
Combining MapReduce and Serverless Computing for Efficient
Word Frequency Statistics

Linxu Dai a
Department of Control Science and Engineering, Tongji University, China

Keywords: Serverless Computing, Mapreduce, Word Frequency Statistics, Machine Learning.

Abstract: Mapreduce is an important data processing model that can process massive data effectively and conveniently.
Serverless computing is a new type of cloud computing technology with huge development potential, which
aims to alleviate the limitations of centralized model training in traditional machine learning algorithms and
can significantly protect data security and personal privacy. Inspired by the advantages of the aforementioned
two technologies, this paper considers combining these two technologies together for efficient word frequency
statistics. Specifically, this article first describes the basic principles and advantages of the MapReduce model
and serverless computing technology, as well as their research and development direction and practical
application in recent years. Then, this article details the proposed program framework for frequent statistical
tasks based on the MapReduce model and serverless computing technology. Extensive experiments are
conducted to demonstrate the effectiveness of proposed method by analyzing the results of the program
operation and operation time. Finally, this article discusses ideas and directions that optimize the performance
of MapReduce models based on serverless computing technology.

1 INTRODUCTION

MapReduce is a programming model to process and
generate large-scale data sets in various practical
tasks (Dean, 2018). Users can perform computing
tasks through the Map and Reduce functions. At this
time, the system can use large-scale parallel
computing between large-scale computer clusters,
processing machine errors, and scheduling between
machine communication to make resources the most
effectively used (Dean, 2018).

Serverless is a concept in the field of cloud
computing. It usually refers to a function that is a
function, that is, the function of serving the FaaS
(Function as a Service), which usually includes the
back-end of the FAAS service BaaS(Software as a
Service) (Yang, 2022). It is characterized by program
developers without managing the server or back-end
infrastructure, but can focus on completing the setting
of the front -end program. Developers only need to
deploy the finished front-end program on the platform
without server computing providers, and the
remaining tasks are responsible for the server-free
computing provider (Omar, 2018).

a https://orcid.org/0009-0005-6912-0152

For the model trained with a large amount of data
using the MapReduce model, most of their work is
usually only composed of repeated parallel
operations. So it can naturally be built with serverless
calculations, and can greatly use the flexible
advantages of serverless computing, which can more
efficiently support assignments with different
resources during execution (Jonas, 2019). On the
other hand, since serverless computing relaxes the
burden of training data requirements by allowing each
sub server to independently train models locally,
more massive training data can be utilized while the
data privacy can also be protected. All of these
aspects show that combining the MapReduce model
and serverless computing together has a promising
future.

In this paper, a MapReduce model based on a
serverless computing technology is designed to solve
the word frequency statistics task. Specifically, the
Map and Reduce sections as functions are deployed
on the Alibaba Cloud Computing Platform, and a
client is set up to trigger Map and Reduce functions
in parallel. Finally, the frequency of words in the file
are counted based on the proposed model. In the

506
Dai, L.
Combining MapReduce and Serverless Computing for Efficient Word Frequency Statistics.
DOI: 10.5220/0012957900004508
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Engineering Management, Information Technology and Intelligence (EMITI 2024), pages 506-510
ISBN: 978-989-758-713-9
Proceedings Copyright © 2024 by SCITEPRESS – Science and Technology Publications, Lda.

experiment, the program also counts the total running
time of the program, the communication time
between the Map and Reduce parts, the calculation
time, and their proportion to study the factors that
affect the running speed of the program. The rest of
this article is structured as follows: Section 2
introduces the existing research results in the fields of
MapReduce and serverless computing; The Section 3
introduces the program architecture of this
experiment; The Section 4 presents the results
obtained from the experiment; The Section 5 is an
analysis and discussion of the advantages and
disadvantages of the experimental program
framework, while proposing areas for further
optimization.

2 RELATED WORK

MapReduce model was first proposed by Google in
2004 for parallel computing in large-scale data
processing (Dean, 2018). It can effectively reduce the
difficulty of parallel programming, improve
programming efficiency, and also has the
characteristics of cost reduction, good scalability,
high efficiency and wide applicability (Li, 2011).
Therefore, scholars at home and abroad have
conducted research on various aspects of the
MapReduce model, mainly focusing on the following
aspects: (1) Programming model optimization: The
initial MapReduce model had many areas for
improvement, and typical achievements in this area
include Barrier less MapReduce (Abhishek, 2013),
MapReduce Merge (Yang, 2007), MaRCO (Faraz,
2013), etc. However, most of these improvements are
only optimized for specific directions and do not have
universality. (2) Job scheduling optimization: before
executing the Map and Reduce functions, the
program needs to allocate tasks to appropriate
computing nodes based on various factors such as the
job environment and task requirements. For example,
MapReduce job scheduling in mixed storage mode
(Yang, 2018), optimizing scheduler to process
heterogeneous data (Kalia, 2022), etc. (3) Practical
application: MapReduce model has been widely used
in many aspects, such as digital image processing
(Tian, 2017), big data processing platform and big
data analysis algorithm (Song, 2014), large-scale
network fast connectivity domain detection method
(Bhat, 2024), etc.

Since the concept of serverless was proposed,
cloud service providers around the world have
launched public serverless services, such as AWS
lambda, Google GCF, azure functions, IBM cloud

functions, aliyun FC, etc. Serverless computing
technology has also derived many applications in
many fields, such as big data processing combined
with MapReduce model in this experiment, scientific
computing (Spillner, 2017), machine learning (Wang,
2019), edge computing (Zhao, 2018), etc.

3 METHOD

3.1 Overall Framework

The structure of the program is shown in Figure 1.
The basic idea of the MapReduce model can be
simply summarized as separation and combination.
When processing large-scale data sets, it first divides
them into independent small data sets, and then
allows multiple map functions to process these small
data sets separately. The output of the map part will
be used as the input of the reduce part, and finally
summarized in the reduce part and merged into a
result file.

In the MapReduce model, the Map and Reduce
functions are used repeatedly. These two functions
can be deployed on the cloud computing platform and
implemented in a serverless architecture. Therefore,
this work chooses to build MapReduce model with
serverless architecture, using the way of local trigger
cloud execution. Therefore, the main part of the
program is to set up two functions of Map and Reduce
on the serverless platform, and set up a local client to
send request trigger function execution program to
the cloud. The map part performs the step of counting
the frequency of each word in the separate file, while
the reduce part summarizes the intermediate results
output by the map part, sorts the results in the order
of the first letter of the word, and finally outputs a
well-arranged result file.

In this experiment, the multithreading method is
used to trigger multiple map functions to calculate the
whole program in parallel, to count the number of
words in multiple text files that have been allocated
and stored in Object Storage Service (OSS), and to
simulate the situation of multithreading counting
multiple files.

Combining MapReduce and Serverless Computing for Efficient Word Frequency Statistics

507

Figure 1: The structure of the proposed method
(Photo/Picture credit: Original).

3.2 Basic Steps

First, the client sends a request to the cloud and passes
the parameters. The thread class in Python's threading
module is used to trigger multiple mapper functions
in parallel. According to the different parameters
passed in when sending the request, the mapper
function will process different parts of the file in
parallel.

The mapper function will complete four steps:
downloading data from the cloud, counting word
frequencies, local formatting files, and uploading
intermediate result files to OSS. Download data:
download the corresponding initial file according to
the incoming parameters as the input file of this
mapper function; Statistics of word frequency: the
mapper function will traverse all the data in the input
file. The counting results of different words will
increase by one every time they appear until the last
word. The statistical results are in the form of word
frequency. The results of each word occupy one line,
which is convenient for summarizing the results later;
Local format: store the statistical results of each
mapper function locally; Upload result: upload the
intermediate result file stored locally to OSS.

After waiting for all the mapper functions to be
executed, the client will send the request again. The
thread class in the threading module is also used to
trigger multiple reducer functions in parallel.
According to the different parameters passed in when
sending the request for the second time, different
reducer functions will respectively count the
frequency of words starting with different initials in
the intermediate result file, and finally summarize
them into the final result file in alphabetical order.

After that, the reducer function will also complete
the four steps of downloading the file uploaded by the
mapper from OSS, summarizing the results,
formatting the local file, and uploading the final result
file to OSS. Download data: download the
intermediate result file; Summary result:, the reducer

function will traverse all intermediate result files
counted by the mapper function, and count the
frequency of the first letter word it is assigned
according to the incoming parameters. When
traversing the first word, the word and its frequency
will be directly added to the result. When traversing
the existing word, its frequency will be added to the
frequency in the result, Until the last word of the last
file, the final result of the part counted by the reducer
function is obtained; Local format: summarize the
statistical results of each reducer function into a final
result file and store it locally; Upload result: upload
the final result file stored locally to OSS.

When all the reducer functions to be executed, the
results of word frequency statistics can be seen in
OSS, and the word frequency of the corresponding
words is arranged in alphabetical order. At the same
time, this experiment also adds the step of recording
time at the beginning and end of the program, before
the client sent the request, after the OSS received the
file, and at the beginning and end of the mapper and
reducer functions, count the total time used in the
process of running the program, as well as the
communication time and calculation time of mapper
and reducer functions.

4 EXPERIMENT

4.1 Original Data

The original data used in this experiment is an English
article with 4244 words, which is manually allocated
to seven text files. The data in each file is English
words separated by spaces. They will be processed as
input files in the mapper function.

4.2 Performance Analysis

In the result file, the words are sorted alphabetically,
and the results are arranged in the form of word:
frequency. A word is a line, which can clearly query
the frequency of the words you want to query. In
addition, the experiment also counts the running time
of each part of the program. The following are the
results of five consecutive runs of the program on the
same file.

EMITI 2024 - International Conference on Engineering Management, Information Technology and Intelligence

508

Table 1: Time cost of Map functions.

Map
communicati

on time/s

Map
calculatio
n time/s

Map
communicati
on time ratio

Map
calculation
time ratio

1
1.2767 0.3029 80.82% 19.18%
1.3529 0.3485 79.51% 20.49%
1.3054 0.4471 74.49% 25.51%

2
0.5723 0.2308 71.26% 28.74%
0.6352 0.1707 74.54% 25.46%
0.5545 0.1038 57.86% 42.14%

3
0.5512 0.1707 75.00% 25.00%
0.5904 0.1464 80.12% 19.88%
0.6407 0.3001 68.10% 31.90%

4
0.6306 0.1502 80.76% 19.24%
0.6183 0.1644 78.99% 21.01%
0.6230 0.2995 67.53% 32.47%

5
0.5993 0.1682 78.08% 21.92%
0.6671 0.4149 82.15% 17.85%
0.6082 0.4159 66.03% 33.97%

Table 2: Time cost of Reduce functions.

Reduce
communicati

on time/s

Reduce
calculation

time/s

Reduce
communication

time ratio

Reduce
calculation
time ratio

1
1.2455 0.4602 73.02% 26.98%
1.2881 0.4155 75.61% 24.39%
1.3015 0.4869 72.77% 27.23%

2
0.5605 0.4067 57.95% 42.05%
0.4954 0.4788 50.85% 49.15%
0.5373 0.5089 51.36% 48.64%

3
0.5471 0.3298 62.39% 37.61%
0.5630 0.3437 62.09% 37.61%
0.6640 0.4159 61.49% 38.51%

4
0.5262 0.3299 61.46% 38.53%
0.5306 0.3383 61.27% 38.93%
0.4842 0.4084 54.24% 45.75%

5
0.5352 0.3497 60.48% 39.52%
0.5702 0.3391 62.71% 37.29%
0.5147 0.4016 56.17% 43.82%

Table 3: Comparison of total time cost.

 1 2 3 4 5

Total
time/s

3.5497 2.0116 2.0296 1.8220 1.8500

Analysis of Communication Time. As shown in

Table 1 and Table 2, during each program run, the
communication time exceeds the calculation time,
accounting for more than 50% of the time. This is due
to the insufficient amount of data in the statistical
files. After increasing the amount of data in the
original files, there is a situation where the
communication time is less than the calculation time.

Analysis of Total Time. As shown in Table 3, the
total time of each program run is different, but
generally speaking, only the time of the first program
run is significantly different from that of the next
several programs, with a maximum difference of
about 1.73 seconds and a minimum difference of
about 1.52 seconds, while the total time of the second
program run is not significantly different, with a
maximum difference of about 0.21 seconds and a
minimum difference of about 0.03 seconds. It can be
seen that the first program run is slower than the next
program run.

Analysis of Map and Reduce cost. Since both
the Map and Reduce parts execute the next step after
waiting for all threads of the previous step to execute,
the total running time of each program is determined
by the thread that takes the longest time in the run.
From the data in Table 1 and 2, it can see that the
maximum calculation time of the Map part is almost
the same, with a maximum difference of about 0.22
seconds, and the maximum calculation time of the
Reduce part is also about the same, with a maximum
difference of about 0.18 seconds. There is a big gap
between the communication time of Map and Reduce.
The maximum communication time of the first time
of Map is about 0.72 seconds different from that of
the next few times. The minimum difference is about
0.69 seconds, and the maximum communication time
of the first time of the Reduce part is about 0.77
seconds at most from the next few times. The
minimum difference is about 0.63 seconds. It can be
seen that the communication time is the main reason
for the large difference between the total time of the
first program and the total time of the subsequent
programs in this experiment.

5 DISCUSSION

There are many valuable reflections and
improvements in this experiment. There are many
problems to be solved and many directions to be
explored.

First of all, the Map and Reduce parts of this
experiment only use three threads, count seven files,
and the amount of data in each file is very small, so
in fact, the time for the completion of the experiment
is very short, and the biggest factor affecting the time
is the impact of communication. Therefore, the
running time of the program is not much different
each time. Basically, only the difference between the
communication time can be observed, and it is
difficult to study the impact of other variables on the
running time of the program.

Combining MapReduce and Serverless Computing for Efficient Word Frequency Statistics

509

Secondly, because the amount of data in the
original file is small, the original file is manually
divided into several small files, and then the whole
program is run. In practical applications, the
MapReduce model usually deals with large-scale data
sets, and manual allocation requires too much time,
which is difficult to achieve. And because this
program is always waiting for each thread to execute
before executing the next step, you can also set a
scheduler at the beginning to detect the size of the file
to be counted before triggering the mapper function,
and then reasonably allocate several files of similar
size to each thread to execute the program, so that the
program execution time of each thread is the same,
reducing the waiting time.

In addition, based on the program framework of
this experiment, we can use this program to study
other problems, such as image recognition, by
changing the original data file and changing the
internal I module for word frequency statistics
according to the needs. This reflects the high
scalability of the serverless framework and the
MapReduce model.

6 CONCLUSION

This article studies the application of the MapReduce
model based on a serverless computing platform in
the task of word frequency statistics. Specifically, the
basic principles and advantages of MapReduce model
and serverless computing technology is described,
following by the development, current situation and
practical application of these two technologies. A
program framework is then designed based on the
research content and a MapReduce model for text
word frequency statistics is successfully built on the
serverless platform based on this framework. The
total running time of the program, the communication
time and the calculation time of Map and Reduce
parts are counted, and their proportion in the time of
this part is calculated. The main factors affecting the
running time and total time of each part of the
program are explored. All the experiment results
show the effectiveness of combining the MapReduce
and serverless computing. To sum up, this article
provides a useful reference for the application of the
MapReduce model based on serverless computing
platform in the task of word frequency statistics, and
also provides new ideas and methods for the research
in related fields.

REFERENCES

Abhishek, V., Brian, Cho., Nicolas, Z., Indranil, G., Roy,
H., 2013. Breaking the MapReduce stage barrier.
Campbell Cluster Computing, 2013.

Bhat, S., Y., Abulaish, M., 2024. A MapReduce-Based
Approach for Fast Connected Components Detection
from Large-Scale Networks. Big Data. 2024 Jan 29.

Dean, J., Ghemawat, S., 2008. MapReduce: simplified data
processing on large clusters. Communications of the
ACM, 2008, 51(1): 107-113.

Faraz, A., Seyong, L., Mithuna, T., Vijaykumar, T., N.,
2013. MapReduce with communication overlap
(MaRCO). Journal of Parallel and Distributed
Computing, 2013(5).

Jonas, E., Schleier-Smith, J., Sreekanti, V., 2019. Cloud
programming simplified: A berkeley view on serverless
computing. arxiv preprint arxiv:1902.03383, 2019.

Kalia, K., Dixit, S., Kumar, K., 2022. Improving
MapReduce heterogeneous performance using KNN
fair share scheduling. Robotics and Autonomous
Systems, 2022, 157: 104228.

Li, J., Cu, J., Wang, R., Yan, L., Huang, Y., 2011. Survey
of MapReduce Parallel Programming Model. Acta
Electronica Sinica, 2011, 39 (11): 2635-2642.

Omar, A., Nur, S., 2018. Serverless Computing and
Scheduling Tasks on Cloud: A Review. American
Scientific Research Journal for Engineering,
Technology, and Sciences (ASRJETS).

Spillner, J., Mateos, C., Monge, D., 2017. A faster, better,
cheaper: the prospect of serverless scientific computing
and HPC. Proc of Latin American High Performance
Computing Conference, 2017:154-168.

Song, J., Sun, Z., Mao, K., Bao, Y., Yu, G., 2017. Research
Advance on MapReduce Based Big Data Processing
Platforms and Algorithms. Journal of Software, 2017,
28(03):514-543.

Tian, J., Yang, R., 2014. Research of digital image
processing based on MapReduce. Electronic Design
Engineering, 2014, 22(15): 93-95+100.

Wang, H., Niu, D., Li, B., 2019. Distributed Machine
Learning with a Serverless Architecture, IEEE
INFOCOM 2019-IEEE Conference on Computer
Communications, Paris, France, 2019, pp. 1288-1296.

Yang, B., Zhao, S., Liu F., 2022. A survey on serverless
computing. Computer Engineering and Science, 2022,
44(04):611-619.

Yang, H., Dasdan, A., Hsiao, R., L., 2007. Map-reduce-
merge: simplified relational data processing on large
clusters. Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. 2007:
1029-1040.

Yang, Z., Niu, T,. Ming, Lyu., 2023. MapReduce Job
Scheduling in Hybrid Storage Modes. Computer
Systems and Applications, 2023, 32(03):70-85.

Zhao, Z., Liu, F., Cai, Z., Xiao, N., 2018. Edge Computing:
Platforms, Applications and Challenges. Journal of
Computer Research and Development, 2018(02).

EMITI 2024 - International Conference on Engineering Management, Information Technology and Intelligence

510

