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Abstract: Crossover is a key component of evolutionary algorithms and has been the focus of numerous studies. Its
effectiveness depends on the operator’s properties to mix information, the specific characteristics of the prob-
lem, and the diversity of the population, influenced by the dynamics of the algorithm. This study focuses on
binary representations and introduces a method to examine the relationship between crossover features and
the performance of a multi-objective evolutionary algorithm on problem subclasses with random and neighbor
patterns of variable interactions. The aim is to identify the crossover features relevant to performance in each
problem subclass through regression models.

1 INTRODUCTION

In the real world, many optimization problems require
optimizing multiple objectives simultaneously. Nu-
merous types of algorithms have been proposed to ad-
dress these problems, one of which is Multi-objective
Evolutionary Algorithms (MOEAs). MOEAs are op-
timization method inspired on biological evolution,
where genetic operations are repeatedly applied to in-
dividuals with solutions represented as genes to per-
form optimization.

To enhance the solution-searching capability of a
MOEA, it is necessary to tune its components. One
such component is crossover, a genetic operator that
generates offspring by combining the genetic infoma-
tion from parent individuals. The role of crossover in
evolutionary algorithms has been the subject of sev-
eral studies (Spears, 2000). Various crossover meth-
ods have been proposed, and their properties for mix-
ing information have been investigated, along with
their effects on performance, particularly on single
objective optimization. In general, the effectiveness
of crossover depends on the properties of the operator,
the characteristics of the problem, and the population
diversity, which is influenced by the dynamics of the
algorithm.

MOEAs evolve a population of solutions aiming
to find a set of Pareto non-dominated solutions, which
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are usually spread in a broad region of decision and
objective space. In evolutionary multi-objective op-
timization, there are several studies focusing on the
diversity of solutions present in the population and
the disruptive nature of crossing parent individuals
that could be far apart in decision space (Ishibuchi
et al., 2014), (Sato et al., 2013), (Sato et al., 2007).
In MOEAs, crossover methods are often compared
based on the performance achieved by the algorithm
on a few problems, without much consideration of the
operator’s properties.

This work focuses on binary representations and
presents a method to study and assess the relation-
ship between crossover features and the performance
of a MOEA on subclasses of problems, for which we
know some of their properties. Our aim is to identify
the main crossover features that are relevant to per-
formance in each problem subclass using regression
models of the features.

We first define features that capture the
information-mixing characteristics of crossover
operators, and then apply a crossover feature extrac-
tion method that is independent of the characteristics
of the particular problem or the dynamics of the al-
gorithm. For a given crossover operator, we quantify
these features on a sample of solutions generated
by the operator. Separately, for each crossover for
which features were quantified, we run several times
a multi-objective evolutionary algorithm on instances
of a problem subclass to collect information about
the performance of the algorithm. Then, we create re-
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gression models to describe the relationship between
the features and the performance of an algorithm.

We study the proposed approach by solving
several instances of MNK-Landscapes(Aguirre and
Tanaka, 2004)(Aguirre and Tanaka, 2007) with N =
20 bits, M = 2 objectives, and K = 2 and 4 interacting
variables with nearest neighbor and random models
of epistasis. For each combination of M, N, K, and
type of epistasis model, we find an optimal model that
determines the important features for each subclass of
problems and explains performance in terms of them.
We show that the models, tested on unseen problem
instances, correctly predict better performance by the
top-ranked operators. The proposed method could be
useful to select an appropriate crossover operator.

2 METHOD

2.1 Overview

This work presents a method to study and assess the
relationship between crossover features and the per-
formance of a MOEA on subclasses of problems. The
main steps of the method are as follows:

Step 1. Define features of the information-mixing
characteristics of crossover operators, specify a
set of crossover operators and compute their fea-
tures.

Step 2. Define a problem subclass and several in-
stances of it. With each specified crossover, run
a MOEA a number of times on several instances
of a problem subclass. Then, compute for each
crossover a performance value in the problem sub-
class.

Step 3. Learn a regression model to capture the re-
lationship between the crossover features and the
performance values.

Step 4. Validate the predictive accuracy of the regres-
sion model on unseen instances of the problem
subclass.

In the following we detail the characteristics of the
method.

2.2 Crossover Feature Extraction

The feature extraction approach initially generates a
sample offspring population from the same pair of
parent individuals using a crossover method. The ge-
netic information of the offspring population is then
used to compute certain features of the operator.

Let us denote X a crossover operator, and p1, p2
two parent individuals that are defined as binary vec-
tors of length N, i.e. pi = (p(i,1), · · · , p(i,N)) ∈ {0,1}N

where N is the number of variables. A crossover op-
eration on the parents is denoted X (p1,p2) and gen-
erates two binary vectors ∈ {0,1}N as offspring.

To efficiently track the origin of the genes in the
offspring and analyze features, we specify p1 and
p2 so that their corresponding j-th variables p(1, j)
and p(2, j) contain different values. Namely, we
prepare parent individuals p1 = (0,0,0, · · · ,0) and
p2 = (1,1,1, · · · ,1) with N bits, perform crossover
X (p1,p2) M times to generate a sample offspring
population {x1,x2, · · · ,x2M}, and represent the i-th
offspring as xi = (x(i,1),x(i,2), · · · ,x(i,N)). The ob-
tained sample population is then analyzed for “search
ability” and “sequence influence,” extracting four fea-
tures(Caruana et al., 1989).

“Search ability” refers to the capability to effi-
ciently search through a multitude of solution candi-
dates, which varies between the early and late stages
of the search. In the early stage, the ability to ex-
pand the search range to discover good solutions is
needed. In the later stage, the ability to refine already
good solution candidates is required. Two features,
“Unique Rate” and “Parent Bias,” are calculated to
observe these abilities.

“Sequence influence” refers to the impact of man-
aging solutions as a concatenation of genes, which
usually involves arranging the genes in contiguous lo-
cations in a one-dimensional array. This arrangement
can cause various influences. Two features, namely
“Adjacent Bias” and “Position Bias,” are calculated
to observe these influences.

The next section explains in detail the features.

2.3 Features

2.3.1 Unique Rate

Unique Rate (UR) represents the extent to which new
individuals can be generated from the same parent
individuals by counting the number of unique indi-
viduals in the sample offspring population. A higher
value indicates fewer duplicates and easier genera-
tion of new individuals during the search. Let us
denote the vector containing the uniqueness status
of the offspring in the sampled population as u =
(u1, · · · ,u2M) ∈ {0,1}2M , where ui = 1 indicates xi is
unique and ui = 0 otherwise,

ui =

 1 (i = 1)
0 (i ̸= 1∧xi ∈ {x1, · · · ,xi−1})
1 (i ̸= 1∧xi /∈ {x1, · · · ,xi−1}).

(1)
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The number of unique offspring divided by the total
number of offspring 2M gives the Unique Rate,

UR =
∑

2M
i=1 ui

2M
×100. (2)

2.3.2 Parent Bias

Parent Bias (PaB) represents the similarity of off-
spring to the two parent individuals. A higher value
indicates greater similarity to one of the parents, sug-
gesting an inheritance bias towards one of parent
characteristics during the search. When offspring re-
ceive genes equally from both parents, the total num-
ber of genes received from each parent should be half
the number of bits N. To calculate parent bias, we
use the absolute value of the difference between the
actual number of genes from one parent and N/2. In
our case, it is easy to count the bits set to 1 in the off-
spring, which are known to come from parent p2. The
average of these differences in the sampled offspring
population gives the Parent Bias,

PaB =
∑

2M
i=1

|(∑N
j=1 x(i, j))−N

2 |
N
2

2M
×100. (3)

2.3.3 Adjacent Bias

Adjacent Bias (AB) represents the continuity of gene
inheritance from the same parent, indicating the
tendency of neighboring genes in the offspring to
originate from the same or different parents. A
higher value shows greater continuity. Given the
offspring xi, we count at the j-th bit position, j =
1, · · · ,N, the length l j of the uninterrupted sequence
x(i, j−l j), · · · ,x(i, j−1),x(i, j) of bits inherited from the
same parent, i.e., x(i,k) ∈ p1 ∨ x(i,k) ∈ p2, ∀k ∈ { j−
ll , · · · , j − 1, j}. Let us denote the vector of coun-
ters l j for the offspring xi as vi = (v(i,1), · · · ,v(i,N)),
v(i, j) = l j ∈ {0, · · · ,N − 1}, j = 1, · · · ,N. Since all
bits from p1 are 0s and from p2 are 1s, the counter of
continuous inheritance v(i, j) for the i-th offspring at
the j-th bit position is easily computed as follows,

v(i, j) =

 0 ( j = 1)
v(i, j−1)+1 ( j ̸= 1∧ x(i, j−1) = x(i, j))

0 ( j ̸= 1∧ x(i, j−1) ̸= x(i, j)).
(4)

The sum of the element of vi divided by the maxi-
mum possible sum of vi across all offspring gives the
Adjacent Bias,

AB =
∑

2M
i=1

∑
N
j=1 v(i, j)
N(N−1)

2

2M
×100. (5)

AB = 0 if all 2M offspring are perfectly uni-
form. That is, ∀i = 1, · · · ,2M, for each bit position

j = 2, · · · ,N − 1, the bit x(i, j) came from one parent
and the neighboring bits x(i, j−1) and x(i, j+1) from the
other parent. On the other hand, AB = 100 if all 2M
offspring are clones of one of the parents. That is,
∀i = 1, · · · ,2M, at each bit position j = 1, · · · ,N, the
bit x(i, j) came from the same parent.

2.3.4 Position Bias

Upon examination of a particular gene position (loci)
within the sampled offspring population, if on aver-
age half of the offspring inherits its gene from parent
p1 and the other half from parent p2, we say that the
operator is positionally unbiased.

Position Bias (PoB) measures the frequency of the
parents’ genes in their offspring at every gene position
and computes the deviation from the expected posi-
tionally unbiased frequency. A higher value shows
stronger positional bias. Since two offspring are gen-
erated per crossover, only one offspring is used for
calculation. The gene frequency at each gene posi-
tion is determined by the sum of gene values ‘1’ from
parent p2 at that position. The difference between this
sum and half the number of crossover operations, av-
eraged across gene positions is the positional bias, as
shown below,

PoB =
∑

N
j=1

|(∑M
i=1 x(2i, j))−M

2 |
M
2

N
×100. (6)

2.4 Performance Value

In our study we consider several crossover opera-
tors, which for convenience we identify as Xk, k =
1, · · · ,α. To analyze the relationship between
crossover features and performance, we calculate a
performance value (PV) on a problem subclass for
each crossover operator. MOEAs are stochastic algo-
rithms. To provide an estimate of their performance
on an instance of the problem subclass, they are usu-
ally run several times on the same instance. This
leads to a range of values for the performance met-
ric, where the mean performance of the MOEA lies
within a certain probability. This range is expected to
vary from instance to instance, though the instances
belong to the same problem subclass. Thus, to com-
pute PV we take into account the diverse ranges of
the performance metric across multiple problem in-
stances within the subclass.

As mentioned above, the MOEA set with
crossover Xk is run several times on the same in-
stance. To measure performance, we use the Hyper-
volume (HV)(Zitzler et al., 2003) computed on the set
of non-dominated solutions in the population at the fi-
nal generation of the MOEA’s run. Let us denote the
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problem instances with the index i = 1, · · · ,β, and the
runs of the MOEA with the index j = 1, · · · ,ρ. Then,
HV Xk

(i, j) denotes the HV achieved by the MOEA with
crossover Xk in the j-th run on the i-th problem in-
stance.

First, the average HV value of all runs on the i-th
problem instance for crossover Xk was calculated by

HV Xk
i =

1
γ

γ

∑
j=1

HV Xk
(i, j). (7)

Next, the average HV value of all crossover operators
on the i-th problem instance was computed by

HV i =
1
α

α

∑
k=1

HV Xk
i . (8)

To address the differences in ranges of HV value
across problem instances, we standardized the HV
value (SHV) for crossover Xk on the i-th problem in-
stance by

SHV Xk
i =

HV Xk
i −HV i√

1
α

∑
α

k=1(HV Xk
i −HV i)2

. (9)

The average SHV for each crossover across all prob-
lem instances was taken as the performance value PV
for the problem subclass,

PV Xk = SHV Xk =
1
β

β

∑
i=1

SHV Xk
i . (10)

2.5 Model Learning

The performance of the MOEA set with the crossover
operator Xk,k = 1, · · · ,α, on a problem subclass and
the features measured for the same operator are col-
lected as data points. We extract the features unique
rate URXk , parent bias PaBXk , adjacent bias ABXk , and
positional bias PoBXk using equations (2)-(6). We re-
peat this process several times using different random
seeds and take their average as the feature value of
the crossover, i.e., URXk , PaBXk , ABXk , and PoBXk .
Thus, for each problem subclass, we have α data
points (PV Xk ,URXk ,PaBXk ,ABXk ,PoBXk) correspond-
ing to the same number of crossover types used in this
study.

To examine the relationship between crossover
features and problem performance, PV was used as
the dependent variable, and the four features UR, PaB,
AB, and PoB were used as the explanatory variables.
For each problem subclass, linear regression models
PV = f (UR,PaB,AB,PoB) were created for all 15
combinations of the explanatory variables. Models

in which the coefficients of all explanatory variables
had a p-value of 0.05 or lower were retrained, splitting
the data randomly into training (80%) and validation
(20%) datasets to calculate the Root Mean Square Er-
ror (RMSE) and Mean Absolute Error (MAE). This
process was repeated 50 times, using different ran-
dom seeds for the splitting of the data, to obtain the
average RMSE and MAE. The model f ∗ with the low-
est RMSE and MAE on the validation datasets was
considered the linear regression model that best cap-
tures the relationship between the problem subclass
and crossover features.

2.6 Model Verification

To verify the regression model’s accuracy, we
use the selected model f ∗ to predict the per-

formance value of each crossover, i.e., P̂V
Xk

=

f ∗(URXk ,PaBXk ,ABXk ,PoBXk). We sort according to

P̂V
Xk and determine the sets of the 5 best and worst

performing crossovers, defined as follows

X best = {Xki | 1 ≤ i ≤ 5}

X worst = {Xki | α−5 ≤ i ≤ α},

where (k1, · · · ,kα) is the the ordered list of crossover

indexes such that P̂V
Xk1 > P̂V

Xk2 > · · · > P̂V
Xkα . In

addition, we also determine the mean performing
crossover, i.e., those with the predicted performance

value P̂V
Xk closest to zero. We sort according to

the absolute value |P̂V
Xk | and determine the 5 mean

performing crossovers as follows

X mean = {Xki | 1 ≤ i ≤ 5},

where (k1, · · · ,kα) is the the ordered list of crossover

indexes such that |P̂V
Xk1 |< |P̂V

Xk2 |< · · ·< |P̂V
Xkα |.

For each crossover operator Xb ∈ X best , Xm ∈
X mean and Xw ∈ X worst , we optimize 10 different
unseen instances 50 times each with different ran-
dom seeds using the same MOEA configuration. For
the i-th unseen instance, we compute the HV for
each run of the MOEA with crossover X , HV X

i =

{HV X
(i,1), · · · ,HV X

(i,50)}, and perform pairwise t-tests

between the HV results by each crossover Xb ∈ X best

and each crossover Xw ∈ X worst . Thus, in total we
perform 25 t-tests per instance and summarize their
results by counting the number of times the average
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hypervolume HV Xb
i by Xb ∈ X best is better, no signifi-

cantly different, or worse than HV Xw
i by Xw ∈ X worst .

Similarly, we perform pairwise t-tests for each Xb ∈
X best and each Xm ∈ X mean and summarize their re-
sults.

3 MNK-LANDSCAPES

NK-Landscapes (Kauffman, 1993) are well-known
mathematical models of rugged fitness landscapes
with a configurable number of variables and land-
scape ruggedness, specified by the parameters N and
K, respectively. They were extended to the multi-
objective domain by adding another parameter M,
which defines the number of objectives, and consider-
ing different variable epistasis models for each objec-
tive. This multi-objective version is known as MNK-
Landscapes (Aguirre and Tanaka, 2004) and is math-
ematically represented as:

fi(x) =
1
N

N

∑
j=1

fi, j(x j, z(i, j)1 ,z(i, j)2 , . . . ,z(i, j)Ki︸ ︷︷ ︸
Ki bits interacting with x j

), (11)

where fi denotes the i-th fitness function, i =
1,2, . . . ,M, x = (x1, . . . ,xN) ∈ {0,1}N , fi, j : BKi+1 →
R gives the fitness contribution of bit x j to fi, and
z(i, j)1 , . . . ,z(i, j)Ki

are the Ki bits interacting with bit x j in
the string x. This means that the fitness value of the
bit x j depends not only on its own value but also on
the other Ki bits that it interacts with. In other words,
the subfunction fi, j(x j,z

(i, j)
1 ,z(i, j)2 , . . . ,z(i, j)Ki

) is a look-
up table of 2Ki+1 fitness values, one per each com-
bination of the Ki + 1 variables. These fitness val-
ues are random real numbers in the range [0.0,1.0]
drawn from a uniform distribution U(0,1). A larger
Ki creates a more rugged landscape, which makes the
benchmark problem more difficult to solve (Aguirre
and Tanaka, 2004)(Aguirre and Tanaka, 2007)(Pe-
likan, 2010)(Daolio et al., 2015)(Martins et al., 2021).

The Ki bits that interact with bit x j define an epis-
tasis model of variable interactions, which is specified
either by the nearest neighbor bits of x j or random

bits, i.e. z(i, j)k = x ĵ ∈{x1, . . . ,xN} and ĵ =U(1, . . . ,N).
Note that when the epistasis model is random, the
subset of bits that interact with x j is different for each
fitness function. However, even if the epistasis model
for bit x j is the same in all objectives, as is the case
in the nearest neighbor model, the fitness contribution
of x j is different for each objective function due to the
random generation of fi, j.

The properties of MNK-Landscapes in regards to
each configurable parameter, number of variables, ob-

Table 1: Crossover Operators.

Crossover Parameter
One Point
Two Point
Multi Point {3,4, · · · ,19}

Uniform
Half Uniform
Exponential {0.05,0.1, · · · ,0.9}

Binomial {0.05,0.1, · · · ,0.9}

Table 2: Crossover Feature Extraction.

Number of Bits N 20
Crossover Executions M 50

Experiments 100
Crossover Types α 82

Table 3: MNK-Landscapes.

Objectives O 2
Variables N 20

Interacting Variables K 2, 4
Epistasis Model Random, Near

Instances for Training β 30
Instances for Verification 10

Table 4: MOEA.

Generations 500
Population Size 100

Crossover See Table1
Crossover Probability 1.0

Mutation Bit flip
Bit Mutation Rate 0.1

Runs for Training γ 10
Runs for Validation 50

jectives, and epistasis, and their effect on the perfor-
mance of MOEA have been studied by Aguirre et al in
(Aguirre and Tanaka, 2004) and (Aguirre and Tanaka,
2007).

In this work, we analyze MNK-Landscapes with
random and nearest neighbor models of epistasis with
the same number K of interacting variables in all ob-
jective functions, i.e. Ki = K, i = 1, . . . ,M.

4 EXPERIMENTAL DETAILS

We investigate the relationship between crossover
features and performance on subclasses of problems
with interacting variables under nearest neighbor and
random models of epistasis.

The crossover used in this study are listed in Ta-
ble 1. They include the commonly used One and
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Two Point crossovers. Uniform crossover (Syswerda,
1989) clones the parents and swaps bits with a prob-
ability of 0.5 to create offspring. Half Uniform
crossover swaps exactly half of the non matching bits
between the parents. Multi Point crossover uses the
number of crossing points as a parameter, whereas
Exponential and Binomial crossover operators (Storn
and Price, 1995)(Price et al., 2005) use a crossover
rate per variable as a parameter. The Binomial
crossover applies the specified crossover rate to all
variables, similar to Uniform crossover. On the other
hand, the Exponential crossover applies the specified
crossover rate to the first variable and then reduces
it exponentially for the subsequent variables. Vari-
ations of these latter three operators are considered
by setting them with different values of their param-
eters, as shown in Table 1. Considering the 7 basic
operators in Table 1 and their parameters, we have 41
types of crossover operators. Additionally, we also
considered shuffled (Caruana et al., 1989) versions of
these operators. Thus, in total, we have α = 82 types
of crossover operators. For convenience, we denote
these crossover operators as Xk, k = 1, · · · ,α.

Feature extraction was performed for these
crossovers assuming individuals have N=20 variables.
With each crossover operator Xk and the predefined
parents p1 and p2 set as explained in Section 2, we
create a sample offspring population of size 2M ap-
plying Xk(p1,p2) M = 50 times and compute the fea-
tures. We repeat this process 100 times, each time
with a distinct sample offspring population, to cal-
culate the average feature values for each crossover.
The parameters used for feature extraction are sum-
marized in Table 2.

The benchmark problem for performance eval-
uation was MNK-Landscapes(Aguirre and Tanaka,
2007). In this study, we use landscapes with M = 2
objectives, N = 20 bits, and K = 2 and 4 interacting
variables with nearest neighbor (Near) and random
(Random) models of epistasis. To compute the per-
formance value of the crossovers and train the mod-
els, we solve β = 30 problem instances for each of the
four problem subclasses determined by the combina-
tions of K and epistasis models. To verify the mod-
els we use other 10 instances per problem subclass.
Overall we use 160 problem instances in this study.
The parameters of the problems used are summarized
in Table 3.

The MOEA configuration used for optimizing
these problems employed a NSGA-II algorithm (Deb
et al., 2002) with a population size of 100 running
for 500 generations. The crossover probability was
set to 1.0, and the mutation used was Bit Flip Mu-
tation with a mutation rate of 0.1. We add to this

configuration one of the above Xk crossover operators
and compile results on the algorithm’s performance
for each crossover, k = 1, · · · ,82. Our implementa-
tion uses the framework proposed by (Blank and Deb,
2020). The MOEAs are run 10 times in each instance
to compute the performance values of the crossovers
and train the models. On the other hand, the MOEAs
are run 50 times in each instance to validate the mod-
els. Table 4 summarizes the parameters used for the
multi-objective optimizer.

The reference point for the HV is (0.0, 0.0).

5 RESULTS AND DISCUSSION

5.1 Selected Models

We first examine the general characteristics of the se-
lected models. The coefficients, standard errors, t-
values, p-values, confidence intervals, coefficient of
determination R2, and adjusted R2 for the selected
models f ∗ with the lowest RMSE and MAE for each
problem subclass are shown in Tables 5 - 8.

Looking at the explanatory variables selected in
the models, we find that for problems with random
variable interaction, Parent Bias alone can predict per-
formance for K=2 and K=4. On the other hand, for
problems with near variable interaction, Unique Rate,
and Adjacent Bias are selected for K=2 and K=4, with
Parent Bias also being included for K = 4. Since
problems with near variable interaction have objec-
tive function values influenced by adjacent genes, the
selection of Adjacent Bias in the regression model in-
dicates that problem characteristics are reflected in the
crossover features.

The R2 and adjusted R2 values are in the range
0.83-0.94, indicating that in all problem subclasses a
large proportion of the variation in the performance
value PV is predictable from the explanatory vari-
ables.

Below, we analyze the regression models in detail,
grouping by type of variable interaction.

5.1.1 Random Variable Interaction

The models for the two problem subclasses with ran-
dom variable interaction are simple linear regression
models with Parent Bias as the explanatory variable.
Comparing the two models in Tables 5, and 6, the
model for K = 4 has a higher R2 and adjusted R2 with
lower RMSE and MAE than the model for K=2, indi-
cating higher prediction accuracy and fewer outliers.

Plots showing the regression lines and data for
each crossover are presented in Figures 1, and 2. In
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Table 5: Best Regression Model for M = 2, N = 20, K = 2, and random variable interactions on 30 instances.

coef std error t-value p-value 95%CI R2 Adj. R2 RMSE MAE
Const −0.7548 0.040 −19.029 0.000 −0.834,−0.676 0.875 0.873 0.202 0.134PaB 0.0181 0.001 23.640 0.000 0.017,0.020

Table 6: Best Regression Model for M = 2, N = 20, K = 4, and random variable interactions on 30 instances.

coef std error t-value p-value 95%CI R2 Adj. R2 RMSE MAE
Const −0.9904 0.034 −29.487 0.000 −1.057,−0.924 0.944 0.943 0.174 0.128PaB 0.0237 0.001 36.632 0.000 0.022,0.025

Table 7: Best Regression Model for M = 2, N = 20, K = 2, and near variable interactions on 30 instances.

coef std error t-value p-value 95%CI R2 Adj. R2 RMSE MAE
Const −2.1858 0.158 −13.844 0.000 −2.500,−1.872

0.894 0.891 0.220 0.150UR 0.0137 0.001 9.457 0.000 0.011,0.017
AB 0.0396 0.002 23.665 0.000 0.036,0.043

Table 8: Best Regression Model for M = 2, N = 20, K = 4, and near variable interactions on 30 instances.

coef std error t-value p-value 95%CI R2 Adj. R2 RMSE MAE
Const −2.2277 0.151 −14.738 0.000 −2.529,−1.927

0.923 0.920 0.220 0.147UR 0.0127 0.001 9.019 0.000 0.010,0.015
PaB 0.0073 0.002 3.057 0.003 0.003,0.012
AB 0.0330 0.004 8.705 0.000 0.025,0.041

both figures, the data and the models indicate that
higher Parent Bias corresponds to better performance.
The regression coefficient for Parent Bias is larger for
K = 4 and the slope of the regression line is steeper,
suggesting a greater influence of the explanatory vari-
able in problems with larger K. Note that the best-
performing crossovers have Parent Bias around 90%.
This suggests that the most successful crossovers are
those that produce offspring that are one or two bits
different from one of the parents. To verify this, col-
umn Random in Table 9 shows the features and per-
formance values of the 5 crossovers predicted to be
the best by the models (higher P̂V ) for these problem
subclasses. Since in both models the only explanatory
variable is Parent Bias, the same crossovers are pre-
dicted to perform better both in K=2 and K=4. Note
that 4 of the 5 crossovers share the same highest Par-
ent Bias value, i.e., Exponential (E), Binomial (B) and
their shuffled versions (SE and SB) with the smallest
rate of 0.05, which is equivalent to accepting, on av-
erage, only one bit from the second parent. The fifth
crossover is shuffled exponential (SE) with parame-
ter 0.10, which, on average, accepts 2 bits from the
second parent.

From the same figures, note that the error be-
tween the predicted P̂V and actual PV is larger
for crossovers with smaller Parent Bias, particularly
when Parent Bias is zero. Crossovers with a Parent

Bias of zero include Half Uniform (HU) and Multi
Point with 19 crossover points (MP19), along with
their shuffled versions (SHU and SMP19). Table 10
summarizes the features, actual PV , and predicted P̂V
performance values for these crossovers. Note that
HU and MP19 achieve a PV well below the mean
(PV < 0.0), and their shuffled versions improve their
actual PV. However, only SHU performs significantly
better than the mean for K=2, i.e. PV = 0.422 > 0.0,
and slightly better than the mean for K=4, i.e. PV =
0.081> 0.0. HU, SHU, and SMP19 share similar fea-
tures. However, their performance is very different
and cannot be explained neither by Parent Bias nor
by the other features of these crossovers. MP19 is
a special case where its extremely poor performance,
PV =−1.399 and PV =−1.174, can be explained by
its low Unique Rate.

5.1.2 Near Variable Interaction

The models for the two problem subclasses with near
variable interaction are multiple regression models
with Unique Rate and Adjacent Bias as explanatory
variables for K = 2, and Parent Bias added for K = 4.

From Tables 7 and 8, note that the regression coef-
ficient for Adjacent Bias is three times larger than the
coefficient for Unique Rate. The models predict better
performance for crossovers with a high Adjacent Bias
that can pass adjacent bits from the same parent to
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Figure 1: Regression Model for K = 2, Random. Figure 2: Regression Model for K = 4, Random.

Table 9: The 5 best performing crossovers K = 2,4 with Random and Near variable interactions.

Random Near
SE0.05 B0.05 SB0.05 E0.05 E0.1 E0.9 E0.8 E0.7 E0.6 E0.5

Unique Rate 37.04 37.08 37.08 36.68 37.82 79.40 82.64 73.76 64.98 56.32
Parent Bias 90.0 90.0 90.0 90.0 89.9 60.54 65.41 75.03 81.21 85.08

Adjacent Bias 59.81 60.18 60.16 60.50 60.00 54.90 52.37 54.65 56.91 58.16
Position Bias 90.0 90.0 90.0 90.0 89.9 19.86 57.81 73.57 80.98 85.03

K=2 PV 0.717 0.958 0.887 0.772 0.814 0.939 0.0.868 0.923 0.779 0.901
P̂V 0.871 0.871 0.871 0.871 0.869 0.927 0.879 0.853 0.829 0.771

K=4 PV 1.011 1.100 1.158 1.261 1.025 0.955 0.949 1.089 1.101 0.850
P̂V 1.143 1.143 1.143 1.143 1.141 0.960 0.938 0.971 0.987 0.960

Table 10: Crossover with Parent Bias of 0.

HU SHU MP19 SMP19
Unique Rate 99.94 99.98 2 99.96
Parent Bias 0 0 0 0

Adjacent Bias 7.90 7.88 0 7.76
Position Bias 11.32 11.23 0 11.69

K=2 PV −0.182 0.422 −1.399 −0.666
P̂V −0.755 −0.755 −0.755 −0.755

K=4 PV −0.922 0.081 −1.174 −0.718
P̂V −0.990 −0.990 −0.990 −0.990

the offspring while maintaining a good Unique Rate
to avoid creating the same offspring several times.

Similar to random variable interactions, compar-
ing the two models for near variable interactions, the
model for K = 4 has a higher R2 and adjusted R2
with lower RMSE and MAE than the model for K=2.
To further investigate the better prediction accuracy
for larger K, Table 11 shows the results of a subopti-
mal model for K=4, which excludes Parent Bias and
includes only Unique Rate and Adjacent Bias, the
explanatory variables included in the best model for
K=2. From Table 11, note that R2 of the suboptimal
model reduces to 0.914 compared to R2 = 0.923 of
the optimal model for K=4 shown in Table 8. How-

ever, the R2 of the suboptimal model for K=4 it is still
better than the R2 = 0.894 of the optimal model for
K=2 shown in Table 7, although both use the same
explanatory variables. Summarizing, prediction ac-
curacy is better for K=4 than for K=2, whether the
variable interactions are random or near.

Since these are multiple linear regression models,
the models are visualized using residual plots, shown
in Figures 3, and 4. In Figure 3, as the predicted
performance P̂V exceeds -0.5, the range of possi-
ble residuals decreases, indicating higher accuracy for
higher P̂V values. Conversely, around P̂V = -0.5, the
range of possible residuals is larger, with both positive
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Figure 3: Residual Plot for K = 2, Near. Figure 4: Residual Plot for K = 4, Near.

and negative distributions, indicating both underpre-
dictions and overpredictions. In Figure 4, the range
of possible residuals is smaller than for K = 2, indi-
cating higher prediction accuracy. This result is also
reflected in the R2 values in Tables 7, and 8. However,
for K = 4, there is a data point with residual exceeding
1.0.

In Figures 3 and 4, the two leftmost points cor-
respond to 18 and 19 point crossovers. Their pre-
dicted performance values P̂V are underestimated,
but looking at the actual PV are two of the worst
performing operators. Similarly, the point with the
largest positive residual, > 0.6 in K=2 and > 1.0 in
K=4, correspond to shuffle half uniform crossover.
The predicted performance value P̂V of this opera-
tor is also largely underestimated. However, looking
at the actual PV it is above average (> 0.0) but far
from being among the best. The most overestimated
crossovers, those that appear with negative residu-
als, correspond to multi point crossovers with 10 to
17 crossing points. These crossovers are also in the
group of worst-performing operators.

Column Near in Table 9 shows the features and
performance values of the 5 crossovers predicted to
be the best (higher P̂V ) by the models for the near
variable interaction problem subclasses. Although the
number of explanatory variables for K=2 and K=4 is
different, the same crossovers are predicted as the best
in both models. Note that all 5 operators are exponen-
tial crossovers, with the parameter >= 0.5. However,
their rank order is different. For K=4, to compute P̂V
the model also takes into account the value of the Par-
ent Bias feature, in addition to Unique Rate and Ad-
jacent Bias used for K=2.

Table 11: Suboptimal Regression Model for K=4, Near
30 instances.

coefficient p-value
Constant −2.2529 0.000

Unique Rate 0.0133 0.000
Adjacent Bias 0.0436 0.000

R2 0.914
Adj. R2 0.911
RMSE 0.233
MAE 0.169

Figure 5: HV Boxplot on validation instances for K = 2,
Random.

5.2 Model Validation with Unseen Data

Each regression model was learned to estimate the
performance of crossover operators in a problem sub-
class. In this section, we examine the predictive
power of the models for individual unseen instances
in each problem subclass. As explained in Section
2.6, we identify three groups of crossovers, namely
the best 5, worst 5, and mean 5 performing crossovers,
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Table 12: Xb and Xw t-Test Results K = 2, Ran-
dom.

ID Xb > Xw Xb ∼ Xw Xb < Xw
31 24 1 0
32 21 4 0
33 25 0 0
34 21 4 0
35 25 0 0
36 4 19 2
37 20 5 0
38 0 22 3
39 16 9 0
40 17 8 0

Table 13: Xb and Xw t-Test Results K = 4, Ran-
dom.

ID Xb > Xw Xb ∼ Xw Xb < Xw
31 23 2 0
32 25 0 0
33 21 4 0
34 23 2 0
35 25 0 0
36 23 2 0
37 23 2 0
38 22 3 0
39 25 0 0
40 21 4 0

Table 14: Xb and Xw t-Test Results K = 2, Near.

ID Xb > Xw Xb ∼ Xw Xb < Xw
31 25 0 0
32 23 2 0
33 25 0 0
34 25 0 0
35 24 1 0
36 25 0 0
37 25 0 0
38 25 0 0
39 25 0 0
40 25 0 0

Table 15: Xb and Xw t-Test Results K = 4, Near.

ID Xb > Xw Xb ∼ Xw Xb < Xw
31 25 0 0
32 25 0 0
33 25 0 0
34 25 0 0
35 25 0 0
36 25 0 0
37 25 0 0
38 25 0 0
39 25 0 0
40 25 0 0

Table 16: Xb and Xm t-Test Results K = 2, Ran-
dom.

ID Xb > Xm Xb ∼ Xm Xb < Xm
31 25 0 0
32 21 4 0
33 25 0 0
34 25 0 0
35 22 3 0
36 1 23 1
37 17 8 0
38 0 19 6
39 10 15 0
40 11 14 0

Table 17: Xb and Xm t-Test Results K = 4, Ran-
dom.

ID Xb > Xm Xb ∼ Xm Xb < Xm
31 18 7 0
32 25 0 0
33 15 10 0
34 23 2 0
35 25 0 0
36 21 4 0
37 19 6 0
38 25 0 0
39 18 7 0
40 15 10 0

Table 18: Xb and Xm t-Test Results K = 2, Near.

ID Xb > Xm Xb ∼ Xm Xb < Xm
31 25 0 0
32 6 19 0
33 11 14 0
34 18 7 0
35 14 11 0
36 23 2 0
37 10 15 0
38 19 6 0
39 19 6 0
40 13 12 0

Table 19: Xb and Xm t-Test Results K = 4, Near.

ID Xb > Xm Xb ∼ Xm Xb < Xm
31 22 3 0
32 25 0 0
33 16 9 0
34 22 3 0
35 24 1 0
36 25 0 0
37 25 0 0
38 22 3 0
39 23 2 0
40 22 3 0

Studying the Relationship Between Crossover Features and Performance on MNK-Landscapes Using Regression Models

93



and perform pairwise t-tests between the best and the
other crossovers. To illustrate the variance among in-
stances, Figure 5 shows box plots of the HV achieved
in the 50 runs of the 5 best and 5 worst crossover
operators, with 500 data points in total, in each un-
seen instance of problem subclass K = 2 with random
variable interaction. Note that the distributions of the
points and their medium values vary greatly from in-
stance to instance.

The summary of the Welch’s t-test performed to
compare the mean hypervolume on 50 runs achieved
by the 5 best Xb ∈ X best and 5 worst Xw ∈ X worst

crossovers is shown in Tables 12-15. Results are
shown for 10 unseen instances in each problem sub-
class, i.e., instances not used to train the models.
The unseen instances are identified with a number be-
tween 31 and 40.

The t-tests try to assess whether the models could
be useful to classify good crossovers from bad ones
in particular instances of the problem subclasses. If
there is a clear differentiation between the best and
worst crossovers for a particular instance, Xb > Xw
should approach 25 and Xb < Xw should aproach 0,
indicating that the mean hypervolume by most Xb ∈
X best is better than by Xw ∈ X worst . As shown in Ta-
bles 13,14, and 15, Xb < Xw is zero for all instances,
indicating the model is useful. However, in Table 12,
instances 36 and 38 have non-zero values for Xb <Xw.
To determine if this result is due to the model or the
instances, Figure 6 shows separate box plots for the
HV achieved by the best 5 and the worst 5 crossovers
for instances 33, 36, 38, and 40. In instance 33, there
is a perfect score of Xb > Xw = 25 in favor of the best
crossover operators, which is in accordance with the
box plots that show distributions of HV values clearly
centered around different means. In instance 40, the
scores Xb > Xw = 17 and Xb ∼ Xw = 8 indicate that the
best crossovers are mostly better than and sometimes
similar to the worst crossovers. The box plots show
that the distributions of the two groups are different.

In instances 36 and 38, the scores Xb ∼ Xw = 19
and 22, respectively, show that, mostly, there is no
statistical difference in the HV means between the
best and worst crossovers. The box plots confirm this,
and also show that the distributions of HV values are
very similar, with a small standard deviation around
the mean. This suggests that these instances are sim-
pler, where crossover features make no difference in
performance and therefore the majority of crossovers
will achieve a similar HV.

Tables 16-19 show the results of the pairwise t-
tests between the best Xb ∈ X best and the mean Xm ∈
X mean performing crossovers. Note that in almost
all problem subclasses and instances, Xb’s perfor-

mance is better or similar to Xm. As expected, due
to the variability in the instances, there are more cases
where the performance of the predicted best and mean
crossovers in the subclass perform similarly in a given
instance.

A summary of the mean performing crossovers in
each problem subclass is shown in Table 20. It can be
seen that in random variable interactions, the group of
crossovers considered as mean performing is the same
for K=2 and K=4. In near variable interactions, three
crossovers are common for K=2 and K=4. Also note
that the groups of mean performing crossovers are dif-
ferent for random and near variable interactions.

These results show that the models are useful for
classifying good performing crossovers from average
and bad performing crossover in particular instances.

Figure 6: HV Boxplot by best and worst crossovers on se-
lected instances for K = 2, Random.

Table 20: Mean performing crossovers.

Random Near
K=2 K=4 K=2 K=4

B0.7
√ √ √

SB0.7
√ √

B0.3
√ √

SB0.3
√ √

OP
√ √

MP4
√

MP5
√ √

MP6
√

SOP
√ √

STP
√ √

SB0.2
√

6 CONCLUSION

This work presented a method to study the relation-
ship between crossover features and the performance
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of a multi-objective evolutionary algorithm on sub-
classes of problems by using regression models. Sev-
eral crossover operators were studied, extracting their
features with a method independent of the charac-
teristics of the problem instances or the dynamics
of an evolutionary algorithm. A performance value
for a problem subclass, relative to other operators,
was computed for each crossover running a multi-
objective evolutionary algorithm on several instances.
We used MNK-Landscapes with random and near-
variable interactions to define problem subclasses.
We verified that the models identified relevant fea-
tures for each problem subclass and can explain a
large proportion of the performance variance.

In the future, we would like to validate the
method with other multi-objective evolutionary al-
gorithm configurations and use problems with more
variables and objectives. Also, it would be interesting
to add problem features to obtain more general mod-
els.
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