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Abstract: Physical fatigue in aviation poses a critical challenge to flight safety, as it is characterized by causing reduced 
performance and feelings of tiredness, which can be temporary or chronic in nature, necessitating effective 
detection methods. Nowadays, due to very promising advances in non-obtrusive sensing technologies, 
wearable electrocardiography (ECG) devices have become a reliable physiological instrument to analyze the 
heart’s behavior, and ultimately physical fatigue levels. In this study, a literature review is conducted to 
explore how detection of physical fatigue can be tackled in the aviation context through current advances in 
ECG technologies, delving into commercial-off-the-shelf ECGs from conventional adhesive electrodes to 
innovative textile-integrated alternatives. Our approach also involves a comprehensive analysis of the most 
relevant metrics, such as SDNN (standard deviation of the N-N interval), SDSD (standard deviation of 
successive differences), RMSSD (root mean square of successive N-N interval differences), pNN50 
(percentage of successive N-N intervals differing by more than 50 milliseconds) and CV (coefficient of 
variation), regarding physical fatigue prediction in the distinct scenario of airplane cockpits. This includes 
detailing the latest updates and versions, along with addressing open challenges in deploying these sensors 
effectively within the aviation context. Hence, the core focus is on the pivotal role of ECG sensors, the 
technical requirements and methodologies needed in identifying physical fatigue to increase flight safety 
during a mission. This paper contributes to providing insights into the effectiveness of ECG sensors, exploring 
their integration into the cockpit and addressing challenges of incorporating effective computing and health 
monitoring in military aviation settings.

1 INTRODUCTION  

When experiencing physical fatigue, muscles and 
central nervous system weaken, impacting force, 
productivity, or performance (Gonzalez et al., 2017). 
Fatigue can manifest as annoyance and reduced 
capabilities, with effects ranging from transient to 
chronic. 

Specifically physical fatigue is categorized as 
either active, resulting from intense activities causing 
muscle soreness, or passive, stemming from 
monotonous work leading to symptoms like 
forgetfulness, drowsiness, and difficulty focusing 
(Hooda et al., 2022).  

Previous studies suggest that fatigue poses a 
significant safety risk in civil and military aviation. 
European aviation's fatigue risk management report 
(Booth & Holmes, 2023) reveals alarming data: 25% 
of pilots experienced five or more microsleeps, and 
72.9% had inadequate sleep between assignments.  
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Additionally, nearly one in five pilots extended 
flight duties twice or more using the Commander's 
Discretion in the past four weeks. These statistics 
emphasize the pressing need for European airlines to 
improve fatigue management to safeguard crew 
welfare and flight safety.  

Studies reveal that 72% of military pilots flew 
while extremely drowsy, with 94% of USAF pilots 
and navigators reporting significant fatigue affecting 
their performance (Caldwell & Gilreath, 2002), 
(Miller & Melfi, 2007). Modern fighter aircraft 
cockpits impose considerable psychological and 
physical stress, particularly during taxing activities 
like combat or cruise, leading to heightened 
weariness among pilots. Research indicates increased 
fatigue in F-15 pilots during long-haul flights, 
amplifying psychological stress (Ohrui et al., 2008). 
These findings underscore the necessity of robust 
fatigue (physical and mental) management strategies 
to safeguard aviation mission safety and 
effectiveness. In light of the aforementioned 
considerations, the present research paper focuses on 
the possibility of determining the installation of 
physical fatigue by monitoring cardiac activity for 
future applications for military aviation. 

2 STATE-OF-THE-ART  

Diverse methodologies quantify physical fatigue, 
reflecting its complex manifestation and impact. 
From traditional to advanced methods, various 
techniques provide insights into the physiological 
effects induced by fatigue. Multimodal approaches, 
including exploring cerebral, cardiac, ocular, 
electrodermal, respiratory, motor, glucose, and 
thermal activities, are prevalent with wearable 
sensors. These methods comprehensively assess 
fatigue, capturing physiological responses to exertion 
and stress. 

Physical fatigue assessment often entails cardiac 
activity monitoring with photoplethysmography 
(PPG) sensors (Lohani et al., 2019). While PPG 
sensors detect pulse wave peaks to determine 
heartbeats, they are less precise than ECG sensors, 
particularly in identifying the R peak. Irregularities in 
pulse waveform morphology, like changes in peak 
characteristics, signify compromised cardiovascular 
function and heightened physiological stress linked to 
physical fatigue. Electroencephalography (EEG) 
captures shifts in wakefulness to sleep, with delta and 
theta activities showing consistency during fatigue, 
while alpha and beta activities decrease during 
maximal muscular contraction (Ng & Raveendran, 

2007). Additionally, electrodermal activity (EDA) 
serves as an indicator of physiological arousal and 
emotional states, detecting changes in skin resistance. 
Increased skin conductance, decreased skin 
conductance reactivity, and delayed skin conductance 
reactions are commonly associated with physical 
fatigue (Aeimpreeda et al., 2020). Electromyography 
(EMG) sensors measure electrical impulses from 
muscles, with EMG magnitude rising in the presence 
of physical fatigue. Errors may arise due to 
movement, electrode misplacement, and cross-talk 
from neighboring muscles (Sueaseenak et al., 2017). 
Respiratory monitoring using pulse oximeters or 
pressure sensors shows increased rates and volumes 
with fatigue (Daiana Da Costa et al., 2019). Lastly, 
facial behavior analysis, including eye tracking, 
reveals fatigue-related indicators such as blinking, 
pupil size, and saccadic movement. Metrics like 
PERCLOS and blink duration reflect fatigue levels (Ji 
et al., 2004). Increased blink frequency is another sign 
of tiredness. Saccadic velocity decrease has been 
suggested as a biomarker of aviator fatigue (Göker, 
2018). 

Electrocardiography stands as a cornerstone in the 
exploration of fatigue across various domains, 
offering profound insights into the intricate 
relationship between cardiac rhythm and the 
autonomic nervous system. ECG, which records the 
heart's electrical activity via repeated cycles, is the 
gold standard test for determining cardiac activity. 
Electrodes are applied to the skin to acquire the 
electrical signal, which is later plotted as voltage 
versus time. ECG measurements are performed to 
evaluate heart function by using specific electrode 
configurations, such as the typical bipolar limb leads 
(I, II, III), chest leads (VV1–VV6), and amplified 
unipolar limb leads (aaa LL, aaa FF, aaVVsRR)  
(Meek & Morris, 2002).  Heart rate (HR), the 
instantaneous measure of heart electrical activity, 
equates to the mean beats per minute (bpm) derived 
directly from R-R intervals (Berntson et al., 1997). 
Heart rate variability (HRV) denotes the variation in 
durations between consecutive heartbeats (Lewis, 
2005). Balanced sympathetic and parasympathetic 
activities are requisite for relaxed states. 
Parasympathetic processes induce increased HRV, 
signifying relaxation, while sympathetic nervous 
system (SNS) activity maintains readiness during 
stress, resulting in reduced HRV and a higher heart 
rate. HR analysis yields time, frequency, and 
nonlinear parameters. 

Heart rate data can be obtained over longer time 
spans, up to 24 hours, or during shorter intervals, 
ranging from 1 to 5 minutes. Frequency levels as well 
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as time domain values are significantly impacted by 
the recording duration (Shaffer & Ginsberg, 2017). 
The categories for the recording periods are ultra 
short term (less than 1-minute recordings), short term 
(around 1–5 minutes recordings), long term (24 hours 
or longer recordings) (Anna Persson, 2019).  

The time domain analysis encompasses all 
techniques that rely on the time R-R interval, which 
is often referred to as the N-N (normal to normal) 
interval. Some of the time domain parameters based 
on R-R intervals are SDNN (standard deviation of the 
N-N interval), SDSD (standard deviation of 
successive differences), RMSSD (root mean square 
of successive N-N interval differences), pNN50 
(percentage of successive N-N intervals differing by 
more than 50 milliseconds) and CV (coefficient of 
variation). 

Frequency domain analysis of ECG signals 
involves assessing the Power Spectral Density (PSD) 
to delineate energy distribution across specific 
frequency bands within R-R intervals. These bands 
are the following: Low Frequency (LF): 0.04-0.15 
Hz; High Frequency (HF): 0.15-0.40 Hz; Very Low 
Frequency (VLF): 0.003-0.04 Hz; Ultra Low 
Frequency (ULF): <0.003 Hz (McCraty & Shaffer, 
2015). The LF, HF, VLF, and ULF bands can 
represent activity in the autonomic nervous system 
and are associated with a number of physiological 
events (McCraty & Shaffer, 2015) . These bands are 
used to compute metrics such as ULF power, VLF 
power, LF peak, LF power, HF peak, and HF power, 
which offer insights into autonomic balance 
(McCraty & Shaffer, 2015) . The LF/HF ratio serves 
as an indicator of sympathetic and parasympathetic 
balance, although its consistency as a fatigue 

indicator across studies varies due to experimental 
differences and external factors (Hu & Lodewijks, 
2020). 

When a straight line cannot be drawn to represent 
the relationship between the variables, non-linear 
parameters are employed. They measure a time series' 
unpredictable nature, which represents the 
complexity of the mechanisms controlling heart rate 
variability (Shaffer et al., 2020). Commonly used 
parameters are SD1, SD2, SD1/SD2, approximate 
entropy, Shannon entropy, sample entropy. 

After analyzing the time domain, frequency 
domain, and non-linear metrics, it is clear due to the 
fact that the flight scenarios are shorter, all measures 
based on 24-hour recordings have to be rejected. 
Metrics that can be obtained in 5 minutes or less, 
specifically SDNN, pNN50, RMSSD, and HR Max – 
HR Min, are desirable in a real-time processing 
situation. The HRV features can be found in Table 1. 

Various categories of Commercial off the shelf 
(COTS) ECG sensors are available, catering to 
different needs and preferences. Wearable chest-
based devices, such as the Zephyr BioHarness and 
Equivital Ex eq02, offer continuous monitoring of 
ECG signals and other physiological parameters, 
suitable for various activities. Compact patch devices 
like the VitalPatch Biosensor and Savvy provide 
lightweight and portable solutions for long-term 
monitoring, with discreet adherence to the skin. 
Integrated garment systems like the Master Caution 
System 2.0 offer comprehensive monitoring of 
multiple parameters, ideal for clinical or research 
settings. Traditional Holter monitors remain essential 
in diagnostic settings, providing high-resolution ECG  
 

Table 1: HRV features. 

Measures Feature Unit Description
Time 

domain 
meanNN ms Mean of NN interval sequence. 
meanHR 1/min Mean of heart rate sequence. 
SDNN ms Standard deviation of NN interval sequence. 

RMSSD ms Root means square of successive differences in NN interval sequence.
pNN50 % Percentage of NN50 in total intervals. 

Frequency 
domain 

aLF ms2 Absolute power of LF band. 
aHF ms2 Absolute power of HF band. 

LF / HF - Ratio of aLF / aHF.
peakLF Hz Peak frequency for LF band. 
peakHF Hz Peak frequency for HF band. 

Nonlinear 
domain 

SD1 ms Standard deviations along the major axis of the ellipse. 
SD2 ms Standard deviations along the minor axis of the ellipse. 

SD1 / SD2 - Ratio of SD1 to SD2.
Approximat

e entropy
- Measures the predictability of a time series by quantifying the likelihood that 

similar patterns will continue in the data 
Sample 
Entropy 

- Quantifies the complexity of a time series by measuring the likelihood that 
similar patterns of data points persist within the series 
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Table 2: ECG Device. 

Device name 
Integration 
wearable 

technology 

Sampling 
frequency 

[Hz] 

Data transmission 
protocol 

Data 
format Battery 

ZephyrTM Performance 
System 

Shirt, chest strap, 
holder (direct) 1000 Hz 

Bluetooth 
ECHO radio 

.csv 
DaDISP 

.zsf 

Lithium 
3-hour charging 
cycle, up to 300 

times. 
Bittium Faros 

 
Wearable Patch 1000 Hz 

Bluetooth 
USB 

EDF 7 days battery 

BITalino Patch 1000 Hz Bluetooth .csv Li-Po battery, 8 
hours 

Equivital Ex eq02 Safe belt with dual 
shoulder straps 256 Hz Bluetooth 

.csv 
Excel 
raw 

48h battery 
duration 

VitalPatch Patch 125 Hz 
Bluetooth 

Radiofrequency 
- 120-168h battery 

Movesense developer kit Chest strap 512 Hz 
configurable Bluetooth - Coin cell 

Savvy Patch 125-500 Hz Bluetooth - 7 days battery 

Master Caution System 
2.0 by Healthwatch Vest 200-1000 Hz 

Bluetooth 
WiFi 

3G, 4G 
USB 

- 12h battery 

Polar H10 Chest strap 1000 Hz Bluetooth - 400h, button 
shape. 

MP160 Starter Systems 
with ECG100D (+ 
BioNomadix) by 

BIOPAC 

Traditional ECG 
design (Einthoven 

triangle) 
Chest strap or shirt 

(using 
BioNomadix) 

150 Hz 
Ethernet 

Radiofrequency 
.acq 

Power supply 
72-90h (using 
BioNomadix) 
24h (Logger 

battery) 

 

recordings over an extended period. Biopac Systems' 
modular data acquisition systems, including the 
MP160 Starter Systems with ECG100D amplifier, 
offer reliable and versatile solutions for research and 
clinical applications. Wireless transmission systems 
like BioNomadix provide flexibility and convenience 
for remote monitoring and data collection. The 
commercial products discussed in this section are 
summarized in Table 2. 

3 MATERIALS AND METHODS 

3.1 Sensor Technology 

In order to acquire cardiac signals, the Zephyr 
BioHarness (Medtronic, Minneapolis, MN 55432-

5604 USA) sensor and Biopac MP160 System 
(Biopac Systems, Inc., Goleta, CA 93117, USA) with 
an ECG100D amplifier were used (see Figure 1).  

The Zephyr BioHarness is a wireless chest-based 
wearable device with multiparametric sensors for 
ECG, respiration, estimated core body temperature, 
accelerometry, time, and location. It offers three 
modes of wear: as a patch directly on the chest, 
secured within a chest strap, or integrated into a 
compression shirt. Weighing 18 grams and measuring 
28 mm in diameter by 7 mm, it's designed for physical 
tasks. It records ECG at 1000 Hz, with a lithium 
battery lasting up to 300 recharge cycles. It can store 
data for 3.5 to 5 hours, communicates via Bluetooth 
Low Energy, and allows data backup in formats such 
as .csv, DaDISP, or .zsf files (Medtronic, 2018). The 
signal is recorded with the help of the OmniSense 
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Live software. After stopping the recording, the 
signal is automatically sent to the OmniSense 
Analysis software through which the heart rate can be 
seen in the form of a graph and the signal can be 
saved. Automated data processing enables direct 
extraction of heart rate information (Medtronic, 
2017).  

 
Figure 1:  Block diagram. 

The Biopac MP160 System with ECG100D 
Amplifier provides 16 channels for recording at 
sampling rates up to 200 KHz, ensuring 
comprehensive signal capture with a bandwidth of 
0.05 Hz to 150 Hz. Weighing 1.154 kg and measuring 
10 x 11 x 19 cm, it's powered via cable and connects 
through Ethernet for data transmission. 
AcqKnowledge software is used for the acquisition, 
visualization and subsequent saving of the signals.  
While not as wearable-friendly due to its size, its 
extensive capabilities make it suitable for detailed 
physiological studies. In contrast to the Zephyr 
system, the Biopac allows direct access to raw ECG 
signals for processing into measurements such as 
heart rate or heart rate variability (Biopac, 2019).  

The Zephyr BioHarness offers distinct advantages 
over the Biopac MP160 system in terms of 
portability, ease of use, and real-time monitoring 
capabilities. Its lightweight and wearable design 
make it ideal for studies involving dynamic physical 
activities, whereas the Biopac system, while 
powerful, is better suited for stationary laboratory 
experiments. 

Furthermore, the Zephyr BioHarness provides 
immediate access to physiological data via Bluetooth 
connectivity, enabling real-time analysis and 
intervention, whereas data acquisition with the 

Biopac system may require post-processing and 
offline analysis. As a result of these advantages, the 
Zephyr BioHarness will be utilized in future 
experiments to assess physical fatigue due to its 
suitability for real-time monitoring in dynamic 
settings. 

3.2 Experimental Procedure 

The test started with participants receiving and 
signing consent forms and GDPR documents, 
ensuring their informed consent and compliance with 
data protection regulations. A group of five male 
subjects, characterized by diverse demographics and 
physical fitness levels, participated in the study (age: 
36± 12, height: 183 ± 7, weight: 93 ± 20).  

The experiment consisted of two sequential 
phases: initially, participants underwent a rested state 
(RS) assessment (approximately 10 minutes) before 
commencing the actual workout, in order to obtain the 
individual's basal state of reference. During the initial 
phase, participants were equipped with a Zephyr ECG 
sensor positioned at chest level.  

Subsequently, participants engaged in treadmill 
exercises (approximately 20 minutes) designed to 
induce physical fatigue (Figure 2).  

Throughout the experiment, treadmill parameters 
were systematically adjusted to escalate both incline 
and speed, simulating strenuous physical activity. 
The Zephyr ECG sensor continuously monitored 
participants' cardiac activity during both phases, 
providing real-time data on heart rate and related 
metrics. This systematic data collection approach 
enabled the analysis of physiological responses to 
induced fatigue, with subsequent comparisons 
between the rested and physically-fatigued states 
(PFS). 

 
Figure 2: Demo session - Treadmill exercises. 
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Figure 3: Parameters’ distribution over time for rested and fatigue states. 

4 RESULTS 

The Zephyr ECG sensor was selected for these 
experiments due to its versatility, accuracy, and real-
time monitoring capabilities. Overall, the Zephyr 
ECG sensor offered the necessary features and 
functionality to effectively capture and analyze 
participants' physiological responses to induced 
fatigue, making it the preferred choice for this study. 

The RR interval is a time-domain indicator of the 
combined influence of the sympathetic nervous 
system (SNS) and parasympathetic nervous system 
(PNS). Therefore, this paper focuses on the 
evaluation of parameters in the time domain in order 
to observe changes with the onset of physical fatigue. 
Time domain analysis is convenient when dealing 
with real-time requirements (e.g., short duration 
recordings). The recordings were taken during the rest 
period and then at the beginning of the physical 
exercise and until its completion. As mentioned earlier, 
we chose to work with 5-minute windows. Hence, we 
calculated the main indices: SDNN, RMSSD, SDSD, 
NN50 and pNN50. The distribution of the values 
obtained during the rest period and the running period 
on the treadmill are shown in Figure 3. 

There are no generally acknowledged standard 
values for HRV indices that can be used for clinical 
purposes due to the variability from person to person 
influenced by age, sex, physical condition, etc. 
Despite this, we can still identify whether physical 
fatigue has been installed. That is because when 
physical fatigue sets in, the parasympathetic activity 
reduces, resulting in lower values for all the 
parameters (Shaffer & Ginsberg, 2017). This is also 
seen in the way the parameters are distributed in 
Figure 3. We can assume that because of the fatigue 
state, there are no considerable changes that occur in 

the durations of successive RR intervals. This is 
reflected in the low values of the median for NN50 
and pNN50 parameters.  

Additionally, we are able to state that HR levels 
are rising, indicating the effort expended during 
physical exercise. This occurs as a result of SNS 
activity (fight or flight), which is dominant under 
these circumstances.  

5 DISCUSSION 

Testing of the Zephyr and Biopac systems highlighted 
Zephyr's advantage in real-time monitoring during 
physical activity demonstrations, thanks to its 
wireless design and Bluetooth connectivity that 
allows immediate access to data. However, for 
cockpit integration, both devices can provide valid 
data but given considerations of space constraints and 
interaction with the pilot's equipment the Zephyr still 
manages to be a better fit. 

Among the challenges encountered during the 
experiments were limitations on the viability of 
certain metrics due to their dependence on longer 
recordings, as well as the need to derive metrics only 
from the RR range. Some of the most widely used 
measures are SDNN, SDSD, and RMSSD, according 
to the literature (McCraty & Shaffer, 2015). This is 
appropriate for our research goal, but there are certain 
drawbacks. For example, we need to determine 
whether these short-term metrics accurately capture 
the physiological process we are studying and 
whether they yield more accurate results than 24-hour 
recordings, which could provide even more accurate 
data. 

It was decided to choose only male subjects based 
on the dominance of this gender among pilots. Thus, 
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the results are gender specific. A challenge 
encountered was the need to modify the training 
scenarios based on individual physical condition.  

6 CONCLUSIONS  

The selection of the Zephyr ECG sensor for these 
experiments was driven by its exceptional suitability 
for assessing physical fatigue. With its robust 
capabilities in real-time monitoring and accurate 
measurement of cardiac activity, including heart rate 
and related metrics, the Zephyr emerged as the 
optimal choice for capturing physiological responses 
during treadmill exercises. Its wireless design and 
comfortable chest-level positioning ensured seamless 
integration into the experimental setup, allowing 
participants to engage in physical activity freely. 
While acknowledging the versatility of the Biopac 
system for other types of data acquisition, the 
Zephyr's physiological responses solidified its 
position as the better option for this study. 

Before and after fatigue, ECG data were examined 
using linear (time domain) dynamics. The findings 
indicated that following fatigue, the time-domain 
indices (SDNN, RMSSD, SDSD, NN50, and pNN50) 
decreased. The outcome confirms that assessing 
physical fatigue levels with HRV is a feasible 
approach (Shaffer & Ginsberg, 2017). 

Examining pilots' physical fatigue is important for 
aviation safety. Pilots face demanding schedules and 
high-altitude environments, leading to fatigue. This 
can impair cognitive function and decision-making 
during flights. By understanding fatigue factors, 
interventions can be implemented to mitigate risks.  

In future works, more sensors will be included, 
such as a photoplethysmograph, an electroencephalo-
graph and an electromyograph.  These sensors add to 
the real-time insights of physiological and cognitive 
changes during flight. Incorporating them enhances 
fatigue research, enabling targeted interventions and 
improving aviation safety standards. Future research 
will involve using flight simulators to induce fatigue 
through prolonged or intensive flight simulations. 
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