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Abstract: In the rapidly evolving field of neuroscience, early and accurate detection of brain hemorrhage remains a 
significant challenge with profound implications for patient outcomes. The integration of Machine Learning 
(ML) techniques into diagnostic processes represents a promising frontier, offering the potential to 
revolutionize how brain hemorrhages are identified and treated, thereby reducing the associated morbidity 
and mortality rates. This review explores the application of ML in detecting brain hemorrhage. Recognizing 
the significance of early and accurate detection, the review outlines the general ML workflow encompassing 
data collection, preprocessing, model development, training, and evaluation. It delves into specific ML 
methods, including traditional algorithms like Support Vector Machines (SVM) and Random Forests, 
alongside deep learning approaches such as Recurrent Neural Networks (RNN) and Convolutional Neural 
Networks (CNN), assessing their strengths and limitations. The discussion highlights key challenges faced by 
ML in this context, such as the "black box" nature of models affecting interpretability, issues with 
generalization across diverse datasets, and concerns surrounding data privacy. Proposed solutions and future 
prospects are offered to address these challenges, emphasizing the potential of cascading models and the 
importance of integrating more complex modeling techniques for improved clinical efficacy. This review 
extensively discusses various machine learning algorithms and their application to brain hemorrhage detection, 
aiming to drive improvements in ML and foster the integration of computer-aided diagnosis (CAD) in medical 
imaging. 

1 INTRODUCTION 

Intracerebral hemorrhage (ICH), also known as brain 
bleed, is a kind of stroke that occurs when there is 
bleeding either between the brain tissue and the skull 
or within the brain tissue itself. In the realm of 
neuroscience, Intracerebral hemorrhage stands out as 
a life-threatening condition, marked by a high fatality 
rate and the potential for severe sequelae (Chen, 
2024). Based on the urgency of symptoms and the 
severity of consequences associated with ICH, it 
becomes imperative to ensure the utmost accuracy in 
examining, categorizing, and quantifying various 
aspects of brain hemorrhages, including the critical 
task of accurately gauging the volume and extent of 
bleeding. 

The diagnosis of brain hemorrhage commonly 
relies on a variety of medical imaging techniques, 
primarily utilizing Computed Tomography (CT) and 
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Magnetic Resonance Imaging (MRI). While both CT 
and MRI exhibit high sensitivity in detecting brain 
hemorrhages, the preference often leans towards CT, 
especially in time-sensitive situations. This 
inclination arises due to the quicker turnaround time 
of CT scans, making them more suitable for patients 
in critical conditions. Despite the widespread use of 
MRI for detailed assessments, its extended scanning 
duration may limit its applicability during the acute 
phase (McGurgan, 2021). 

While the comparison between CT and MRI 
highlights their respective strengths and limitations, 
even with accurate CT results, the intricate nature and 
variability in brain hemorrhage imaging pose 
significant challenges to manual diagnosis. However, 
this is precisely where deep learning demonstrates its 
prowess. Given the complexity and variations in these 
images, deep learning algorithms excel in discerning 
patterns and extracting relevant features, making 
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them valuable tools in enhancing the accuracy and 
efficiency of brain hemorrhage diagnosis. 

In recognizing the importance of deep learning, it 
is pivotal to position it within the broader context of 
computer-aided detection (CAD) in the medical field. 
Over the past few decades, the integration of CAD in 
the analysis of medical datasets has become a 
prominent area of research in medical imaging 
(Gautam, 2021). This evolution has unfolded over a 
span of time, gradually establishing CAD as a major 
research focus. In the realm of clinical imaging 
systems employing CAD, a spectrum of machine 
learning algorithms is widely utilized, including 
probability models like Naive Bayes and Gaussian 
Mixture Model,as well as Support Vector Machine 
(SVM), Artificial Neural Network (ANN), among 
others.  

In particular, machine learning algorithms based 
on convolutional neural networks (CNNs) have 
garnered significant attention. Leveraging their 
exceptional feature learning and abstraction abilities, 
remarkable achievements have been observed, 
particularly in the segmentation of cerebral 
hemorrhage in CT images (Qiu, 2019, Rao, 2021). 
The utilization of CNNs in this context exemplifies 
the potential of advanced machine learning 
techniques in enhancing the accuracy and efficacy of 
medical imaging analyses. Beyond these 
advancements, ongoing research and exploration in 
this field promise further innovations and 
improvements in the diagnosis and understanding of 
brain hemorrhages. 

Overall, cerebral hemorrhages have received 
comparatively less attention within the intersection of 
AI and medicine, despite their medical significance. 
However, recent years have witnessed substantial 
progress, with an increasing number of studies and 
algorithmic models significantly advancing the 
accuracy, speed, and efficiency of ICH detection. 
Thus, there is a crucial demand for a comprehensive 
review within this specialized yet advancing field, 
where AI converges with medicine.  

The main objectives of this review encompass 
providing a comprehensive overview of recent 
advances in the application of deep learning 
algorithms for the detection and classification of brain 
hemorrhages. By scrutinizing diverse studies, the 
emphasis lies in shedding light on the methodological 
strides, performance benchmarks, and clinical 
applicability of these technologies. Following this 
introduction, the rest of this paper is organized as 
follows. Afterward, it will proceed to detailed 
analysis of various deep learning models with regard 
to its design, training, and validation of brain 

hemorrhage applications. The subsequent sections 
will explore the inherent limitations and potential 
challenges of these models, paving the way for a 
comprehensive discussion on avenues for future 
optimization and innovation. 

2 METHODS 

2.1 Framework of Machine  
Learning-Based in Hemorrhage 
Detection 

Figure 1. illustrates the workflow for machine 
learning and deep learning in intracranial hemorrhage 
detection. The process begins with data collection, 
followed by data preprocessing, data splitting, and 
feature extraction. Subsequently, the selection and 
construction of the model take place. Once the model 
is established, it undergoes training, validation, and 
testing phases. The model is then optimized through 
result analysis and adjustment, preparing it for 
deployment and application. Further details can be 
found in the subsections below. 

 
Figure 1: The workflow of Machine Learning (ML) and 
Deep Learning (DL)-based in hemorrhage detection 
(Photo/Picture credit: Original). 

Dataset Collection. Robust and varied datasets 
underpin the successful development of AI 
algorithms for cerebral hemorrhage detection. While 
exploring publicly available datasets used in the field 
of cerebral hemorrhage detection, a prime example of 
such resources is the dataset provided by the RSNA 
Intracranial Hemorrhage Detection Competition on 
Kaggle, which features brain CT images annotated 
with hemorrhage conditions, serving as an invaluable 
asset for research in this domain (Kaggle, 2020). 
Collecting detailed information on available dataset 
resources, including specific time frames, case types, 
and slice thickness, is crucial. This not only enhances 
data quality but also fosters a model's nuanced 
understanding and detection capabilities. 

Preprocessing. During the data preprocessing 
phase shown in Figure 2, several techniques are 
commonly employed to enhance image quality and 
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optimize training outcomes, including image 
denoising, which aims to reduce random variations 
within images, and image enhancement methods like 
contrast adjustment and edge enhancement to 
improve visual clarity and highlight critical features. 
Additionally, normalization and standardization 
processes ensure the uniformity of image data in 
terms of scale and value range. Furthermore, data 
augmentation techniques such as rotation, scaling, 
and flipping are utilized to introduce diversity into the 
dataset. This is particularly crucial for deep learning 
models, enabling them to learn a broader 
representation of features. 

 
Figure 2: The workflow of image preprocessing 
(Photo/Picture credit: Original). 

Data Splitting. Following preprocessing, data is 
typically divided into training, validation, and testing 
sets. This strategic segmentation is crucial for 
assessing the model's performance and robustness, 
ensuring it performs well not just on familiar data but 
also on unseen datasets. For instance, a study in South 
Korea on deep learning for detecting Acute 
Intracranial Hemorrhage (AIH) stands out not only 
for its collection of a large number of slices with 
detailed cerebral hemorrhage information from 
various medical institutions but also for its meticulous 
categorization of data into three distinct datasets: a 
development dataset, an external validation dataset, 
and a reader study dataset. This approach not only 
ensured the comprehensiveness of the datasets but 
also laid a solid foundation for the enhancement of 
the algorithm's accuracy and generalizability. A 
noteworthy aspect of the research was the 
adjudication of imaging standards via a tripartite 
radiologist consensus, which bolstered the 
annotation's accuracy and trustworthiness. This phase 
is pivotal for the formulation of efficacious and 
precise AI models since the caliber of annotations 
directly correlates with the model's learning 
efficiency (Yun, 2023). 

Feature Extraction. Finally, in the feature 
extraction phase, traditional machine learning 
methods and deep learning approaches utilize manual 
and automatic feature extraction, respectively. This 
allows for the more effective capture and utilization 
of key information within image data, enhancing the 
model's ability to discern relevant patterns and 
characteristics. 

Model Training and Analysis. The subsequent 
steps largely align with those typical of most machine 
learning algorithm applications, which involve 
selecting an algorithm to build the model. For 
machine learning, this might include algorithms like 
SVM and Random Forests, while for deeper learning, 
this extends to ANN and CNN. Each of these 
algorithms will be elaborated on in further sections. 
Following this, the previously segregated training set 
is utilized to train and test the model, adjusting 
parameters such as the learning rate and the size of 
hidden layers. Before deploying the model into a 
clinical setting, it's crucial to compare and analyze the 
model's performance shown in Figure 3, ensuring it 
meets the necessary standards for accuracy and 
reliability. 

 

 
Figure 3: The workflow of model performance evaluation 
(Photo/Picture credit: Original). 

2.2 Machine Learning  
Algorithms-Based Hemorrhage 
Detection 

2.2.1 SVM 

Support Vector Machines are a supervised learning 
algorithm well-suited for classifying high-
dimensional data, making them particularly valuable 
in medical image analysis. For instance, a study from 
Qingdao, China, utilized SVM among four machine 
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learning models to construct a prognostic prediction 
model for spontaneous cerebral hemorrhage 
outcomes. The findings revealed that SVM 
outperformed in overall predictive efficiency, 
demonstrating significantly higher accuracy, 
specificity, and sensitivity compared to other models 
(Li, 2024). SVM's ability to tackle complex nonlinear 
problems by selecting appropriate kernel functions 
enables it to distinguish effectively between healthy 
and damaged tissues in cerebral hemorrhage 
detection. 

2.2.2 Random Forest 

Random Forest, is an ensemble learning technique 
that utilizes multiple decision trees for classification 
or regression analysis. This method selects random 
data subsets and features for each tree during training, 
with the final decision derived from a majority vote 
or average of all trees' predictions. A study from 
Beijing, China, showcased Random Forest's 
effectiveness in predicting outcomes of cerebral 
hemorrhage surgery, too. Using the Random Forest 
model allowed for integrating extensive variables, 
like patient condition changes and blood sugar levels 
in this study, and therefore, the model demonstrated 
high accuracy and consistent probability distribution 
between the test and training sets against real-world 
outcomes, highlighting its excellent calibration 
capability (Gao, 2023). The robustness of Random 
Forest in handling overfitting, along with its ability to 
process substantial amounts of data, makes it an ideal 
choice for classifying types of cerebral hemorrhage. 

2.3 Deep Learning Algorithms-Based 
Hemorrhage Detection 

2.3.1 CNN 

The Convolutional Neural Network depicted in 
Figure 4 is tailored for the nuanced task of intracranial 
hemorrhage detection from medical imaging. 
Beginning with the input layer, the CNN processes 
image data, extracting salient features through its 
convolutional layers. Activation functions then 
introduce non-linearity, allowing for complex 
patterns to be captured, while pooling layers reduce 
dimensionality, focusing on the most relevant 
features. In the fully connected layers, the network 
classifies the images, leveraging the distilled features 
to accurately distinguish between hemorrhagic and 
non-hemorrhagic cases. CNNs, in the context of 
medical imaging analysis, have been pivotal, with 
algorithms achieving accuracy rates above 99% in 

some studies (Mahjoubi, 2023). The inherent 
capability of CNNs to autonomously learn and refine 
feature recognition empowers the model to uncover 
potentially critical biomarkers for intracranial 
hemorrhages that might have been previously 
underestimated or missed by traditional analytical 
methods. By harnessing the intricate feature detection 
and classification capabilities of CNNs as outlined in 
Figure 4, it is possible to achieve more nuanced and 
precise identification of intracranial hemorrhages, 
which is critical for timely and effective patient 
treatment.  

 
Figure 4: The structure and operation of CNN (Photo/ 
Picture credit: Original). 

2.3.2 RNN 

Recurrent Neural Networks (RNNs) are deep learning 
models equipped with internal memory, making them 
sensitive to sequential dependencies of events. Their 
architecture allows them to apply the same operation 
across each element in a sequence, where 
computations for the current state are influenced by 
both the present input and results from previous steps 
(Fang, 2021). Although RNNs are not as 
predominantly used in image analysis as CNNs, their 
proficiency in handling sequential data offers 
substantial benefits in specific scenarios related to 
ICH detection. Particularly in analyzing time-series 
medical imaging data, such as monitoring the 
progression of bleeding or assessing treatment 
effects, RNNs can account for temporal variations, 
capturing changes in hemorrhagic areas over time. 

3 DISCUSSION 

3.1 Advantages and Disadvantages of 
Traditional ML and DL 

In the field of neuroscience, machine learning 
technologies have demonstrated significant research  
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Table 1: The Strengths and limitations of ML and DL. 
 

ML (SVM, Random Forest) DL (RNN, CNN) 
Limitations  1.Dependence on feature engineering. 

2.Limited capability in handling high-dimensional data. 
1.High demand for computational resources. 
2.Poor interpretability. 

Strengths 1.Interpretability. 
2.Computational efficiency. 

1.Automatic feature extraction. 
2.Capability to handle complex patterns. 

 
and application potential. Traditional ML methods 
show their powerful capabilities in scenarios 
involving smaller datasets with clear feature 
structures, as visually summarized in Table 1. Their 
prominent advantages lie in their high interpretability 
and lower computational costs, which are particularly 
important for foundational brain science research in 
its exploratory stages. For instance, in preliminary 
neuroimaging studies, researchers can use traditional 
ML methods to intuitively and thoroughly analyze the 
complex relationships between brain region activities 
and behavioral responses. Meanwhile, deep learning 
technologies, with their excellent ability to 
automatically learn features, have shown unparalleled 
performance in handling large and complex brain 
imaging datasets.  

However, as outlined in Table 1, both approaches 
have their distinct limitations. Traditional machine 
learning models often fall short in dealing with 
problems involving nonlinear relationships, high-
dimensional features, and complex data structures, 
where deep learning models tend to excel. On the 
other hand, deep learning models, despite their 
significant performance advantages, require 
substantial amounts of training data and suffer from 
interpretability issues due to their internal 
complexity. These challenges are particularly 
pronounced in the field of neuroscience, where 
research demands not just high-precision predictive 
outcomes but also a deep understanding of the 
biological mechanisms behind these results. This 
necessitates models that are not only accurate but also 
possess a degree of interpretability. 

In summary, the choice between machine learning 
approaches hinges on the study's goals and the data's 
nature and size. Traditional machine learning is suited 
for early, small-scale studies with clear features, like 
initial brain hemorrhage detection research, offering 
ease of interpretation and lower computational needs. 
Conversely, deep learning excels in analyzing 
extensive datasets and complex patterns, crucial for 
advanced brain hemorrhage analysis. Understanding 
these methods' strengths and limitations is key to their 
effective application in neuroscience, especially for 
brain hemorrhage detection. 

3.2 Challenges 

3.2.1 Lack of Interpretability 

The 'black box' nature of deep learning models poses 
a significant challenge in neuroscience applications. 
This opacity hinders the ability to understand and 
explain the rationale behind a model's decisions, 
posing problems for trust and validation in scientific 
research. When models incorrectly identify or miss 
brain hemorrhages, the lack of interpretability 
complicates the process of debugging and refining 
these algorithms to enhance their performance. 
Furthermore, for applications as critical as medical 
diagnostics, the inability to elucidate the decision-
making process can impede regulatory approval and 
broader acceptance within the medical community.  

3.2.2 Generalization Issues 

Generalization issues challenge machine learning 
models' efficacy in neuroscience due to the 
significant variability in datasets, brain states, and 
disease conditions. Differences in demographics, 
genetic backgrounds, environmental factors, and 
disease stages can impede a model's performance 
across diverse populations. Additionally, variations 
in brain imaging techniques and protocols introduce 
further complexity. A study from Japan illustrates a 
promising approach to overcoming these hurdles: 
researchers developed machine learning predictive 
models for hematoma expansion in acute 
intracerebral hemorrhage, utilizing multicenter data 
and multivendor CT images (Tanioka, 2022). While 
this study demonstrates efforts to enhance model 
generalizability and applicability across diverse 
neurological conditions, it also underscores the 
broader issue: the difficulty of developing models that 
perform well across varied datasets, brain states, and 
disease conditions. Generalization remains a 
significant challenge in applying machine learning to 
neuroscience. 

3.2.3 Data Acquisition and Privacy 

The creation and application of machine learning  
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models, especially in neuroscience, demand large 
datasets and substantial computational power. Yet, 
the high costs of gathering quality data, alongside 
privacy and ethical issues, restrict the formation of 
extensive datasets, impeding the models' training and 
validation process. Moreover, even well-trained ML 
models face risks from various adversarial attacks, 
such as membership, attribute, and model inversion 
attacks, highlighting the crucial need for robust 
privacy protection. A notable study introduced a 
Phase, Guarantee, and Utility (PGU) triad-based 
model after a comprehensive review, emphasizing the 
importance of safeguarding data and privacy 
throughout the ML process (Xu, 2021). Addressing 
these challenges is a vital step for future exploration 
and advancement in the field. 

3.3 Future Prospects and Possible 
Solutions 

3.3.1 Linking ML Decisions to Their 
Underlying Logic in ICH Detection 

Addressing the black box issue in ML for ICH 
detection involves enhancing model transparency and 
interpretability, notably through integrating 
explainable AI (XAI) techniques (Highton, 2023). 
Methods like Layer-wise Relevance Propagation 
(LRP) and SHAP (SHapley Additive exPlanations) 
help visualize and understand influential features in 
model predictions. Moreover, developing models 
with inherently interpretable structures, such as 
decision trees or Generalized Additive Models 
(GAMs), allows for a direct understanding of how 
inputs affect outputs. The black box issue in ML 
transcends technical challenges, encompassing 
ethical considerations as well. A study examines 
model interpretability through the lens of four ethical 
principles—autonomy, beneficence, non-
maleficence, and justice—to assess the necessity and 
role of interpretability (Amann, 2020). These 
solutions are crucial to ensure that developed models 
are not only accurate but also understandable and 
trustworthy for healthcare practitioners, integrating 
ethical oversight into technological advancements. 

3.3.2 Addressing Generalization in ICH 
Detection via Transfer Learning and 
Domain Adaptation 

Incorporating transfer learning and domain 
adaptation into ICH deep learning detection enhances 
model generalization by utilizing knowledge from 
extensive datasets, such as MRI or CT images, and 

fine-tuning with a smaller, specific dataset for 
hemorrhage detection. Transfer learning addresses 
the scarcity of labeled data, while domain adaptation 
further tailors models to align with target data 
distributions, effectively managing discrepancies 
caused by different imaging devices or protocols 
across institutions (Xu, 2020). 

3.3.3 Leveraging Federated Learning for 
Brain Hemorrhage Detection 

Incorporating big models into brain hemorrhage 
detection, demands a nuanced approach to data 
privacy and security. Federated learning emerges as a 
pivotal solution in this context. It enables 
decentralized model training, allowing for the 
collaborative utilization of data across various 
locations without the need for direct data exchange. 
By ensuring that data remains local and only model 
updates are shared, federated learning effectively 
addresses privacy and security concerns, facilitating 
the use of powerful computational models in sensitive 
medical fields. 

4 CONCLUSIONS 

This article systematically explores the application of 
ML in the detection of brain hemorrhage, covering 
the cutting-edge developments of ML in brain 
hemorrhage detection and emphasizing the diversity 
and depth of ML applications in enhancing diagnostic 
accuracy and facilitating timely intervention. The 
main contribution is a critical analysis of various 
machine learning methods, from traditional machine 
learning models to advanced deep learning networks. 
This review evaluated their effectiveness, limitations, 
and the potential for integration into clinical 
workflows, providing insights for future research 
directions. 

This review is limited to discussing individual 
models without fully addressing the potential of 
cascading models, which layer processes for 
enhanced precision. For instance, a cascading 
approach might use CNNs for initial hemorrhage 
detection and then apply FCNs for nuanced subtyping 
and lesion mapping, offering a path to significantly 
refine outcomes. Future updates should delve into 
complex models like cascading systems, comparing 
their impact on clinical practice, and incorporating 
case studies to illustrate real-world applications and 
advancements in machine learning for neuroscience. 
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