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Visual odometry is a key component of autonomous vehicle navigation due to its cost-effectiveness and ef-
ficiency. However, it faces challenges in low-light conditions because it relies solely on visual features. To
mitigate this issue, various methods have been proposed, including sensor fusion with LiDAR, multi-camera
systems, and deep learning models based on optical flow and geometric bundle adjustment. While these
approaches show potential, they are often computationally intensive, perform inconsistently under different
lighting conditions, and require extensive parameter tuning. This paper evaluates the impact of image en-
hancement models on visual odometry estimation in low-light scenarios. We assess odometry performance on
images processed with gamma transformation and four deep learning models: RetinexFormer, MAXIM, MIR-
Net, and KinD++. These enhanced images were tested using two odometry estimation techniques: TartanVO
and Selective VIO. Our findings highlight the importance of models that enhance odometry-specific features
rather than merely increasing image brightness. Additionally, the results suggest that improving odometry
accuracy requires image-processing models tailored to the specific needs of odometry estimation. Further-
more, since different odometry models operate on distinct principles, the same image-processing technique
may yield varying results across different models.

1 INTRODUCTION

Odometry estimation is an important process for the
navigation of autonomous robots, particularly in envi-
ronments that lack pre-existing maps. Odometry in-
volves estimating the self-motion of an autonomous
vehicle based on sensor measurements, predicting its
pose over time. Pose estimation aims to determine the
robot’s position and orientation relative to a reference
frame. Visual odometry offers several advantages, in-
cluding lower computational complexity compared to
other odometry methods. However, it tends to per-
form sub-optimally in low-light or dark conditions
(Zhao et al., 2021; Wisth et al., 2021; Lee et al.,
2024). Various enhancement techniques have been in-
vestigated to address this limitation, each presenting
unique advantages and trade-offs.

In this study, we evaluate the impact of gamma
transformation and four deep learning-based image
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enhancement models—RetinexFormer (Cai et al.,
2023), MAXIM (Tu et al., 2022), MIRNet (Zamir
et al., 2022), and KinD++ (Zhang et al., 2021)—on
visual odometry estimation under low-light condi-
tions. For our experiments, we used four sequences
(01, 06, 07, and 10) from the KITTI dataset (Geiger
et al., 2012), which consists of 11 sequences of im-
ages with ground truth poses. We randomly chose
these sequences without bias towards any particular
result. Although the KITTI sequences include im-
ages with mixed lighting conditions, they do not rep-
resent extremely dark conditions, such as those in
the evening. Therefore, we artificially darkened the
KITTI images to simulate low-light conditions for our
testing.

We chose TartanVO (Wang et al., 2021) and Selec-
tive VIO (Yang et al., 2022) for the odometry estima-
tion evaluation. We selected TartanVO based on the
’its designers’ claim that it can generalize to various
environmental conditions. We chose Selective VIO
for its ability to achieve near ground truth odometry
while being resource-efficient due to its lower com-
putational cost.
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Low-light conditions exacerbate image degrada-
tion issues such as noise and color distortion, common
in settings with limited camera quality. Simply in-
creasing brightness can worsen these issues by ampli-
fying image artifacts. Therefore, effective low-light
enhancement requires not only brightening shadows
but also reducing noise and preserving trackable fea-
tures for accurate pose estimation.

RetinexFormer (Cai et al., 2023) enhances im-
ages by decomposing them into illumination and
reflectance components, adjusting light and remov-
ing degradation separately. It uses an Illumination-
Guided Transformer to manage long-range dependen-
cies, outperforming 17 other methods on 13 low-light
benchmarks. Similarly, KinD++ (Zhang et al., 2021)
uses a retinex-based approach outperforming 12 other
models on seven datasets, though DUPE (Wang et al.,
2019) showed comparable results in some cases.

MAXIM (Tu et al., 2022) enhances dark regions
using a UNet-shaped framework with spatially-gated
MLPs, combining local and global visual cues. It per-
formed well on low-light enhancement tasks, though
MIRNet (Zamir et al., 2022) had a higher Peak
Signal-to-Noise Ratio but comparable Structural Sim-
ilarity Index. MIRNet, with its multi-scale informa-
tion retention and attention mechanisms, preserves
spatial details while enriching features across scales,
making it highly effective on low-light benchmarks.

Instead of aiming to perfectly restore original im-
age quality, our study focuses on improving odom-
etry and pose estimation under low-light conditions.
Therefore, we used odometry metrics like absolute
trajectory error, relative translational error, and rela-
tive rotational error for evaluating and comparing the
results in this study.

This paper makes the following contributions:

It presents a comparative analysis of odometry
performance acheived by gamma transformation
and four state-of-the-art image enhancement mod-
els.

* It demonstrates that none of the models performed
optimally in all scenarios, highlighting the need
for a model that enhances features useful for
odometry while removing artifacts that decrease
performance.

It identifies the strengths and weaknesses of each
enhancement model in the context of odometry,
offering practical recommendations for their use
in specific scenarios.

The rest of the paper is organized as follows: Sec-
tion II presents the related works. Section III intro-
duces the methodology. Section IV presents the re-
sults and discussion. Finally, Section V concludes the

294

paper, summarizing the key findings and implications
of the research.

2 RELATED WORK

Visual odometry faces challenges in low-light and
blurry conditions due to haze, motion blur, and sim-
ilar factors. Various approaches, including sensor-
fusion methods with LiDAR, have been explored to
enhance performance in such conditions (Zhao et al.,
2021; Wisth et al., 2021; Lee et al., 2024). Multi-
camera systems outperform monocular setups in dark
environments Liu et al.’s (Liu et al., 2018) , but multi-
sensor odometry increases computational costs. To
mitigate these issues, recent research focuses on en-
hancing monocular odometry through position-aware
optical flow and geometric bundle adjustment (Cao
et al.,, 2023). Despite achieving superior results in
low-light settings, these methods often struggle with
depth estimation and object proximity issues in high-
luminance and dynamic environments.
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Figure 1: Methodology diagram.
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Traditional algorithms like adaptive histogram
equalization have been employed to enhance low-
light images for better odometry performance (Hao
et al., 2019; Zhang et al., 2022; Gao et al., 2022).
However, these methods often fail to account for vary-
ing illumination within the same image, leading to
suboptimal results. Moreover, contrary to learning-
based approaches, their parameters must be tuned
for specific lighting conditions in most cases. Con-
versely, deep learning approaches like CycleGAN and
generative adversarial networks have been proposed
to enhance low-light images while maintaining struc-
tural consistency between frames (You et al., 2023).
Efforts have also been made to integrate low-light
capabilities directly into odometry estimation neural
networks using binary and deep descriptors (Alismail
et al., 2016), though these studies often lack general-
izability.

3 METHODOLOGY

The methodology employed in this study consists of
several key steps, organized into five functional units
(FUs), as illustrated in Figure 1.

3.1 FUI1: Image Darkening

The original KITTI dataset sequences (01, 06, 07,
and 10) were predominantly recorded during daylight,
which does not represent the low-light conditions this
study aims to investigate. To address this, we applied
a gamma transformation to darken the images to sim-
ulate night-time conditions. This method effectively
adjusts the luminance through a non-linear mapping
of pixel intensities, allowing us to retain fine details
while creating the desired low-light effect. The gen-
eral form of gamma transformation is expressed as:
Iowt = c- I;fl, where I,y denotes the output pixel in-
tensity, c is a scaling constant, typically set to 1 for
simplicity, 7y is the gamma correction parameter (we
used gamma value 0.3), and [;, represents the input
pixel intensity, normalized to the range [0, 1].

3.2 FU2: Image Enhancement

The darkened images were then processed using
four state-of-the-art image enhancement methods:
RetinexFormer, MAXIM, KinD++, and MIRNet. The
purpose of this step was to assess the effect of these
enhancement models on the odometry estimation per-
formance. In Figure 2, one image from KITTI dataset
and its enhanced versions using image processing
methods is shown.

3.3 FU3: Odometry Estimation

We tested the enhanced images using two odometry
estimation models, TartanVO and Selective VIO, to
evaluate their performance in tracking and estimating
pose. These models were chosen for their robustness
in varying environmental conditions and their ability
to handle different image qualities.

3.4 FU4: Edge Enhancement

We observed that in RetinexFormer-enhanced images,
the color channels and image features seemed to dete-
riorate, yet they consistently demonstrated strong per-
formance in many cases. We attributed this to the en-
hancement of edges. To investigate this further, we
explored the impact of edge enhancement on odom-
etry estimation. As the next step in our research, we
applied edge enhancement techniques to the images.
Examples of images enhanced by RetinexFormer are
shown in Figure 3. To enhance edges, we first ap-
plied a Gaussian blur with a sigma value of 2 to re-
duce noise and smooth the image. Then, we used the
Canny edge detector with threshold values of 100 and
200 to identify edges. To make the detected edges
more pronounced, we dilated them using a 3x3 ker-
nel. The edge map, initially in grayscale, was con-
verted to a three-channel image to match the original
image. Finally, we combined the original image with
the edge map by blending them with weights of 1.5
for the original image and -0.5 for the edges, result-
ing in a sharpened image with enhanced edges.

3.5 FUS: Performance Comparison

Finally, the odometry estimation performance across
different image versions was compared the using met-
rics: absolute trajectory error (ATE), relative trans-
lational error (%), and relative rotational error (rye).
ATE assesses the global accuracy of the estimated tra-
jectory by comparing it to the ground truth, provid-
ing a single error value that summarizes the devia-
tion. #, and ry measure the translation and rotation
errors over specific distances or time intervals, respec-
tively, representing the local accuracy over short tra-
jectory segments. Lower values of ATE, t.|, and rye]
indicate better performance. The analysis in this pa-
per involved a thorough examination of error curves,
evaluation metrics, and speed maps.
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(c) Image enhanced using
KinD++

(e) Image enhanced using
RetinexFormer

(b) Darkened image with Gamma
transform

(d) Image enhanced using
Maxim

(f) Image enhanced using
MIRNet

Figure 2: Sample images enhanced from KITTI dataset using four enhancement models.

gt

Figure 3: Images enhanced using RetinexFormer model.

4 RESULTS AND DISCUSSION

This section evaluates the impact of various image
enhancement techniques on visual odometry perfor-
mance using the TartanVO and Selective VIO tech-
niques. The discussion is organized based on the two
odometry models.

4.1 Odometry Performance with
TartanVO

Figure 4 shows trajectories produced using TartanVO
using images processed using various image process-
ing methods. Figure 5 and 7 show the results of odom-
etry estimation using TartanVO on KITTI sequences
01, 06, 07, and 10. These figures shows that MAXIM-
enhanced images generally provided the best overall
odometry performance when tested with TartanVO,
especially noticeable improvements in ATE for se-
quences 01 and 10. However, a significant 7 value
for MAXIM-enhanced Seq-01 suggests it may strug-
gle with accurate translations over smaller segments.
This indicates that while MAXIM enhances global
trajectory consistency, it may not reliably estimate
smaller segment translations. Additionally, edge-
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enhanced images with MAXIM show consistent per-
formance but highlight issues with Seq-01. Rotation
estimates exhibited minimal variation across images
processed with all four different methods as can be
seen in Figure 7.

The ATE results for Seq-06 and Seq-10 demon-
strate that odometry performance is negatively af-
fected in dark conditions. Conversely, improved per-
formance using dark images in Seq-01 and Seq-07,
compared to original KITTI images is due to en-
hanced image contrast. Despite the general improve-
ment with image enhancement models, maintaining
brightness consistency across the sequence is crucial
for better tracking and odometry estimation.

4.2 Odometry Performance with
Selective VIO

Figure 6 and 8 shows the results of odometry esti-
mation using Selective-VIO on KITTI sequences 01,
06, 07, and 10. MIRNet edge-enhanced images of-
fered the best performance for odometry estimation
with Selective VIO, with significantly lower ATE val-
ues across most sequences, making it highly effective
for this model. Conversely, RetinexFormer showed
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Figure 4: Odometry estimation trajectories using TartanVO.

the worst performance, especially when using edge-
enhanced images, indicating its unsuitability under
dark conditions. MAXIM-enhanced images provided
moderate improvements but lacked consistency, par-
ticularly in edge-enhanced scenarios. Overall, dark
images enhanced using MIRNet and KinD++, and
edge-enhanced versions of images enhanced using
MIRNet appeared promising for Selective VIO.

4.3 Impact of Edge Enhancement

The analysis showed that not all methods benefited
from edge enhancement. While RetinexFormer dete-
riorated the visual appearance of images, it still per-
formed better in some cases than other models even
though the images processed by it appeared to keep
edges of objects and rest of the image content van-
ished. This prompted an investigation into edge en-
hancement’s effect on odometry estimation. Edge-
enhanced original images did not significantly im-
prove accuracy with TartanVO, while they did im-
prove performance with Selective VIO, except when
the images were darkened. In sequences where the
original images were already well-lit or had a lower
contrast, edge enhancement sometimes degraded per-
formance. For example, in well-lit sequences, the ad-
ditional emphasis on edges introduced by enhance-
ment techniques like RetinexFormer occasionally led
to over-sharpening, which in turn reduced the over-
all quality of feature matching and tracking. Mor-
ever, edge enhancement method we used did not en-
sure that edge sharpening is consistently done across
the image sequence. This result highlights the impor-
tance of carefully selecting when and how to apply
edge enhancement, depending on the specific charac-
teristics of the image and the odometry model being
used. Compared to TartanVO, Selective VIO showed
more consistent benefits from edge enhancement, es-
pecially when combined with MIRNet.

4.4 Speed and Lighting Variation

Rotation estimates exhibited minimal variation across
images processed with all models. However, er-
ror curves indicated a consistent trend where se-
quences with abrupt lighting changes and higher
speeds showed higher errors. This suggests that im-
age enhancement methods should focus on improv-
ing reliable feature extraction and maintaining con-
sistent lighting conditions rather than indiscriminately
brightening images.

S CONCLUSION AND FUTURE
WORK

This study addressed the decline in odometry
performance under dark conditions by evaluat-
ing four deep learning-based image enhancement
techniques—MAXIM, MIRNet, RetinexFormer, and
KinD++—on darkened images from the KITTI
dataset. Our findings indicate that while MAXIM-
enhanced KITTI sequences generally performed well
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Figure 5: ATE comparison for TartanVO on different KITTI sequences.
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Figure 6: ATE comparison for Selective-VIO on different KITTI sequences.

with TartanVO, not all sequences yielded optimal re-
sults. For Selective VIO, MIRNet, its edge-enhanced
versions, and KinD++ showed promise in improving
odometry performance. However, maintaining bright-
ness consistency across image sequences remains cru-
cial for reliable tracking and odometry estimation.
Most existing image enhancement methods are
general-purpose models that do not account for their
impact on odometry performance. As such, our fu-
ture work will focus on integrating odometry-aware
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loss functions into the training of image enhancement
models. We also aim to validate these techniques in
real-time scenarios across diverse low-light datasets.
This study underscores the need for adaptive en-
hancement strategies tailored to the specific require-
ments of different odometry algorithms, particularly
in challenging lighting conditions. Given that Selec-
tive VIO and TartanVO models respond differently
to image enhancements, it is essential to test mul-
tiple methods to identify the best combination for
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real-world applications. Future research should pri-
oritize developing robust, reliable navigation systems
for autonomous vehicles operating in low-light en-
vironments by incorporating odometry-aware train-
ing approaches. Additionally, future work should
also emphasize the importance of maintaining bright-
ness consistency across image sequences to improve
odometry estimation.
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