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Abstract: Multi-Armed Bandit (MAB) problem is a sequential decision-making process with wide influence in many 
fields across medical, and commercial application. In MAB problem, the initial reward distribution was 
unknown, and observed during the process. In MAB application, Upper Confidence Bound algorithm and 
Thompson Sampling algorithm are widely used for great performance. This work briefly review the basic 
concept of MAB problem. Also, this work reviews the formulation of Upper Confidence Bound (UCB) and 
Thompson Sampling (TS) algorithm. This work shows that UCB algorithm demonstrate a logarithmic 
relationship. This work also review that TS is a Bayesian method solution of MAB problem. This work carried 
out a brief test on the cumulative regret on UCB and Thompson sampling algorithm. The testing result shows 
that TS algorithm was able to generate a lower cumulative regret compared to UCB algorithm under the same 
scenario. The testing result also show that under a small probability difference and large number of arms TS 
has similar performance compared to UCB algorithms.  

1 INTRODUCTION 

The Multi-Armed Bandit problem (MAB) is a 
decision-making process with a series of constrained 
actions. The MAB problem is a sequential process 
where each action was taken and selected with the 
result of that action being observed. The term bandit 
derives from the slot machine as each time the arm on 
the machine there could be a payoff or loss to the 
investment to that event. In the MAB scenario, the 
player is facing instead of one, but many arms, each 
has individual reward distribution. The MAB aims to 
seek the answer of the maximum reward from set of 
arms (Bubeck & Cesa-Bianchi, 2012) (Mahajan & 
Teneketzis, 2008).  

MAB problem is presented with a limited dataset, 
and even little prior knowledge of the data. The MAB 
algorithm balances the exploration and exploitation 
phase of the experiment to achieve two goals: 
minimize the loss, maximize the gain (Lattimore & 
Szepesv´ari, 2020).  

MAB problem was applied in many different 
commercial fields with great usability. For example, 
website optimization is a great example of MAB 
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application. Website elements, such as picture, font, 
layout, could be sequentially decided for the best 
reward. The clickthrough or the number of deals and 
revenues generated from the website serves as a great 
benchmark to analyse the resulting reward from the 
reward distribution.  

Similarly, MAB problem is also practical in the 
advertisement placement. Different advertising 
suggestions to the customer exhibits different 
performance in customer interactions indicator, such 
as click rate, preference score, or purchase rate. There 
has been previous work on gaining using A/B testing 
in the study of customer behaviour and successfully 
gain data from one of the largest e-commerce 
companies in Japan (Yuta, Shunsuke, Megumi, & 
Yusuke, 2021).  

In the MAB problem, the learner was unaware of 
the environment of the dataset. So, the true 
distribution lies in the environment class. The 
measurement of MAB problem performance is regret. 
Regret is a measurement of the numerical difference 
between the reward at round n, the sub-optimal arm, 
and the overall maximum reward or the most optimal 
reward over n rounds of playing (Lai & Robbins, 
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1985). In the stochastic bandit, the 𝑋௧ is the reward 
for round 𝑛. 𝑎 is in the set of the environment class 𝐴. 𝜇௔ is denoted as the reward for action 𝑎. So, the 
regret formula is expressed as follows: (Lattimore & 
Szepesv´ari, 2020) 𝑅௡ = 𝑛 max௔∈஺ 𝜇௔ −  𝐸 ൥෍𝑋௧௡

௧ୀଵ ൩ ሺ1ሻ 
 
The first term expresses the maximum reward 

under the certain environment class. The second term 
expresses the reward observed after the action, also 
known as the suboptimal reward. So, if the action was 
the optimal reward, the regret should be zero. 
Therefore, as discussed earlier that MAB balances 
exploration and exploitation, the goal is always to 
develop the algorithm to reduce the regret across the 
exploration and exploitation phase to best utilize the 
dataset available to us.  

Another important factor to be noted in this paper 
is that this work only discusses the setting of 
stochastic bandits (also known as stationary bandits) 
where the action is independent from each and will 
not be affected by the previous action taken 
throughout the process. So, the dataset remains 
untouched during the operation. 

2 UPPER CONFIDENCE BOUND 
ALGORITHM 

The upper confidence bound algorithm (UCB) was 
first proposed in 1985 (Lai & Robbins, 1985). The 
UCB algorithm chooses an upper confidence bound 
of each arm and its reward distribution. Over a 
sequential decision-making process, each arm was 
played and generated a confidence interval. The 
algorithm always picks the arm with the largest upper 
confidence bound value across all the armed had been 
played. However, there is a possibility for 
overestimate the optimal arm, and therefore causes 
inaccuracy. However, as more data was added to an 
arm, there could be a scenario where the arm will 
never be chosen since the confidence interval shrinks 
and upper confidence bound falls under the assumed 
optimal confidence upper bound (Lattimore & 
Szepesv´ari, 2020).  

The UCB1 is initialized by playing each arm one 
to obtain the initial reward distribution. Then, at every 
time step 𝑡 , each arm 𝑖  was selected to gain the 
maximum result: 

  

𝜇̂ + ඨ2 log ቀ1𝛿ቁ𝑛 ሺ2ሻ 
, where 𝜇̂ is the mean reward of the all the arms 

played. 𝑢 are the rounds played so far. (Auer, Cesa-
Bianchi, & Fischer, 2002) The regret formulation was 
analysed to be logarithmic order as 𝑂(log𝑛) (Agrawal, 1995).  

To average the overestimation, the previous work 
therefore defines the upper confidence bound as the 
following:  ටଶ୪୭୥ቀభഃቁ௡   is define as the confidence interval of 
the sample. (Lai & Robbins, 1985) 𝛿 is defined as the 
error probability. Considering in the bandit problem 
scenario, the term 𝑇௜(𝑡 − 1) is defined as the samples, 
and the reward as 𝑈𝐶𝐵௜(𝑡 − 1, 𝛿).  𝛿 is denote as the 
error probability. Therefore, the UCB algorithm is 
defined as follows: 

Table 1: Upper Confidence Bound Algorithm. 

input k and 𝛿 
for t = 1 to n 

choose action 𝐴௧ = arg max𝑈𝐶𝐵௜(𝑡 − 1, 𝛿) 
observe reward 𝑋௧  and update the upper   

confidence bounds. 
end for 
 

where the UCB index is defined as  
𝑈𝐶𝐵௜(𝑡 − 1, 𝛿) =  𝜇̂௜(𝑡 − 1) + ඩ2 log ቀ1𝛿ቁ𝑇௜(𝑡 − 1)  (3) 

3 THOMPSON SAMPLING 

Thompson proposed one of the first method for bandit 
problem in 1933. His method was later called 
Thompson Sampling (TS). (Thompson, 1933) In a 
general setting of Thompson Sampling, for a series of 
action (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … . 𝑥௡)  ∈ 𝑋  in an environment 
class, one action is selected as 𝑥௜ for 𝑖௧௛ round action. 
After each action, and reward 𝑦 is observed. With the 
observation of reward, there generation a random 
distribution based on the prior distribution of the set 𝑋  (Russo, Van Roy, Kazerouni, Osband, & Wen, 
2018).  

In a Bayesian scenario, for each round 𝑖, this work 
chooses an arm 𝑎 in a set of all action and obtain a 
reward 𝑟௜ . Each arm is related to the probability 
density 𝑃(𝑟|𝑎)  with an expected average reward 
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𝜇௔ = 𝐸௉(𝑟|𝑎)ሾ𝑟|𝑎ሿ. In a Bayesian setting, the reality 
distribution, denoted as 𝑃(𝑟|𝑎)  is unknown. 
Therefore, this work introduces a separate parameter 𝜃  to represent the present 𝑃(𝑟|𝑎)  as per observed. 
The reward distribution was updated after each action 
and reward being observed. Therefore, the updated 
distribution became the prior distribution for the next 
action. And the real distribution was obtained after a 
sequence of action and observation. So, the term 𝑃(𝜃|𝑎ሾ𝑡ሿ, 𝑟௧)  is redefined as 𝑃௧ାଵ(𝜃)  (Viappiani, 
2013). 

Here, this work presents a quick example to show 
the process of Bayesian distribution being update 
after an action was taken from the unknown 
distribution of an environment class. Here is an 
untransparent bag with two white balls (WW) and a 
white ball and black ball (WB). Before any 
observation was made, it is assumed that: 𝑃(𝑊𝑊) = 𝑃(𝑊𝐵) = 12  

Such conclusions can only be made before any 
observation. To update the prior distribution based on 
the observations after one action so that the 
distribution is closer to the real distribution of the 
balls in the bag, when one black ball is picked (𝑏𝑙𝑎𝑐𝑘) , the action obtains the following:  𝑃(𝑊𝑊|𝑏𝑙𝑎𝑐𝑘) = 0 & 𝑃(𝑊𝐵 | 𝑏𝑙𝑎𝑐𝑘) = 1 
Therefore, the posterior distribution of the balls in the 
bag is ሾ0 1ሿ.  

If one white ball was picked (𝑤ℎ𝑖𝑡𝑒) , the action 
obtains the following:  𝑃(𝑊𝑊|𝑤ℎ𝑖𝑡𝑒)= 𝑃(𝑤ℎ𝑖𝑡𝑒| 𝑊𝑊)∗ 𝑃(𝑊𝑊)𝑃(𝑤ℎ𝑖𝑡𝑒| 𝑊𝑊 ∗ 𝑃(𝑊𝑊) + 𝑃(𝑤ℎ𝑖𝑡𝑒 |𝑊𝐵) ∗ 𝑃(𝑊𝐵))=  23    

Therefore, the updated posterior distribution of 
the balls in the bag is ቂଶଷ  ଵଷቃ. 

In the context of Thompson Sampling, to perform 
a Bayesian distribution calculation, it is introduced a 
randomized generated number that represents each 
arm. Therefore, setting an individual set of numbers 
as a flag for each arm, the system is able to update the 
posterior distribution based on the observation 
(Lattimore & Szepesv´ari, 2020) (Scott, 2010) (Li, 
& Olivier, 2011).  

The Thompson Sampling Algorithm in the 
Bayesian setting are defined as follows:  

Table 2: Thompson Sampling Algorithm. 

Input: Cumulative Density Function of the 
mean rewards of arms 

 
For 𝑡 = 1 to 𝑛 
Random assign distribution 𝜃: 𝜃௜(𝑡)~𝐹௜(𝑡) for 

each arm 𝑖 
 

Choose 𝐴௧ = arg max𝜃௜(𝑡) 
Observe 𝑋௧ and update: 𝐹஺೟(𝑡 + 1) = 𝑈𝑃𝐷𝐴𝑇𝐸 𝐹஺೟(𝑡) (4) 
 
End for 

4 PERFORMANCES OF 
ALGORITHM 

As described in the previous section, when choosing 
a sub-optimal arm, a difference called regret was 
generated. The MAB problem is balancing the 
exploration and exploitation phase. The primary 
objective of the MAB algorithm is to finalize the best 
policy from exploration phase and apply the policy in 
the exploitation phase. Therefore, cumulative regret 
is the benchmark of the performance of the algorithm. 
To accurately compare the UCB Algorithm and 
Thompson Sampling, the following test was set up to 
simulate the performance of two algorithms under the 
same environment class.  

There are four different settings of environment 
class. This work is presenting the setting of 10 arms, 𝑘 = 10, and 100 arms, 𝑘 = 100 to test the algorithm. 
The best reward probability was set as 0.4 and reward 
probability difference as 𝛿. For all arms except the 
best arm, the reward probability is 0.4 − 𝛿. The sub-
optimal arm is set 𝛿 as 0.1 and 0.01. The experiment 
was set to be performed 100000 time.  

 
Figure 1: Test Result of 𝑘 = 10, 𝛿 = 0.01. 
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Figure 2: Test Result of 𝑘 = 10, 𝛿 = 0.1. 

Figure 3: Test Result of 𝑘 = 100, 𝛿 = 0.1. 

 
Figure 4: Test Result of 𝑘 = 100, 𝛿 = 0.01. 

Based on the testing result, under the following 
setting: 𝑘 = 100 𝛿 = 0.1 , 𝑘 = 10 𝛿 = 0.01 , and 𝑘 = 10 𝛿 = 0.01 , the Thompson Sampling is 
showing an exceptionally better performance 
compared to UCB algorithm. Under the UCB 
Algorithm, Agrawal proved that regret displays 
logarithmic scale. (Agrawal, 1995)  Figure 2 shows 
that regret is trending on a logarithmic scale. Also, it 
is worth noting that, under 𝑘 = 100, 𝛿 = 0.01 

environment class setting, the Thompson Sampling is 
demonstrating similar performance compared to 
Upper Confidence Bound algorithm. 

5 CONCLUSIONS 

The Thompson Sampling is demonstrating an 
exceptional performance compared to UCB 
algorithm under all the setting except for 𝑘 =100, 𝛿 = 0.01. In the Thompson sampling, part of the 
reason for a small regret deduction is due to the 
posterior update. After each action, the posterior 
distribution ensures that the distribution is closer to 
the real distribution so that each action is induced 
with less regret.  

It is worth noting that although Thompson 
Sampling generally displaying an exceptional, there 
is an exception under the 𝑘 = 100, 𝛿 = 0.01, where 
both algorithms are demonstrating a very similar 
performance in terms of cumulative regret. In fact, 
Thompson Sampling demonstrated slightly worse 
performance compared to UCB algorithm. It is worth 
discussing in the future that under high number of 
arms, and small reward probabilities difference, the 
potential reason that led to the similar performance of 
both algorithms. 
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