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Abstract: Human emotion identification represents a formidable challenge within computer vision research. This study 
endeavours to classify human emotions across seven discrete categories: anger, disgust, fear, happiness, 
neutral, sadness, and surprise. To address this challenge, this paper introduces the Rotation-Aware Residual 
Network (RARN), a novel framework leveraging convolutional neural networks (CNNs) and spatial attention 
mechanisms. Notably, this approach is designed to excel in accurately discerning facial emotions amidst 
complex real-world contexts. Experimental validation conducted on the FER-2013 Dataset underscores the 
efficacy of our proposed model, demonstrating notable improvements in emotion recognition accuracy. 
Crucially, the Rotation-Aware Residual Network's innovative integration of multi-scale fusion and angle-
sensitive spatial attention modules underscores its unique capacity to capture nuanced facial expressions. This 
breakthrough has significant implications for diverse applications, including human-computer interaction, 
psychological health assessment, and social signal processing. Moving forward, future research endeavours 
will focus on further refining the network architecture and expanding the diversity of datasets to enhance the 
model's performance across various scenarios. 

1 INTRODUCTION 

Automatic facial expression analysis is widely used 
in computer vision for many applications, such as 
emotion prediction, expression retrieval, and image 
album summarization, and has been extensively 
studied (He, 2016)(Szegedy, 2017)(Zhou, 2023). The 
generalised classification model categorises emotion 
detection into happiness, sadness, fear, fury, disgust, 
and surprise. These categories are established to 
streamline the identification and description process 
through common terminology. The universality 
hypothesis of emotion (Ekman, 1969) is widely used 
in emotional computing research due to its simplicity 
and universality, making it the preferred theory. The 
implementation of mobile and embedded computing 
requires not just stronger hardware, more datasets, 
and more complex models for autonomous facial 
expression analysis but also network topologies that 
are efficient in terms of power consumption and 
memory utilisation (Szegedy, 2017). 

The most straightforward strategy to enhance the 
effectiveness of deep neural networks is to increase 
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their depth and breadth (Arora, 2014). Nevertheless, 
this would unavoidably lead to a significant rise in the 
network's parameter count, leading to overfitting (He, 
2016). Szegedy et al. (Szegedy, 2017) from Google 
introduced the Inception module of deep 
convolutional networks as a solution to the 
aforementioned issues. This module's core principle 
is the parallel integration of several convolutional 
layers; concatenating the output matrices from each 
layer in the depth dimension produces a more 
complex matrix. By repeatedly stacking the Inception 
module, a more extensive network can be created, 
effectively increasing the network's depth and breadth. 
This, in turn, enhances the accuracy of the deep 
learning network and prevents overfitting. One 
benefit of utilising the Inception module is its 
capacity to merge visual data of varying dimensions 
while reducing the size of matrices containing 
numerous entries. This aggregation technique 
facilitates extracting characteristics from images of 
various sizes. 

In addition to the Inception module, this study 
delves into the residual connections proposed by He 
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et al. (He, 2016). They contend that residual 
connections are inherently vital for efficiently 
training deep networks. Their ResNet addresses the 
issue of model degradation caused by increased 
network depth through the incorporation of a deep 
residual learning module. Specifically, this module 
employs a stacking mechanism that combines the 
input and output of each layer without introducing 
additional parameters or computations, thereby 
enhancing the convergence speed of model training. 
Another study (Wang, 2017) has demonstrated that 
incorporating a spatial attention mechanism into 
ResNet ensures that an image retains its original 
features even after undergoing operations like 
cropping, translation, or rotation. This enhancement 
significantly improves the accuracy of model 
predictions. 

This study encapsulates the foundational concepts 
of the previously mentioned network modules and 
introduces a novel and versatile facial expression 
detection model, termed the Rotation-Aware 
Residual Network (RARN). RARN is designed to 
balance both network performance and efficiency, 
addressing critical aspects overlooked by existing 
architectures. Through rigorous experimentation on 
the FER-2013 dataset, the effectiveness and 
practicality of RARN are thoroughly evaluated. 
Comparative analyses against conventional ResNet 
and InceptionNet architectures highlight the unique 
contributions of RARN in achieving superior 
performance metrics while maintaining 
computational efficiency. This research underscores 
the significance of incorporating rotation-aware 
mechanisms in facial expression detection, offering 
valuable insights into improving accuracy and 
robustness. 

2 LITERATURE REVIEW 

2.1 Deep Residual Learning 

He et al. (He, 2016) proposed including a residual 
framework in the network architecture to address the 
issue of training deep networks. The residual network 
is based on the concept of a highway network, which 
has shortcut connections in its construction. This 
allows the input to be immediately sent to the output. 
Specifically, the fundamental concept underlying 
ResNet is the presumption that an optimal solution 
exists for the model's network architecture. In other 
words, ResNet holds that numerous network layers 
are frequently redundant in the actual deep network 
architecture. To achieve the completion of the 

identity mapping in these redundant levels and verify 
that the input and output of the identity layer are 
identical, as seen in Figure 1, ResNet modifies the 
input of the residual module from 𝐹ሺ𝑋ሻ to 𝐻ሺ𝑋ሻ ൌ𝐹ሺ𝑋ሻ ൅ 𝑥. If the network layers are redundant, then 
just let 𝐹ሺ𝑋ሻ  equal zero to achieve the identity 
mapping. Through the incorporation of this residual 
learning module, the network can substantially 
augment the network layer's depth throughout the 
design phase. 

  

 
Figure 1: Residual Module (Photo/Picture credit: Original). 

 
The ResNet architecture is often used for object 

recognition because of its efficient design. The 
architecture has a single convolutional layer, multiple 
convolutional blocks in the intermediate section, and 
an output layer. The ResNet architecture is classified 
as ResNet18, ResNet34, ResNet50, ResNet101, and 
ResNet152, according to the quantity of 
convolutional blocks included in the centre. As more 
blocks are included, the network increases in depth, 
enabling the detection of increasingly complex 
feature patterns. 

2.2 Inception Module 

The primary concept behind the Inception module 
(Szegedy, 2015) is to simultaneously apply multiple 
convolution operations or pooling operations to the 
input image. This enables the retrieval of different 
dimensions of feature data from the input picture. The 
convolution output results are then merged and 
concatenated to create a more comprehensive feature 
map, resulting in an enhanced image representation. 
This not only significantly expands the breadth of the 
network, but it may also serve as a substitute for 
manually picking the filter type in a convolutional 
layer or deciding whether to set convolutional and 
pooling layers. 
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The Size-Aware Parallel Residual network 
architecture suggested in this paper is a deep and 
intricate structure composed of linked modules 
inspired by the concept of the Inception module 
(Szegedy, 2016). Each module has several 
convolutional and pooling layers specifically 
designed to extract distinct characteristics from the 
input picture. The Inception module consists of two 
main components: decomposed convolution and 
batch normalisation. Decomposed convolutions use a 
blend of convolutional filters with varying kernel 
sizes to extract characteristics from the input picture. 
1x1 convolutional filters are used to decrease the 
input dimensionality, while high-latitude 
convolutional filters are utilised to extract more 
intricate features from the input image. Batch 
normalisation is a technique that helps to stabilise the 
training process and mitigate the problem of internal 
covariate shift. Internal covariate shift refers to the 
changes in the distribution of network inputs that 
occur during training. 

2.3 Attention 

While convolutional neural networks possess a robust 
capacity for nonlinear expression, in cases when the 
information is exceedingly complicated, it becomes 
imperative to construct a more intricate network 
model in order to get a more potent expression ability. 
To simplify the model, the attention mechanism may 
enhance the neural network's capacity to process 
information by mimicking the way the human brain 
handles excessive data. During face expression 
identification tasks, the gathered photographs are 
often categorised into distinct classification outcomes 
as a consequence of varying shooting angles. An 
effective approach is to enhance the network's 
sensitivity to angles by including a spatial attention 
mechanism in the network design. A spatial 
transformation neural network (Zhang, 2023) has the 
ability to convert different types of deformed data in 
space and automatically identify the features of 
significant areas. This module guarantees that the 
resulting picture after performing cropping, 
translation, or rotation operations will be identical to 
the original image before the operations were applied. 

3 ROTATION-AWARE RESIDUAL 
NETWORK (RARN) 

3.1 Overview 

The RARN builds upon the ResNet framework for 
 

 facial expression classification, leveraging both 
high-level and low-level image features while 
integrating an angle-sensitive attention mechanism. 
Illustrated in Figure 2, the network architecture 
comprises a multi-scale fusion module and an angle-
sensitive spatial attention module. The former 
extracts features from input images using a 
combination of down-sampling, up-sampling, and 
lateral connections, facilitating the fusion of low-
level and high-level information for comprehensive 
feature representation. Meanwhile, the angle-
sensitive spatial attention module enhances feature 
extraction by incorporating angle information into the 
feature map, allowing for adaptive feature weighting 
tailored to different facial expressions. This 
innovative approach enables RARN to capture both 
global and local characteristics more effectively, 
thereby enhancing its ability to classify facial 
expressions accurately. 

  

 
Figure 2: Rotation-Aware Residual Network (Photo/Picture 
credit: Original). 

3.2 Unit for Fusion on Multiple Scales 

The unit for fusion on multiple scales integrates 
micro-expression features into the generalized facial 
expression recognition process. Specifically, it 
incorporates low-level characteristics to detect subtle 
changes in expression, as relying solely on high-level 
features may overlook them. Typically, low-level 
characteristics offer limited semantic information but 
provide precise physical position details. On the other 
hand, high-level characteristics contain rich semantic 
details but lack complete spatial position information. 
The module aims to optimise the utilisation of global 
features by integrating low-level and high-level 
features. 

To mitigate the potential issue of gradient 
vanishing in the deep feature extraction network, this 
study employs Resnet as the feature extraction 
network for the detection network. After a thorough 
experimental comparison, it is determined that 
Resnet152 has a superior detection effect, and the 
time loss is also within an acceptable range. Therefore, 
Resnet152 is chosen as the backbone network. 
Comprising three steps - downsampling, upsampling, 
and lateral connection - as depicted in Figure 3, the 
multi-scale fusion module orchestrates the integration 
process. 

  

RARN: Lightweight Deep Residual Learning with Attention for Human Emotions Recognition

129



 
Figure 3: Multi-scale fusion module (Photo/Picture credit: Original). 

The downsampling process involves utilizing the 
Residual Module architecture to extract feature maps 
from five layers of varying depths, starting from the 
bottom and progressing upwards, with a scaling 
factor of two. This phase establishes a feature 
hierarchy comprising feature maps of diverse sizes. 
Considering that the bottommost layer of each stage 
has the most durable traits, the output from the last 
layer of each stage is chosen for further operations. 
Downsampling allows the network to retrieve feature 
maps, transitioning from high-level to low-level. This 
enables the network to capture both the overall 
characteristics of the expression as well as the subtle 
variations in micro-expressions for each face. 

To fully use these feature maps, this study uses 
upsampling and lateral connection techniques to 
effectively merge the features at each layer. 
Specifically, starting with the fifth layer feature map 
A5, the feature map A5 is upsampled to match the 
size of the fourth layer feature map A4. Subsequently, 
the newly generated feature map A5' and the feature 
map from the fourth layer A4 are joined in a lateral 
manner to produce a novel feature map. Similarly, up 
sampling this new feature map to match the 
dimensions of the feature map A3, which outputs a 
new feature map A4'. And then laterally connect A4' 
and A3. This iterative procedure continues until all 
feature maps have been computed. By combining 
high-level and low-level features, the network is able 
to effectively capture both global and local features 
without experiencing overfitting or underfitting. 
Furthermore, this strategy does not adversely impact 
the performance of the model. 

3.3 Angle-Sensitive Spatial Attention 
Module 

The angle-sensitive spatial attention module 
comprises six distinct phases, as seen in Figure 4. 

  

 
Figure 4: Angle-sensitive Spatial Attention Module 
(Photo/Picture credit: Original). 

First, the input feature map is convolutionally 
transformed into the Angle feature map, which is 
subsequently subjected to average pooling and max-
pooling across column channels. In the spatial 
dimension, global maximum pooling and global 
average pooling reduce the size of the feature maps. 
Pooling at various levels results in more intricate 
high-level characteristics being recovered. More 
precisely, the process of global average pooling 
allows for the inclusion of each individual pixel on 
the feature map, while global max pooling allows for 
the identification of the location in the feature map 
with the highest response during gradient 
backpropagation. 

Next, the two graphs generated in the previous 
phase are joined along the channel axis. Then, a 
convolutional network is used to enhance the capacity 
for nonlinear expression. Subsequently, the feature 
maps undergo normalisation via a Sigmoid function 
to derive weights for the channel characteristics, 
resulting in the angle-sensitive spatial attention 
weight map. Ultimately, the acquired angle-sensitive 
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spatial attention weight map is multiplied by the input 
feature map to allocate distinct attention weights to 
the feature map based on the spatial angle. 

4 EXPERIMENTS 

4.1 FER-2013 Dataset 

The FER-2013 Dataset was first shown at the Facial 
Expression Recognition Challenge at the ICML 2013 
session (Goodfellow, 2013). The dataset comprises 
35,887 grayscale photographs of faces with 
dimensions of 48x48 pixels, as shown in Figure 5. 

  

 
Figure 5 Sample Image & Pixel Intensity Distribution 
(Photo/Picture credit: Original). 

The majority of these photos have been mechanically 
aligned to ensure that the faces are roughly centred 
and occupy a similar amount of space in each image. 
A comparison of the training and test datasets' label 
distributions is shown in Figure 6. 

The training sample consists of two columns, 
namely "emotion" and "pixel". The Emotion column 
categorises each face into one of seven distinct 
categories depending on the specific emotion shown 

in the facial expression. These categories are as 
follows: anger, disgusted, fearful, happy, neutral, sad, 
and surprised. The "pixels" column comprises a string 
of characters surrounded by quotation marks for each 
picture. The test sample only consists of the "pixel" 
column. 

4.2 Image Pre-Processing 

This study employs many popular data augmentation 
techniques on the training dataset to generate new and 
different pictures from the original photos and 
enhance the performance and robustness of Size-
Aware Parallel Residual. These include various 
modifications such as rotation, mirroring, and 
cropping, along with brightness, contrast, and colour 
adjustments. Engaging in this strategy mitigates 
overfitting and enhances the generalisation capacity 
of models trained on image data. Table 1 presents the 
data augmentation settings used for the FER-2013 
Dataset in this study. 

Table 1: Image Augmentation Parameters. 

Parameter Value 

Horizontal Flip 1 

Vertical Flip 1 
Random Grayscale 0.2 

Height Shift Range 0.28 

Width Shift Range 0.75 

Rotation Range 90 

Colour Jitter brightness=0.2, contrast=0.2, 
hue=0.2 

Normalisation 1 
 

 
Figure 6: Training and Test Set Data Distribution (Photo/Picture credit: Original). 
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4.3 Training 

The network is trained using the PyTorch and 
Torchvision libraries in Python for 33 epochs. The 
batch size is 64. The optimisation uses the SGD 
optimiser with an initial learning rate of 0.01 and a 
decay rate of 0.9 after three epochs of repetition. The 
loss function employed is categorical cross-entropy, 

calculated using the formula ିଵே ∑௜ୀଵே 𝑙𝑜𝑔𝑝௠௢ௗ௘௟൫𝑦௜ ∈𝑐௬௜൯. In this calculation, 𝑝௠௢ௗ௘௟൫𝑦௜ ∈ 𝑐௬௜൯ represents 
the chance that a picture y_i belongs to category 𝐶௬௜. 
All tests are conducted under the same running 
environment, as shown in Table 2. 

Table 2: Running Environment. 

System Ubuntu 22.04 
CPU AMD Ryzen 9 5900HS 

Memory 32GB 
GPU NVIDIA RTX 3060 

4.4 Evaluation 

Figure 7 illustrates the precision of the model across 
both the training and test datasets. It vividly portrays 
the model's progressive convergence, culminating 
instability on the test set, ultimately achieving a final 
accuracy of 57.51%. By observing the changes in the 
test curves of the two graphs, it becomes evident that 
the model has reached a state of stability by the 25th 
epoch of training. Meanwhile, as the model is further 
trained, the evaluation accuracy and loss are 
correspondingly enhanced, although the training 
accuracy is constantly improving. This indicates that 
the proposed model has not entered an overfitting 
state and can stimulate the best performance of the 
model. 

 

 
Figure 7: Accuracy & Loss Distribution (Photo/Picture credit: Original). 

 
Figure 8: Classification Report (Photo/Picture credit: Original). 
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The detailed statistics presented in Figure 8 
meticulously evaluate the accuracy of the forecast 
outcomes. It's noteworthy that the training efficacy of 
the network model is perceptibly impacted by the 
quantity of training datasets. The category of disgust 
has the smallest dataset, which explains the reason 
why it has the most notable disparity in terms of 
Precision, Recall, and F1-Score. The two classes that 
showed the most significant discrepancies in the 
effect of model predictions on the test set are the 
fearful and happy classes. Based on this outcome, it 
can be deduced that some expressions exhibit notable 
variations in prediction outcomes as a consequence of 
their intricacy. Hence, investigating the network 
structure with the explicit goal of identifying a certain 
kind of expression might be regarded as a prospective 
area of study. 

To validate the improved classification 
performance of the proposed network, this research 
also conducts a comparative analysis of many popular 
classification neural networks, including 
InceptionNet (Szegedy, 2017) and MobileNet 
(Howard, 2017). Table 3 demonstrates that when 
using the same training settings and environment, 
RARN outperforms other models in terms of 
obtaining convergence and producing a final model 
with greater accuracy. RARN enhances the accuracy 
of the model's recognition rate while only requiring a 
minimal amount of parameters. This demonstrates 
that RARN guarantees the performance of the 
network while also assuring the benefits of 
operational efficiency. RARN achieved an Accuracy 
of 57.51%, with gains of 0.54% and 21.17% 
compared to InceptionNet and MobieNet 

Table 3: Comparison of Accuracy. 

Network Accuracy 

RARN 57.51% 
InceptionNet 56.47% 
MobielNet 36.34% 

5 CONCLUSIONS 

This study presents a comprehensive facial 
expression categorization technique that harnesses 
attention mechanisms and deep learning. The 
approach integrates a multi-scale fusion module and 
an angle-sensitive spatial attention module to drive 
the classification function. While the multi-scale 
fusion module captures both global and specific 
characteristics of the input image, the angle-sensitive 

spatial attention module enhances feature mapping by 
incorporating angle information. Experimental 
results showcase the method's superior recognition 
rate and substantial improvement in facial expression 
categorization. Future research endeavours will delve 
into refining network structures, exploring 
parameters like convolution core size and step size, 
and further defining network levels. Additionally, the 
inclusion of more extensive datasets will enhance the 
evaluation of the network's performance. 

REFERENCES 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual 
learning for image recognition. In Proceedings of the 
IEEE conference on computer vision and pattern 
recognition (pp. 770-778). 

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017, 
February). Inception-v4, inception-resnet and the 
impact of residual connections on learning. In 
Proceedings of the AAAI Conference on artificial 
intelligence (Vol. 31, No. 1). 

Zhou, J., Xiong, Y., Chiu, C., Liu, F., & Gong, X. (2023). 
Sat: Size-aware transformer for 3d point cloud semantic 
segmentation. arXiv preprint arXiv:2301.06869. 

Ekman, P., Sorenson, E. R., & Friesen, W. V. (1969). Pan-
cultural elements in facial displays of emotion. Science, 
164(3875), 86-88. 

Arora, S., Bhaskara, A., Ge, R., & Ma, T. (2014, January). 
Provable bounds for learning some deep 
representations. In International conference on machine 
learning (pp. 584-592). PMLR. 

Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., ... 
& Tang, X. (2017). Residual attention network for 
image classification. In Proceedings of the IEEE 
conference on computer vision and pattern recognition 
(pp. 3156-3164). 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., 
Anguelov, D., ... & Rabinovich, A. (2015). Going 
deeper with convolutions. In Proceedings of the IEEE 
conf. on Computer Vision and Pattern Recognition (pp. 
1-9). 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, 
Z. (2016). Rethinking the inception architecture for 
computer vision. In Proceedings of the IEEE conf. on 
computer vision and pattern recognition (pp. 2818-
2826). 

Zhang, X., Liu, C., Yang, D., Song, T., Ye, Y., Li, K., & 
Song, Y. (2023). Rfaconv: Innovating spatital attention 
and standard convolutional operation. arXiv preprint 
arXiv:2304.03198. 

Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A., 
Mirza, M., Hamner, B., ... & Bengio, Y. (2013). 
Challenges in representation learning: A report on three 
machine learning contests. In Neural Information 
Processing: 20th International Conference, ICONIP 

RARN: Lightweight Deep Residual Learning with Attention for Human Emotions Recognition

133



2013, Daegu, Korea, November 3-7, 2013. Proceedings, 
Part III 20 (pp. 117-124). Springer berlin heidelberg. 

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, 
W., Weyand, T., ... & Adam, H. (2017). Mobilenets: 
Efficient convolutional neural networks for mobile 
vision applications. arXiv preprint arXiv:1704.04861. 

EMITI 2024 - International Conference on Engineering Management, Information Technology and Intelligence

134


