds to 240 s at a 
sampling frequency of 240 Hz/s. For each activity, 
14400 samples were collected per axis, resulting in 
172800 samples per participant across all three axes. 
The data was segmented into fixed sized windows of 
2.5 s with a 50% overlap this translates to 600 
samples per window with an overlap of 300 samples, 
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this segmentation yielded 940 windows per sensor. 
Each window was processed to extract various time-
domain and frequency-domain features. Three 
supervised classification models, specifically SVM, 
RF and k-NN were compared to determine the best 
performance in terms of mean accuracy (A), mean 
precision (P), and mean recall (R), these results are 
displayed in Table 2. Figure 4 presents the confusion 
matrices, while Tables 3 and 4 provide a detailed 
breakdown of the TPs, TNs, FPs, and FNs for our 
classification models using the forearm and thigh 
sensors. Permutation feature importance with a cut-
off threshold of 0.05 was conducted to determine the 
importance of different features across the time and 
frequency domain for each of the sensor locations in 
predicting the hurling activity classes.  

 
Figure 4: The confusion matrix for Random Forest model 
using the forearm sensor for the detection of four Hurling 
sport specific activities. 

Table 2: Performance metrics of SVM, RF, and k-NN 
Models for the recognition and classification of four hurling 
specific activities (A = mean accuracy, P = mean precision, 
and R = mean recall. These metrics summarise the model 
performance). 

Sensor 
Location 

Model Mean A Mean P Mean R 

Forearm SVM 0.848 0.850 0.848 
 

RF 0.863 
 

0.866 0.864 
 

k-NN 0.741 0.743 
 

0.740 
 

Thigh SVM 0.815 
 

0.816 0.814 

 RF 0.842 0.845 0.844 

 k-NN 0.659 
 

0.657 0.657 

The confusion matrices from the RF model for the 
forearm sensor and thigh sensor are displayed in 
Figure 4 and Figure 5, respectively. The high values 
on the diagonal (correctly classified instances) 
suggest that the RF model is performing favourably 
for the classification of hurling activities from both 
sensor locations.  

The analysis of two sensor locations revealed the 
RF model as the best-performing classifier with mean 
accuracy of 86% for the forearm, and 84% for the 
thigh respectively.  

 
Figure 5: The confusion matrix for Random Forest model 
using the thigh sensor for the detection of four Hurling sport 
specific activities. 

Table 3: Mean True Positives (TPs), True Negatives (TNs),  
False Positives (FPs) and False Negatives (FNs) for SVM, 
RF and k-NN classifiers on Forearm Sensor Data. 

Model Class Mean 
TPs 

Mean 
TNs 

Mean 
FPs 

Mean 
FNs 

SVM 0 42.4 ± 
6.46 

136.0 ± 
5.96 

5.0 ± 
2.0 

4.6 ± 
1.35 

 1 43.2 ± 
3.65 

137.4 ± 
4.07 

3.6 ± 
3.2 

3.8 ± 
1.93 

 2 39.4 ± 
7.00 

133.2 ± 
7.93 

7.8 ± 
1.16 

7.6 ± 
2.87 

 3 34.6 ± 
3.84 

129.0 ± 
6.29 

12.0 ± 
3.82 

12.4 ± 
2.80 

RF 0 43.4 ± 
5.12 

136.4 ± 
6.97 

4.6 ± 
1.01 

3.6 ± 
1.85 

 1 41.4 ± 
4.49 

138.2 ± 
2.71 

2.8 ± 
2.22 

5.6 ± 
2.41 

 2 40.2 ± 
6.67 

135.0 ± 
7.18 

6.0 ± 
1.89 

6.8 ± 
2.56 

 3 37.4 ± 
2.05 

128.8 ± 
6.01 

12.2 ± 
2.99 

6.6 ± 
2.57 

k-NN 0 40.0 ± 
4.09 

133.6 ± 
4.84 

7.4 ± 
3.38 

7.0 ± 
2.09 
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Table 4: Mean True Positives (TPs), True Negatives (TNs),
False Positives (FPs) and False Negatives (FNs) for SVM,
RF and k-NN classifiers on Forearm Sensor Data.(cont.) 

 1 36.6 ± 
5.78 

133.2 ± 
4.53 

7.8 ± 
1.46 

10.4 ± 
3.32 

 2 37.4 ± 
7.14 

121.2 ± 
9.62 

19.8 ± 
5.15 

9.6 ± 
2.65 

 3 25.4 ± 
3.97 

127.4 ± 
6.77 

13.6 ± 
3.44 

21.6 ± 
3.26 

Table 3 and 4 summarize the TP (True Positives), 
TN (True Negatives), FP (False Positives), and FN 
(False Negatives) values for each classifier across both 
forearm (Table 3) and thigh sensors (Table 4). TP are 
the number of positive cases correctly identified as 
positive; the activity is classified accurately. TN are the 
number of negative cases correctly identified as 
negative; the activity is classified accurately. FP are the 
number of negative cases incorrectly identified as 
positive; the activity is misclassified. FN are the 
number of positive cases incorrectly identified as 
negative; the activity is misclassified. (Bennasar et al., 
2022). For both sensor locations, SVM and RF models 
showed a decline in performance as denoted by a 
decrease in TPs and TNs, and  an  increase  in  FPs  and 

Table 5: Mean True Positives (TPs), True Negatives (TNs), 
False Positives (FPs) and False Negatives (FNs) for SVM, 
RF and k-NN classifiers on Thigh Sensor Data. 

Model Class Mean 
TPs 

Mean 
TNs 

Mean 
FPs 

Mean 
FNs 

SVM 0 38.6 ± 
2.24 

134.2 ± 
3.81 

6.8 ± 
2.63 

8.4 ± 
1.35 

 1 39.2 ± 
5.6 

130.8 ± 
3.54 

10.2 ± 
1.93 

7.8 ± 
2.03 

 2 39.0 ± 
7.42 

135.4 ± 
7.86 

5.6 ± 
2.72 

8.0 ± 
2.09 

 3 36.6 ± 
6.49 

129.0 ± 
7.12 

12.0 ± 
2.75 

10.4 ± 
2.57 

RF 0 40.2 ± 
2.92 

135.4 ± 
4.33 

6.0 ± 
2.09 

6.8 ± 
1.72 

 1 42.6 ± 
3.92 

130.0 ± 
2.52 

11.0 ± 
4.60 

4.4 ± 
2.93 

 2 39.8 ± 
5.91 

137.6 ± 
6.46 

3.4 ± 
3.07 

7.2 ± 
2.71 

 3 35.8 ± 
4.99 

131.8 ± 
6.24 

9.2 ± 
3.12 

11.2 ± 
2.31 

k-NN 0 35.6 ± 
3.07 

125.0 ± 
5.32 

16.0 ± 
2.52 

11.4 ± 
3.07 

 1 31.8 ± 
3.12 

119.6 ± 
3.72 

21.4 ± 
4.63 

15.2 ± 
2.78 

 2 32.6 ± 
6.56 

130.0 ± 
7.89 

11.0 ± 
3.40 

14.4 ± 
4.96 

 3 24.0 ± 
7.66 

125.4 ± 
6.18 

15.6 ± 
2.05 

23.0 ± 
2.96 

FNs, particularly in class 3. However, both SVM and 
RF present as generally reliable with high mean TPs 
and TNs values throughout. RF was revealed as the 
better-performing classifier, showing notable 
performance with the forearm sensor. In contrast, the 
k-NN model had a significant drop in performance 
across both sensor locations with higher FPs and FNs 
lower TPs and TNs. 

The importance of features based on their impact 
on predictive performance of a RF model was 
calculated for each of the sensor locations through 
permutation feature importance, as displayed in 
Figure 5 and Figure 6. The features that demonstrated 
the greatest importance for the forearm mounted IMU 
with the RF classifier were ZCR, STD, and RMS in 
the z-axis, whereas total power from the x-axis, and 
mean from the y axis were of little predictive power. 
The most important features for the thigh mounted 
IMU were STD from the y axis, mean from the z-axis, 
and RMS from the y-axis. Features extracted from the 
x-axis, specifically RMS and total power were of least 
predictive power. Time-domain features, such as std, 
mean and rms are particularly effective for capturing 
the magnitude and variability of lower body 
accelerations in activities such as jumping (overhead 
catch) and jogging (soloing). Frequency domain 
features, such as dominant frequency, are particularly 
relevant for activities characterised by complex and 
rhythmic motions, which are common in striking 
activities. These features help in identifying activities 
with prominent rhythmic components.  

This study shows that the RF model achieved the 
highest performance as denoted by the mean 
accuracy, precision and recall in both sensor 
locations. This result is synonymous with the work of 
Hölzemann & Van Laerhoven (2018) who examined 
the performance of ML models for classification of 
basketball activities, reporting that a RF model 
achieved the greatest mean accuracy of 87.5% 
outperforming a k-NN model. Similarly, a RF 
outperformed a k-NN and SVM models for the 
classification of human daily activities, and in these 
experiments, the highest accuracies of a RF model 
were achieved when the classifier was fed with time-
domain features only (Erdaş et al., 2016) and a 
combination of time-domain and frequency-domain 
features (Nurwulan & Selamaj, 2020). 

Random Forests are ensemble methods that 
combine multiple random decision trees (in this study 
the model consisted of 100 decision trees), each tree 
is trained on a random subset of the data (Breiman, 
2001). Thus, the random sampling and aggregation of 
predictions results in a classifier that is scalable, 
efficient and robust to overfitting, enabling it to 
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capture a broad range of patterns and characteristics 
from complex sporting activities. RF identifies the 
most relevant features, and research has shown that 
features extracted from the z-axis are of most 
importance (Casale et al., 2019). 

 
Figure 6: Permutation Feature Importance of Thigh 
Mounted IMU Features for Random Forest Classifier in 
Classifying four Hurling Movements. 

 
Figure 7: Permutation Feature Importance of Forearm 
Mounted IMU Features for Random Forest Classifier in 
Classifying four Hurling Movements. 

A novel activity recognition system which 
combined nonparametric weighted feature extraction 
(NWFE), principal component analysis (PCA) and 
least squared support vector machine (LS-SVM) was 
introduced by Hsu et al. (2018) for the recognition of 
10 daily human activities and 11 sport activities and 
reported an overall correct classification rate (CCR) 
of between 98.33 – 99.55%. Research in HAR is 
underpinned by the “No Free Lunch” theorem which 
explains that there is no universal best fit algorithm 
(Wolpert, & Macready, 1997). This is particularly 
evident in HAR research whereby differences are 
evident in data collection specifications, data pre-
processing techniques, machine learning modelling 
and evaluation. As aforementioned, every step of the 
HAR pipeline is iterative and should be considered in 
alignment with the characteristics of the movement 
being analysed.  

The optimal sensor placement has been of 
significant interest in HAR research (Davoudi et al., 
2021; Steels et al., 2020). In this study, it was 
demonstrated that a single IMU mounted at the right 
forearm coupled with a RF model achieved a 

marginally higher accuracy compared to a thigh 
mounted IMU sensor for the recognition and 
classification of hurling activities. Shahar et al. 
(2020) examined the influence of sensor combination 
and location for activity recognition in field hockey 
and reported that a left wrist mounted sensor achieved 
86.2% accuracy with a cubic SVM compared to other 
single sensor locations (waist, right wrist, and chest). 
However, the highest accuracy (96.7%) in these 
experiments was achieved when all 4 sensor locations 
were combined.  

By combining several sensors from varying body 
segments, the classification performance of an ML 
model may be improved (Davoudi et al., 2021), but 
there are drawbacks including labour intensive post-
processing and increased computational load. 
Moreover, considering the importance of ecological 
validity in sport science, HAR research should take 
place, where possible, in the athletes’ natural sporting 
environment. Using multiple sensors in these training 
and competitive environments may prove to be 
cumbersome for athletes, and in such scenarios a 
single body-mounted sensor may be more practical.  

Permutation feature importance is a technique 
used to determine the importance of different features 
in a predictive model. It works by randomly shuffling 
the value of each feature and measuring the resultant 
decrease in the model’s performance, such as 
prediction accuracy and area under the curve (AUC) 
(Vallance et al., 2020). The larger the drop in ML 
performance, the more important that feature is. The 
analysis of feature importance in this study 
highlighted that simple time-domain features, 
particularly those extracted from the z-axis, were 
generally most relevant. Other research on significant 
features for HAR using tri-axial accelerometers 
reported that simple time domain features were of 
most significance (Bennasar et al., 2022). A 
comparison of two feature sets for HAR, showed that 
a feature set comprised exclusively of time-domain 
features achieved a performance of 96.7% compared 
to a more complex feature set, containing both time-
domain and frequency-domain derived features 
which obtained a slightly higher performance of 
97.1% (Rosati et al., 2018). The previous research 
suggest that time-domain features can be highly 
effective for HAR tasks, but the addition of frequency 
domain features can reveal underlying patterns and 
oscillations in the data and contribute to the accurate 
classification of complex sports movements 
(Dehkordi et al., 2020; Tran et al., 2014). 
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4 CONCLUSION 

In this study, a sports activity recognition framework 
is proposed for the classification of four hurling sport 
specific movements. Accelerometer data were 
collected from IMUs mounted on the forearm and 
thigh of five hurling athletes. The performance of 
SVM, RF and k-NN models for the recognition and 
classification of Hurling activities was assessed for 
each sensor location. Additionally, the most relevant 
features for activity classification were examined 
though permutation feature importance. According to 
the study results, the RF achieved the best result in 
both cases represented by a mean accuracy of 86% for 
the forearm sensor, and 84% for the thigh sensor, 
respectively. The analysis revealed that time-domain 
features extracted from the y-axis and z-axis were of 
most importance for the thigh sensor in their 
contribution to the RF model’s predictive power. 
Similarly, for the forearm sensor, time-domain 
features extracted from the z-axis were most 
important, specifically ZCR.  

This study demonstrates that dynamic field sports 
involving non-cyclical movements, such as hurling, 
are amenable to human activity recognition research. 
Traditional machine learning models, namely SVM, 
RF and k-NN showed favourable results, as 
demonstrated by mean accuracies between 74% - 
86% for the forearm sensor location, and 65% - 84% 
for the thigh sensor location. Future research in this 
field may consider combining features from different 
sensor locations for increased event detection and 
model generalisability in future scenarios. But if one 
sensor is preferred, a sensor mounted at the forearm 
for recognition and classification of hurling activities 
is recommended.  

The limited sample size of 5 participants reflects 
the specific inclusion criteria for hurling players and 
the availability of participants at the time of testing. 
The small sample size may affect the generalisability 
and interpretation of the findings. However, given 
that this is the first research examining activity 
recognition in the sport of hurling, this research is 
exploratory in nature and provides valuable insights. 
Moreover, the methodology outlined in this research 
did not include hyperparameter tuning for the selected 
models. As a result, this may have affected the 
generalisability and accuracy of the models. Future 
research may consider hyperparameter tuning 
techniques such as Grid Search or Bayesian 
Optimization  to enhance the performance and 
generalisability of SVM, k-NN, and RF models.  
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