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Abstract: Mapreduce is an important data processing model that can process massive data effectively and conveniently. 
Serverless computing is a new type of cloud computing technology with huge development potential, which 
aims to alleviate the limitations of centralized model training in traditional machine learning algorithms and 
can significantly protect data security and personal privacy. Inspired by the advantages of the aforementioned 
two technologies, this paper considers combining these two technologies together for efficient word frequency 
statistics. Specifically, this article first describes the basic principles and advantages of the MapReduce model 
and serverless computing technology, as well as their research and development direction and practical 
application in recent years. Then, this article details the proposed program framework for frequent statistical 
tasks based on the MapReduce model and serverless computing technology. Extensive experiments are 
conducted to demonstrate the effectiveness of proposed method by analyzing the results of the program 
operation and operation time. Finally, this article discusses ideas and directions that optimize the performance 
of MapReduce models based on serverless computing technology. 

1 INTRODUCTION 

MapReduce is a programming model to process and 
generate large-scale data sets in various practical 
tasks (Dean, 2018). Users can perform computing 
tasks through the Map and Reduce functions. At this 
time, the system can use large-scale parallel 
computing between large-scale computer clusters, 
processing machine errors, and scheduling between 
machine communication to make resources the most 
effectively used (Dean, 2018). 

Serverless is a concept in the field of cloud 
computing. It usually refers to a function that is a 
function, that is, the function of serving the FaaS 
(Function as a Service), which usually includes the 
back-end of the FAAS service BaaS(Software as a 
Service) (Yang, 2022). It is characterized by program 
developers without managing the server or back-end 
infrastructure, but can focus on completing the setting 
of the front -end program. Developers only need to 
deploy the finished front-end program on the platform 
without server computing providers, and the 
remaining tasks are responsible for the server-free 
computing provider (Omar, 2018). 
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For the model trained with a large amount of data 
using the MapReduce model, most of their work is 
usually only composed of repeated parallel 
operations. So it can naturally be built with serverless 
calculations, and can greatly use the flexible 
advantages of serverless computing, which can more 
efficiently support assignments with different 
resources during execution (Jonas, 2019). On the 
other hand, since serverless computing relaxes the 
burden of training data requirements by allowing each 
sub server to independently train models locally, 
more massive training data can be utilized while the 
data privacy can also be protected. All of these 
aspects show that combining the MapReduce model 
and serverless computing together has a promising 
future. 

In this paper, a MapReduce model based on a 
serverless computing technology is designed to solve 
the word frequency statistics task. Specifically, the 
Map and Reduce sections as functions are deployed 
on the Alibaba Cloud Computing Platform, and a 
client is set up to trigger Map and Reduce functions 
in parallel. Finally, the frequency of words in the file 
are counted based on the proposed model. In the 
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experiment, the program also counts the total running 
time of the program, the communication time 
between the Map and Reduce parts, the calculation 
time, and their proportion to study the factors that 
affect the running speed of the program. The rest of 
this article is structured as follows: Section 2 
introduces the existing research results in the fields of 
MapReduce and serverless computing; The Section 3 
introduces the program architecture of this 
experiment; The Section 4 presents the results 
obtained from the experiment; The Section 5 is an 
analysis and discussion of the advantages and 
disadvantages of the experimental program 
framework, while proposing areas for further 
optimization. 

2 RELATED WORK 

MapReduce model was first proposed by Google in 
2004 for parallel computing in large-scale data 
processing (Dean, 2018). It can effectively reduce the 
difficulty of parallel programming, improve 
programming efficiency, and also has the 
characteristics of cost reduction, good scalability, 
high efficiency and wide applicability (Li, 2011). 
Therefore, scholars at home and abroad have 
conducted research on various aspects of the 
MapReduce model, mainly focusing on the following 
aspects: (1) Programming model optimization: The 
initial MapReduce model had many areas for 
improvement, and typical achievements in this area 
include Barrier less MapReduce (Abhishek, 2013), 
MapReduce Merge (Yang, 2007), MaRCO (Faraz, 
2013), etc. However, most of these improvements are 
only optimized for specific directions and do not have 
universality. (2) Job scheduling optimization: before 
executing the Map and Reduce functions, the 
program needs to allocate tasks to appropriate 
computing nodes based on various factors such as the 
job environment and task requirements. For example, 
MapReduce job scheduling in mixed storage mode 
(Yang, 2018), optimizing scheduler to process 
heterogeneous data (Kalia, 2022), etc. (3) Practical 
application: MapReduce model has been widely used 
in many aspects, such as digital image processing 
(Tian, 2017), big data processing platform and big 
data analysis algorithm (Song, 2014), large-scale 
network fast connectivity domain detection method 
(Bhat, 2024), etc. 

Since the concept of serverless was proposed, 
cloud service providers around the world have 
launched public serverless services, such as AWS 
lambda, Google GCF, azure functions, IBM cloud 

functions, aliyun FC, etc. Serverless computing 
technology has also derived many applications in 
many fields, such as big data processing combined 
with MapReduce model in this experiment, scientific 
computing (Spillner, 2017), machine learning (Wang, 
2019), edge computing (Zhao, 2018), etc. 

3 METHOD 

3.1 Overall Framework 

The structure of the program is shown in Figure 1. 
The basic idea of the MapReduce model can be 
simply summarized as separation and combination. 
When processing large-scale data sets, it first divides 
them into independent small data sets, and then 
allows multiple map functions to process these small 
data sets separately. The output of the map part will 
be used as the input of the reduce part, and finally 
summarized in the reduce part and merged into a 
result file.  

In the MapReduce model, the Map and Reduce 
functions are used repeatedly. These two functions 
can be deployed on the cloud computing platform and 
implemented in a serverless architecture. Therefore, 
this work chooses to build MapReduce model with 
serverless architecture, using the way of local trigger 
cloud execution. Therefore, the main part of the 
program is to set up two functions of Map and Reduce 
on the serverless platform, and set up a local client to 
send request trigger function execution program to 
the cloud. The map part performs the step of counting 
the frequency of each word in the separate file, while 
the reduce part summarizes the intermediate results 
output by the map part, sorts the results in the order 
of the first letter of the word, and finally outputs a 
well-arranged result file. 

In this experiment, the multithreading method is 
used to trigger multiple map functions to calculate the 
whole program in parallel, to count the number of 
words in multiple text files that have been allocated 
and stored in Object Storage Service (OSS), and to 
simulate the situation of multithreading counting 
multiple files. 
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Figure 1: The structure of the proposed method 
(Photo/Picture credit: Original). 

3.2 Basic Steps 

First, the client sends a request to the cloud and passes 
the parameters. The thread class in Python's threading 
module is used to trigger multiple mapper functions 
in parallel. According to the different parameters 
passed in when sending the request, the mapper 
function will process different parts of the file in 
parallel. 

The mapper function will complete four steps: 
downloading data from the cloud, counting word 
frequencies, local formatting files, and uploading 
intermediate result files to OSS. Download data: 
download the corresponding initial file according to 
the incoming parameters as the input file of this 
mapper function; Statistics of word frequency: the 
mapper function will traverse all the data in the input 
file. The counting results of different words will 
increase by one every time they appear until the last 
word. The statistical results are in the form of word 
frequency. The results of each word occupy one line, 
which is convenient for summarizing the results later; 
Local format: store the statistical results of each 
mapper function locally; Upload result: upload the 
intermediate result file stored locally to OSS. 

After waiting for all the mapper functions to be 
executed, the client will send the request again. The 
thread class in the threading module is also used to 
trigger multiple reducer functions in parallel. 
According to the different parameters passed in when 
sending the request for the second time, different 
reducer functions will respectively count the 
frequency of words starting with different initials in 
the intermediate result file, and finally summarize 
them into the final result file in alphabetical order. 

After that, the reducer function will also complete 
the four steps of downloading the file uploaded by the 
mapper from OSS, summarizing the results, 
formatting the local file, and uploading the final result 
file to OSS. Download data: download the 
intermediate result file; Summary result:, the reducer 

function will traverse all intermediate result files 
counted by the mapper function, and count the 
frequency of the first letter word it is assigned 
according to the incoming parameters. When 
traversing the first word, the word and its frequency 
will be directly added to the result. When traversing 
the existing word, its frequency will be added to the 
frequency in the result, Until the last word of the last 
file, the final result of the part counted by the reducer 
function is obtained; Local format: summarize the 
statistical results of each reducer function into a final 
result file and store it locally; Upload result: upload 
the final result file stored locally to OSS. 

When all the reducer functions to be executed, the 
results of word frequency statistics can be seen in 
OSS, and the word frequency of the corresponding 
words is arranged in alphabetical order. At the same 
time, this experiment also adds the step of recording 
time at the beginning and end of the program, before 
the client sent the request, after the OSS received the 
file, and at the beginning and end of the mapper and 
reducer functions, count the total time used in the 
process of running the program, as well as the 
communication time and calculation time of mapper 
and reducer functions. 

4 EXPERIMENT 

4.1 Original Data 

The original data used in this experiment is an English 
article with 4244 words, which is manually allocated 
to seven text files. The data in each file is English 
words separated by spaces. They will be processed as 
input files in the mapper function.   

4.2 Performance Analysis 

In the result file, the words are sorted alphabetically, 
and the results are arranged in the form of word: 
frequency. A word is a line, which can clearly query 
the frequency of the words you want to query. In 
addition, the experiment also counts the running time 
of each part of the program. The following are the 
results of five consecutive runs of the program on the 
same file. 
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Table 1: Time cost of Map functions. 

Map 
communicati

on time/s 

Map 
calculatio
n time/s 

Map 
communicati
on time ratio 

Map 
calculation 
time ratio 

1 
1.2767 0.3029 80.82% 19.18% 
1.3529 0.3485 79.51% 20.49% 
1.3054 0.4471 74.49% 25.51% 

2 
0.5723 0.2308 71.26% 28.74% 
0.6352 0.1707 74.54% 25.46% 
0.5545 0.1038 57.86% 42.14% 

3 
0.5512 0.1707 75.00% 25.00% 
0.5904 0.1464 80.12% 19.88% 
0.6407 0.3001 68.10% 31.90% 

4 
0.6306 0.1502 80.76% 19.24% 
0.6183 0.1644 78.99% 21.01% 
0.6230 0.2995 67.53% 32.47% 

5 
0.5993 0.1682 78.08% 21.92% 
0.6671 0.4149 82.15% 17.85% 
0.6082 0.4159 66.03% 33.97% 

Table 2: Time cost of Reduce functions. 

Reduce 
communicati

on time/s 

Reduce 
calculation 

time/s 

Reduce 
communication 

time ratio 

Reduce 
calculation 
time ratio 

1 
1.2455 0.4602 73.02% 26.98% 
1.2881 0.4155 75.61% 24.39% 
1.3015 0.4869 72.77% 27.23% 

2 
0.5605 0.4067 57.95% 42.05% 
0.4954 0.4788 50.85% 49.15% 
0.5373 0.5089 51.36% 48.64% 

3 
0.5471 0.3298 62.39% 37.61% 
0.5630 0.3437 62.09% 37.61% 
0.6640 0.4159 61.49% 38.51% 

4 
0.5262 0.3299 61.46% 38.53% 
0.5306 0.3383 61.27% 38.93% 
0.4842 0.4084 54.24% 45.75% 

5 
0.5352 0.3497 60.48% 39.52% 
0.5702 0.3391 62.71% 37.29% 
0.5147 0.4016 56.17% 43.82% 

Table 3: Comparison of total time cost. 

 1 2 3 4 5 

Total 
time/s 

3.5497 2.0116 2.0296 1.8220 1.8500 

 
Analysis of Communication Time. As shown in 

Table 1 and Table 2, during each program run, the 
communication time exceeds the calculation time, 
accounting for more than 50% of the time. This is due 
to the insufficient amount of data in the statistical 
files. After increasing the amount of data in the 
original files, there is a situation where the 
communication time is less than the calculation time. 

Analysis of Total Time. As shown in Table 3, the 
total time of each program run is different, but 
generally speaking, only the time of the first program 
run is significantly different from that of the next 
several programs, with a maximum difference of 
about 1.73 seconds and a minimum difference of 
about 1.52 seconds, while the total time of the second 
program run is not significantly different, with a 
maximum difference of about 0.21 seconds and a 
minimum difference of about 0.03 seconds. It can be 
seen that the first program run is slower than the next 
program run. 

Analysis of Map and Reduce cost. Since both 
the Map and Reduce parts execute the next step after 
waiting for all threads of the previous step to execute, 
the total running time of each program is determined 
by the thread that takes the longest time in the run. 
From the data in Table 1 and 2, it can see that the 
maximum calculation time of the Map part is almost 
the same, with a maximum difference of about 0.22 
seconds, and the maximum calculation time of the 
Reduce part is also about the same, with a maximum 
difference of about 0.18 seconds. There is a big gap 
between the communication time of Map and Reduce. 
The maximum communication time of the first time 
of Map is about 0.72 seconds different from that of 
the next few times. The minimum difference is about 
0.69 seconds, and the maximum communication time 
of the first time of the Reduce part is about 0.77 
seconds at most from the next few times. The 
minimum difference is about 0.63 seconds. It can be 
seen that the communication time is the main reason 
for the large difference between the total time of the 
first program and the total time of the subsequent 
programs in this experiment. 

5 DISCUSSION 

There are many valuable reflections and 
improvements in this experiment. There are many 
problems to be solved and many directions to be 
explored. 

First of all, the Map and Reduce parts of this 
experiment only use three threads, count seven files, 
and the amount of data in each file is very small, so 
in fact, the time for the completion of the experiment 
is very short, and the biggest factor affecting the time 
is the impact of communication. Therefore, the 
running time of the program is not much different 
each time. Basically, only the difference between the 
communication time can be observed, and it is 
difficult to study the impact of other variables on the 
running time of the program. 
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Secondly, because the amount of data in the 
original file is small, the original file is manually 
divided into several small files, and then the whole 
program is run. In practical applications, the 
MapReduce model usually deals with large-scale data 
sets, and manual allocation requires too much time, 
which is difficult to achieve. And because this 
program is always waiting for each thread to execute 
before executing the next step, you can also set a 
scheduler at the beginning to detect the size of the file 
to be counted before triggering the mapper function, 
and then reasonably allocate several files of similar 
size to each thread to execute the program, so that the 
program execution time of each thread is the same, 
reducing the waiting time. 

In addition, based on the program framework of 
this experiment, we can use this program to study 
other problems, such as image recognition, by 
changing the original data file and changing the 
internal I module for word frequency statistics 
according to the needs. This reflects the high 
scalability of the serverless framework and the 
MapReduce model. 

6 CONCLUSION 

This article studies the application of the MapReduce 
model based on a serverless computing platform in 
the task of word frequency statistics. Specifically, the 
basic principles and advantages of MapReduce model 
and serverless computing technology is described, 
following by the development, current situation and 
practical application of these two technologies. A 
program framework is then designed based on the 
research content and a MapReduce model for text 
word frequency statistics is successfully built on the 
serverless platform based on this framework. The 
total running time of the program, the communication 
time and the calculation time of Map and Reduce 
parts are counted, and their proportion in the time of 
this part is calculated. The main factors affecting the 
running time and total time of each part of the 
program are explored. All the experiment results 
show the effectiveness of combining the MapReduce 
and serverless computing. To sum up, this article 
provides a useful reference for the application of the 
MapReduce model based on serverless computing 
platform in the task of word frequency statistics, and 
also provides new ideas and methods for the research 
in related fields. 
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