
Word Frequency Statistics Based on Serverless Computing

Zhaoxin Jia a
School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, China

Keywords: Serverless Computing, Word Frequency Statistics, Mapreduce, Cloud Computing.

Abstract: Thanks to the continuous updating of server architectures, serverless computing has gradually become a
research hotspot in the current cloud computing field in recent years because of its agile, scalable, and cost-
effective features. This paper proposes a word frequency statistics method based on the serverless computing
technology and MapReduce framework. Specifically, author add a step of preprocessing based on the basic
method. Then, author adaptively assign tasks to each thread according to the total number of words in each
file, which helps to reduce time waste. The filegroup will be split in the map stage. During the reduce stage,
author further count the word frequency in each thread and store it in a temporary file. The project mainly
achieved multi-threaded parallel task completion. Extensive experimental results successfully demonstrated
the superiority of multi-threaded parallel processing efficiency in dealing with large amounts of data, which
author suppose can bring more new insight for developing serverless computing.

1 INTRODUCTION

With the development of science and technology,
research in the field of computer science gradually
shows a trend: the speed of software development far
exceeds the speed of hardware development. To meet
the increasing computational complexity of software,
most solutions related to hardware involve increasing
the number of hardware devices to meet the high
requirements posted by software. The accompanying
problem is that the hardware is still in short supply.
Serverless computing technology has emerged.

Serverless computing belongs to cloud service
technology and is an emerging paradigm of cloud
computing used to develop various software
application processes (Wen, 2022). Serverless
computing is based on cloud computing infrastructure
and service providers allocate computing resources.
The accuracy and real-time nature of this process
mean that the resources allocated do almost exactly
what the given code does. There is no need to worry
about the cost of resource invocation and the
underlying details of the computing platform.
Serverless computing is like public transportation. To
use it, you only need to pay the corresponding fee for
the resources used, and there is no need to pay for idle
virtual machines or containers (Kumar, 2019). This

a https://orcid.org/0009-0006-0265-3357

feature greatly facilitates developers. The client no
longer directly uses cloud infrastructure, but only
uses application process logic without server
provided process execution (Werner, 2018; Shafiei,
2019). However, at the same time, serverless
computing also has some problems that cannot be
ignored, such as the delay caused by platform
function cold start and insufficient resource
utilization (Li, 2021).

MapReduce was originally proposed by Google
as a data parallel programming model for machine
clusters, used to process and generate large datasets
to solve various real-world problems and tasks. It is
also an efficient task scheduling model (Sarkar,
2015). At the beginning of its research, it aimed at
parallel processing of web page data in Google search
engines. The MapReduce model consists of two
functions, which are usually named "map" and
"reduce". Firstly, the "map" function receives data
and processes it into blocks. Each node in the cluster
executes a set of Map tasks in parallel, without
sharing any data with other nodes. Next, the data is
partitioned across all nodes in the cluster. Finally,
each node executes a set of "reduce" tasks in parallel
on the partition it receives(Sarkar, 2015). The
"reduce" function is responsible for accepting and
reducing the intermediate results of the partitioned

100
Jia, Z.
Word Frequency Statistics Based on Serverless Computing.
DOI: 10.5220/0012910600004508
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Engineering Management, Information Technology and Intelligence (EMITI 2024), pages 100-104
ISBN: 978-989-758-713-9
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

data obtained by the "map" function to obtain the final
result. The main advantages of the MapReduce model
are: first, it can process massive amounts of data in
parallel, greatly improving computational speed.
Second, mask the intricate details of the underlying
implementation, which effectively simplifies the
difficulty of writing parallel structured programs and
improves program efficiency. This allows developers
to focus on the program itself, while issues such as
resource allocation and fault tolerance can be handled
by the platform (Czech, 2017). However, MapReduce
also has some shortcomings. Since MapReduce
improves the fault tolerance of long-term analysis
through frequent checkpoints of completed tasks and
data replication, the frequent input and output
required will reduce efficiency. The goal of a parallel
database management system is to improve efficiency
rather than fault tolerance. It may lead to potential
hazards, that is, in the event of a malfunction, a large
number of operations need to be redone, greatly
increasing the complexity (Lee, 2011).

The advantages of serverless computing and
MapReduce show great complementarity in
functionality, which inspires us to combine them.
This study focuses on applying MapReduce to
perform word frequency statistics on words in
multiple texts, and adds a preprocessing step of
counting the number of words in each text before the
model, which is an optimization in the general
approach. By combining the MapReduce model, this
study provides an effective solution to the problem of
word frequency statistics for large amounts of data
and multiple texts, and provides direction for the
further development and optimization of MapReduce
models.

2 METHOD

2.1 MapReduce

MapReduce is an efficient programming model
proposed by Google that combines task scheduling
and parallel computing. Its main application direction
and one of its obvious advantages is processing large-
scale data. The reason why it is more efficient than
other models is its core idea: divide and conquer. The
"map" section decomposes complex tasks, which are
massive amounts of data that require computation,
into several tasks. The "reduce" section receives
intermediate results from the Map section and
summarizes them. The user specifies a map function
that processes a key-value pair to generate a set of
intermediate key-value pairs, and specifies a reduce

function that merges all intermediate values
associated with the same intermediate key (Dean,
2004).

2.2 Alibaba Cloud OSS and FC

Object Storage Service (OSS) is a cloud storage
service provided by Alibaba Cloud that has high
reliability, security, and service availability. The
stored files can be called in different ways, such as
HTTP, RESTful, API, etc. It has a comprehensive
permission control system. Function Calculate (FC)
is a fully managed computing service provided by the
Alibaba Cloud platform. It does not require
purchasing or managing server computing
infrastructure, and only requires uploading code.
Regarding computing resources, service providers
will prepare computing resources and run tasks
flexibly. This design fully meets the requirements of
serverless computing technology: it is based on cloud
computing infrastructure, and service providers
allocate computing resources.

2.3 Alibaba Cloud OSS and FC

The main calling function of this project, denoted as
final-Copy1, is deployed on the Jupyter Notebook
and is responsible for calling the dispatch, mapper,
and reducer functions deployed on the Alibaba Cloud
platform, which are responsible for evenly allocating
computational tasks, decomposing computational
tasks, and aggregating results. The dispatch function
allocates computational tasks to each thread based on
the number of words in the retrieved file; The mapper
and reducer functions implement parallel execution
of multiple mappers and reducers using a multi-
threaded approach, once again improving
computational efficiency and resource and time
waste. These three functions directly access data files
stored in Alibaba Cloud OSS in the form of HTTP
and Alibaba Cloud secret keys. By applying this
feature, experimenter have achieved the requirement
of MapReduce method: to maintain high efficiency
when processing massive data.

2.4 Alibaba Cloud OSS and FC

In this project, a basic requirement for the parallel
execution of MapReduce was achieved by using a
multi-threaded approach. Multi-threading refers to
the generation of multiple tasks within the same
process, namely threads, which can be executed in
parallel. Next, experimenter will compare the
advantages of multi-threading methods with serial

Word Frequency Statistics Based on Serverless Computing

101

execution. Serialization refers to the execution of
multiple tasks by a single thread in a certain order. In
this method, the previous task must be completed
before proceeding to the next task's process. All tasks
cannot overlap in time. For multi-threaded parallel
execution, it is the simultaneous opening of multiple
threads, which strictly means the same occurrence at
the same time, and multiple tasks overlap in time.
Obviously, the efficiency and speed of parallel
execution achieved by multi-threading are
significantly better than serial execution. In addition,
multi-threaded methods are also a convenient and fast
way to achieve parallel task execution at present.

In addition to the multi-threaded method, another
two points of this project are the dispatch function
deployed on Alibaba Cloud FC. As mentioned in
section 2.3, the dispatch function processes HTTP
requests in an HTTP mode. For the list of files
retrieved from the Alibaba Cloud OSS bucket, they
will be sorted based on the number of words in each
file and distributed to different threads to ensure that
the total number of words allocated to each thread is
as close as possible. This can reduce the time waste
and improve the efficiency and resource utilization.

3 EXPERIMENT

3.1 Experimental Settings

This project aims to solve the problem of word
frequency statistics for multiple files using the
MapReduce method. The platform is the OSS and FC
services provided by Alibaba Cloud. All the codes are
implemented using the Python language and the
Jupyter Notebook. The dataset used is 50 randomly
collected English essays from the experimenter's
middle school period, with a total word count of no
less than 5000 words. It is worth noting that according
to the file name number, the number of words in files
1-20 is relatively small, while in the following 30
files, the number of words in each file is obviously
higher than in the first 20. The evaluation indicators
mainly include the time it takes to sequentially count
the word frequency in 10, 20, 30, 40, and 50 files, and
compare it with the time it takes for a single-threaded
serial execution of the same task, in order to study the
efficiency of the MapReduce method combined with
multi-threaded parallel operations.

3.2 Experimental Environment

There are many implementation methods for the
MapReduce model. Considering the specific research

questions and equipment conditions of this project, as
mentioned above, the project applies the FC and OSS
services provided by Alibaba Cloud for word
frequency statistics, and the experimenter's laptop
serves as the commander of this project. Below are
the parameters of each part of the equipment.

(1)As the commander, the computer is equipped
with the traditional 64 bit processor based x64
Windows operating system and the 12th generation
Intel i7 central processor.

(2)The network connecting the computer to the
Alibaba Cloud platform and Jumper Notebook is a
regular home LAN, with a speed of approximately
8.5MB/s.

(3)Jupyter Notebook, formerly known as IPython
Notebook, is an interactive notebook commonly used
in popular areas in the computer field such as data
simulation, statistical modeling, and machine
learning.

3.3 Experimental Process

Firstly, deploy the dispatch, mapper, and reducer
functions in the Alibaba Cloud, and deploy the client
function as the main calling function on the Jupyter
Notebook. The client function issues instructions and
calls the cloud function to execute the task. After the
dispatch function is executed, the files to be counted
are divided into several groups based on the number
of threads and the number of words in the files
assigned. As introduced earlier, the dispatch function
provides a solution for assigning files to each thread
that will perform word frequency statistics tasks.
However, it is worth noting that the dispatch function
only provides an allocation scheme for the mapper
function below, and the data provided to the mapper
function is only some file numbers. After receiving
the allocation scheme provided by the dispatch
function, the mapper function will group the obtained
files according to the scheme and allocate them to
various threads. Each reducer function is responsible
for the word frequency statistics of a thread. Firstly,
the number of words in each file will be output as key-
value pairs, and each will be written into a temporary
file in json format. Next, by reading the key-value
pairs in these json files, summarizing them again to
obtain a final result, and writing it into another file.
At the same time, the time module of the Python
language was introduced into the code of the Jupyter
Notebook, which records the start time when calling
three cloud functions, the end time after all execution
is completed, and the final running time is the
difference between the two times.

EMITI 2024 - International Conference on Engineering Management, Information Technology and Intelligence

102

3.4 Analysis of Experimental Results

According to the experimental method and steps
described above, the experimenter conducts the
experiment and records the experimental results,
namely the program running time and the json format
key-value pairs obtained from each round of the
experiment for word frequency statistics files. At the
same time, to ensure the accuracy and rationality of
the experiment, the experimenter conducted a
sampling check on the correctness of word frequency
in the key-value pair statistical file. The experimental
results are shown in Table 1, and the following points
can be observed:

(1)Under the conditions of this experiment, the
duration is approximately 0.73-1.01 seconds.

(2)According to the experimental process
described in section 3.3 and the special arrangement
of this experiment on the dataset described in section
3.1, it is evident that there is a significant time
difference between the second and third results. This
is consistent with the arrangement of the
experimenter when deploying the test dataset, further
proving the correctness and rationality of this
experiment.

Table 1: Processing time for different lengths of words.

Case Category A Category B
1 0.730 0.730
2 0.745 0.747
3 0.885 0.925
4 0.947 0.999
5 1.012 1.090

(3) The results of multi-threaded parallel

processing are also compared with those of single-
threaded serial processing in Figure 1. It can be
observed that in the first few experiments, due to the
small number of words that need to be counted, the
time difference between serial and parallel processing
is extremely small and the time used is basically the
same. In the latter groups of experiments, as the
number of words increased, the difference in time
between the experiments conducted using serial and
parallel processing methods became more
pronounced, with serial processing time gradually
increasing significantly compared to parallel
processing time. From this, it can be seen that in this
project, parallel processing is superior to serial
processing in terms of operational efficiency, and its
advantages will become more apparent as the amount
of data provided increases. This also strongly
demonstrates the efficiency of the Mapreduce method

combined with multi-threaded parallel processing in
processing huge data.

Figure 1: Performance comparison between multi-threaded
and single-threaded processing (Photo/Picture credit
:Original).

4 DISCUSSION

This experiment applied the MapReduce method to
solve the problem of counting the frequency of words
in multiple files, and added a data preprocessing step
before the processing step to count the number of
words in each file and distribute it evenly to each
thread. However, there are still many directions for
further development or in-depth research in this
project.

(1) Combining with other algorithms. The
proposed solution in this project can serve as the
fundamental solution for the problem of word
frequency statistics. The object of word frequency
statistics should not be limited to word frequency
statistics in multiple files, which may be too
simplistic. The big language model represented by
ChatGPT has attracted attention from all walks of life
and has been imitated by major companies around the
world. These powerful models have enormous
potential in solving various problems, such as natural
language processing (NLP) tasks and real-world
cases, from natural language understanding (NLU) to
generation tasks, and even paving the way for
Artificial General Intelligence (AGI) (Yang, 2023).
The recently proposed model Sora for video
processing provides a development direction for this
project: applying word frequency statistics to audio
and even video. Speech recognition technology can
be used to recognize and record the textual parts in
recorded videos, and then perform word frequency
statistics.

(2) Test with larger scale data. Due to the limited
hardware equipment of the experimenter, the dataset
did not form a large scale, and the total number of
words in the test files has not yet reached the level of
big data. In the future, equipment may be updated to
support a larger amount of data for testing.

Word Frequency Statistics Based on Serverless Computing

103

5 CONCLUSIONS

This project is based on the MapReduce method in
serverless computing technology, and applies multi-
threaded methods to achieve parallel processing. It
combines the OSS and FC services provided by
Alibaba Cloud, and adds a processing step of evenly
distributing files based on the word size before
entering the thread. Finally, the statistical problem of
word frequency in multiple files was completed. In
the experiment, a comparison is also made between
single threading and multi threading, demonstrating
the efficiency of multi threaded parallel processing.

REFERENCES

Czech, Z. J., 2017. Introduction to Parallel Computing.
Cambridge: Cambridge University Press.

Dean, J., Ghemawat, S., 2004. MapReduce: Simplified
Data Processing on Large Cluster. International
Journal of Research and Engineering, 5, 399-403.

Kumar, M., 2019. Serverless Architectures Review, Future
Trend and the Solutions to Open Problems. American
Journal of Software Engineering, 6(1), 1-10.

Lee, K., H., Lee, Y., J., Choi, H., Chung, Y., D., Moon, B.,
2011. Parallel data processing with MapReduce: A
survey. SIGMOD Record, 40(4), 11-20.

Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., Guo, M., 2021.
The Serverless Computing Survey: A Technical Primer
for Design Architecture. ACM Computing Surveys
(CSUR), 54, 1-34.

Sarkar, A., Ghosh, A., Nath, A., 2015. MapReduce: A
Comprehensive Study on Applications, Scope and
Challenges. International Journal of Advance Research
in Computer Science and Management. 3. 256-272.

Shafiei, H., Khonsari, A., Mousavi, P., 2019. Serverless
Computing: A Survey of Opportunities, Challenges,
and Applications. ACM Computing Surveys, 54, 1-32.

Wen, J., Chen, Z., Liu, X., 2022. A Literature Review on
Serverless Computing. arxiv preprint ArXiv,
abs/2206.12275.

Werner, S., Kuhlenkamp, J., Klems, M., Müller, J., Tai, S.,
2018. Serverless Big Data Processing using Matrix
Multiplication as Example. 2018 IEEE International
Conference on Big Data, 358-365.

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin,
B., Hu, X., 2023. Harnessing the Power of LLMs in
Practice: A Survey on ChatGPT and Beyond. ArXiv,
abs/2304.13712.

EMITI 2024 - International Conference on Engineering Management, Information Technology and Intelligence

104

