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Abstract: This paper provides an exhaustive examination of convolutional neural networks (CNNs) in medical image 
processing, recognizing their pivotal role in healthcare diagnostics. As CNNs continue to evolve, they offer 
promising avenues for enhancing accuracy and efficiency in image analysis. The primary objective of this 
study is to scrutinize and assess the performance of both classic and contemporary CNN models across a 
spectrum of pathological datasets. The methodology entails a comprehensive analysis of various CNN 
architectures, ranging from well-established models to more advanced approaches. Emphasis is placed on 
their efficacy in disease classification and feature extraction tasks. Experiments conducted on datasets 
underscore the models' adeptness in handling intricate medical images. The findings indicate CNNs' 
superiority in feature extraction, the proficiency of Residual Network (ResNet) in managing depth and 
ensuring robust training, and Transformers' effectiveness in navigating high-dimensional data through their 
attention mechanisms. These insights hold profound implications for medical diagnostics, promising 
significant advancements in accuracy and timeliness of health interventions. 

1 INTRODUCTION 

Medical imaging technology is an effective means of 
understanding pathological processes that affect 
human health (Jannin, 2006). Compared to natural 
images, medical images (such as slices or patches 
from different modalities) contain richer information 
due to their more organized and similar visual 
representations of human organs (Dai, 2021). With 
the advancement of technology, the main tasks of 
medical image processing can be summarized as 
generating new images from original ones, computing 
features and measurements (known as image 
analysis), or extracting high-level descriptions 
(referred to as image understanding) (Jannin, 2006). 
In the medical field, the quality and accuracy of 
image processing have become benchmarks, and 
these processing results are crucial for medical 
decision-making (Sonka, 2000). 

Advances in algorithms in the domain of medical 
imaging technology often stem from the need for new 
image analysis capabilities (Jannin, 2006). For 
instance, since Krizhevsky (Krizhevsky, 2012) and 
others introduced the convolutional neural network 
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(CNN) with AlexNet winning the ImageNet image 
classification championship in 2012, CNNs have 
shown tremendous advantages in disease detection 
and classification, and local feature extraction from 
images. Classic CNN models like AlexNet, Network 
in Network (NIN) which reduces the risk of 
overfitting through global average pooling (Lin, 
2013), and Visual Geometry Group (VGGNet) and 
GoogLeNet, which enhanced precision on the 
ImageNet dataset (Simonyan, 2014), have all 
performed well. In 2015, He and others introduced 
Spatial Pyramid Pooling (SPP), which addressed the 
strict input size requirements of CNNs (He, 2015), 
and in the subsequent year introduced the residual 
network (ResNet) to address the issue of model 
degradation. Recently, the Transformer has excelled 
in tasks needing a deep understanding of visual 
contexts and details, thanks to its capability to handle 
high-dimensional data and synthesize details from 
different image sections. 

This paper comprehensively reviews and 
summarizes the current research status of utilizing 
CNNs for medical image processing. Chapter Two 
analyzes and explains classic and current mainstream 
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network models based on CNNs in deep learning. It 
delves into the architecture, training strategies, and 
applications of these models in medical imaging tasks. 
Chapter Three provides a detailed analysis and 
comparison of the results obtained by different 
models using various pathological datasets. It 
evaluates the performance metrics, including 
accuracy, sensitivity, and specificity, to assess the 
effectiveness of CNN-based approaches in medical 
image analysis. In Chapter Four, the paper 
summarizes the advantages of CNNs in medical 
imaging, highlighting their ability to extract 
meaningful features and their reliance on large 
datasets for training. Furthermore, it explores 
potential future trends, such as the development of 
CNN architectures that require less data for training 
or the utilization of artificial intelligence techniques 
to generate novel models tailored to specific medical 
imaging tasks. 

2 METHODOLOGIES 

2.1 Dataset Description and 
Preprocessing 

Interstitial Lung Disease (ILD) encompasses various 
pulmonary diseases affecting the lung parenchyma, 
associated with significant morbidity and mortality 
(Stanford, 2024). Recent advances have led to a 
substantial collection of genetic and disease data 
integrated into the International Lattice Data Grid 
(ILDG) database, 2024 version, featuring 20 types of 
ILD across four species with over 600 genes and 
2,018 entries. This database includes detailed records 
of species, disease types, gene symbols, and primary 
references. The study utilized image blocks where at 
least 75% of pixels are within Regions of Interest 
(ROI), involving 16,220 blocks from 92 high-
resolution computed tomography (HRCT) image sets. 
The images were divided into ten groups per round, 
with one for testing and nine for training, using 
random image shifting to enhance diversity and 
prevent overfitting. The MRNet dataset includes 
1,370 magnetic resonance imaging (MRI) knee 
examinations, categorized by conditions like anterior 
cruciate ligament (ACL) tears (Touvron, 2021). It 
splits into 1,130 training, 120 validation, and 120 
testing cases and uses three MRI scan types: T1, T2, 
and proton density, with resolutions reformed into 3D 
stacks for T1 and T2 scans. The preprocessing 
includes the OTSU algorithm for background 
separation, image alignment, and formatting into 
stacks of 36x448x448. The augmentation techniques 

include random flipping and Gaussian noise to 
improve dataset robustness. 

2.2 Proposed Approach 

This study aims to comprehensively review and 
analyze the applications of CNN in medical image 
processing, with a focus on evaluating the efficacy of 
both classic and contemporary mainstream deep 
learning models based on CNNs. The performance of 
these models is assessed across a range of 
pathological datasets, employing detailed 
methodologies and comparisons to elucidate each 
model's strengths and applicable scopes. Additionally, 
the principal flowchart of the main process is outlined 
in Figure 1 to provide a visual representation of the 
workflow. 

 
Figure 1: The pipeline of the model (Photo/Picture credit: 
Original). 

2.2.1 Introduction to Basic Techniques 

CNNs represent a form of deep learning model, 
evolved from the multilayer perceptron, as shown in 
the Figure 2. They simplify the learning process by 
using smaller kernel filters to incorporate weights, 
which speeds up operations and enhances robustness. 
Due to their ability to automatically and efficiently 
learn intrinsic features from blocks of medical images 
and their strong generalization capability, CNNs are 
widely used in medical image processing. The main 
structures of CNNs include: Data Input Layer: This 
layer preprocesses the raw image data, including 
mean subtraction (centring the data around zero to 
reduce variations between samples), normalization 
(aligning the amplitude range across different 
dimensions), and Principal Component Analysis 
(PCA)/whitening (reducing dimensionality and 
normalizing the amplitude of the data feature axes). 
Convolutional Layer (CONV layer) and rectified 
linear unit (ReLU) Activation Layer: The 
convolutional layer applies multiple filters through 
local connections and sliding window mechanisms, 
with each neuron acting as a filter. Key parameters 
include filter size, stride, and padding. The stride 
controls the movement distance of the filter over the 
input, while zero padding adds zeros at the boundaries 
of the input to maintain consistent spatial dimensions 
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between the input and output. The formula to 
calculate the output size is: 

 Output Size   1(1) 
 
The ReLU activation layer provides a non-linear 

mapping, enhancing the model's non-linear 
expression capability and convergence speed. The 
next is pooling layer, which situated between 
successive convolutional layers, its primary function 
is to compress data and parameter quantity, thus 
reducing overfitting. Typical techniques involve 
average pooling and max pooling, with max pooling 
choosing the maximum value from each window for 
the output. Next is Fully Connected Layer (FC layer). 
The last layer of a CNN typically comprises an FC 
layer, in which each neuron is connected to every 
neuron in the preceding layer, culminating in the 
network's ultimate output. 

 

 
Figure 2: The structure of the FC layer (Photo/Picture 
credit: Original). 

These components enable CNNs to effectively 
process medical images, through this process, CNNs 
have successfully achieved efficient processing of 
medical images, demonstrating their strong potential 
for the medical domain. 

2.2.2 ResNet 

CNNs have shown exceptional effectiveness in object 
recognition and have gradually become the preferred 

method for image analysis, as shown in the Figure 3. 
He et al. (ildgdb, 2024) introduced the ResNet, which 
effectively addresses challenges related to vanishing 
gradients and network degradation stemming from 
increased network depth. This network structure 
significantly speeds up the training of neural 
networks and greatly enhances their generalization 
capabilities and robustness. 

Comprising multiple residual units, Residual 
Neural Networks include a convolutional layer (conv 
layer), batch normalization layer (BN), and ReLU in 
each unit. At the heart of a residual unit lies the direct 
passage of input to output, thereby forming the 
foundational result. In the event that the input to the 
neural network is denoted as 𝒙 and the anticipated 
output as 𝐇 𝐱 ,  the residual function is represented 
as H(x)-x, the output of the residual unit is 𝐱𝐇 𝐱 𝐱 , so the network's learning target becomes 
H(x)-x —the residual. By fitting the residual 
mapping, ResNet simplifies the learning process, 
making the optimization of deep networks easier and 
solving the issues of gradient disappearance and 
degradation with increased depth. Another key 
feature of residual units is the shortcut connection 
(identity mapping) that changes the learning target 
from the direct mapping 𝐇 𝐱  to 𝐇 𝐱 𝐱. 

When the input and output dimensions are 
consistent, the shortcut connections can directly add 
the input to the output. If dimensions are inconsistent, 
there are two strategies for handling this: 

Zero-padding is used to increase dimensions, 
usually combined with pooling operations with a 
stride of 2 for downsampling. This method does not 
add extra parameters. Projection shortcuts are 
typically adjusted through 1×1 convolution to change 
dimensions, which increases some parameters and 
computational load. These shortcut connection 
strategies not only maintain the network’s parameters 
and computational load but also significantly improve 
the    model's   training    speed    and    efficiency   in 

 
Figure 3: The Structure of the ResNet (Photo/Picture credit: Original). 
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deeper network structures, effectively preventing 
performance degradation. With these innovative 
designs, ResNet has shown immense potential and 
practical utility, particularly in deep medical image 
processing in the field of deep learning. 

2.2.3 Application of Transformers in 
Medical Imaging 

Transformers, initially designed for Natural 
Language Processing, effectively capture long-range 
dependencies using self-attention mechanisms. This 
technology has been adapted for visual tasks such as 
object detection with Detection transformer (DETR), 
semantic segmentation, and image classification with 
vision in transformer (ViT) (Touvron, 2021). In 
multimodal medical imaging, where capturing long-
range interactions is essential, Transformers enhance 
deep learning models by effectively integrating 
multimodal data, outperforming traditional CNNs 
that excel in local feature extraction but struggle with 
distant relationships (Touvron, 2021). The 
fundamental element of the Transformer are Self-
Attention Mechanism (SA): SA is the foundation of 
the Transformer, allowing the model to enhance its 
predictions by using other parts of a data sample 
during processing. In the self-attention layer, the 
input vector X undergoes the transformation into 
three distinct vectors: Query matrix Q, Key matrix K, 
and Value matrix V, as shown in the Figure 4.  

Weights are assigned based on the dot product of 
queries and their respective keys. The attention 
function is calculated as follows: 

 Attention Q, K, V   Softmax   V       (2) 
 

where 𝐝𝐤 is the dimension of the key vectors, and this 
normalization helps stabilize the gradients. Multi-
Head Self-Attention (MSA) (Figure 5): MSA is 
central to the Transformer architecture, enhancing the 
model's ability to learn information from different 
representational subspaces by splitting the input into 
multiple parts and processing them in parallel. The 
computation of MSA is expressed as: 
 head  Attention QW , KW , VW  MSA Q, K, V Concat head , head , . . .,head W                                                                                      (3) 

where projection matrices 𝐖𝐢𝐐 , 𝐖𝐢𝐊 , 𝐖𝐢𝐕 , 𝐖𝐎  are 
trainable parameters. 

Multi-Layer Perceptron (MLP): Located above 
the MSA layer, composed of linear layers and 
activation functions (like GeLU), providing the 
model with non-linear processing capabilities. 
Similar to ResNet, MLP and MSA, integrate layer 
normalization and skip connections techniques to aid 
in training deep networks. 

 
 

 

 
Figure 4: The structure of the SA (Photo/Picture credit: Original). 

 
Figure 5: The structure of the MSA (Photo/Picture credit: Original). 
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The input layer includes several embeddings and 
tokens: patch embeddings (from CNNs), positional 
embeddings (encoding spatial information), class 
embeddings (training vectors), and patch and class 
tokens. The class token, atop the patch tokens, moves 
through Transformer layers and is outputted by a fully 
connected layer for classification. This design allows 
the Transformer to excel in handling multimodal 
medical images with complex, long-range 
dependencies. 

3 RESULTS AND DISCUSSION 

This section analyzes and compares the performance 
of different deep learning models such as CNN, 
ResNet, and Transformer on various pathological 
datasets, revealing the characteristics and advantages 
of each model. 

3.1 Performance of CNN Compared 
with Different Models 

In this study, the ILD database (Stanford, 2024) was 
used, consisting of 113 HRCT lung image sets with 
2062 2D regions of interest (ROI) classified into five 
ILD types: Normal (N), Emphysema (E), Ground 
Glass (G), Fibrosis (F), and Micronodules (M). CT 
slices were segmented into 32×32-pixel semi-
overlapping blocks, using only those where at least 
75% of pixels were within ROIs, totaling 16220 
blocks. Three feature extraction methods—Scale 
Invariant Feature Transform (SIFT), which identifies 
central key points; rotation-resistant Local Binary 
Patterns (LBP) at varying resolutions; and Restricted 
Boltzmann Machine (RBM) for unsupervised 
learning—were compared using an supported vector 
machine (SVM) classifier. In contrast, CNN directly 
classifies through three neural network layers, 
optimizing performance via parameter fine-tuning 
and backpropagation, without needing a separate 
classifier. 

The classification outcomes were assessed 
through precision and recall metrics. Figures 6 and 7 
illustrate that the CNN method delivered superior 
classification performance, surpassing both SIFT and 
LBP, demonstrating CNN's clear advantage in 
automatic feature learning in medical imaging. 
Despite challenges such as ambiguous visual 
structures and limited training data, overfitting issues 
can be effectively mitigated by designing appropriate 
network architectures and applying techniques like 
dense dropout and input distortion. 

 

 
Figure 6: Classification results focused on recall metrics 
(Li, 2014). 

 
Figure 7: Classification results focused on Precision metrics 
(Li, 2014). 

3.2 Different Configurations of ResNet 
Models in Medical Image 
Processing 

This section aims to evaluate the performance of 
different configurations of ResNet models in medical 
image processing. This paper used three different data 
allocation strategies to train and test the ResNet 
approaches: Approach 1 employs a data split of 60% 
for training and 40% for testing; Approach 2 allocates 
75% for training and 25% for testing; Approach 3 
utilizes an 80% training and 20% testing data split. At 
the start of the experiments, all images were 
converted to grayscale and enhanced for contrast 
using the Contrast Limited Adaptive Histogram 
Equalization (CLAHE) algorithm to standardize 
initial inputs. During the learning process of the 
ResNet model, in addition to the basic convolutional 
layers, batch normalization layers, ReLU activation 
layers, and pooling layers were included. Each 
architecture of ResNet contains multiple residual 
blocks, each divided into 5 layers, with pooling layers 
primarily used at the feature extraction and before the 
classification layers. 
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All models were optimized using the SGD 
optimizer with momentum as the optimization 
function, accompanied by adjustments to the learning 
rate and utilizing binary cross-entropy as the 
objective function. Table 1 shows the performance 
using the ResNet-18 architecture under different 
training-testing ratios. The configuration that 
Approach 3 achieved the highest accuracy of 85%. 
And the configuration using Approach 2 achieved the 
highest sensitivity of 96%. 

Table 1: ResNet-18 Evaluation Measures Across Various 
Test Datasets (Sarwinda, 2021). 

Configuration Accuracy Specificity Sensitivity 
Approach 1 73% 83% 64% 
Approach 2 81% 63% 96% 
Approach 3 85% 87% 83% 

 
Table 2 illustrates the efficacy of the approach of 

ResNet-50, where the peak accuracy achieved is 88%, 
stemming from the training data configurations of 
75% and 80%. In the Approach 1 configuration, the 
highest sensitivity reached 92%. Comparing the 
results of ResNet-18 and ResNet-50 shows that 
ResNet-50 has better accuracy and sensitivity on the 
same dataset, indicating that stacking more 
convolutional layers can enhance the ability to learn 
features. 

Table 2: Evaluation Measures Across Various Test Datasets 
for ResNet-50 (Sarwinda, 2021). 

Configuration Accuracy Specificity Sensitivity 
Approach 1 77% 92% 60% 
Approach 2 88% 87% 89% 
Approach 3 88% 83% 93% 

 
Data from Table 3 indicate that the training and 

testing times for ResNet-18 are generally lower than 
for ResNet-50, primarily due to differences in the 
number of layers in the architecture. Additionally, 
performance analysis of both models shows that the 
ResNet variants achieve an accuracy range from 73% 
to 88% and a sensitivity range from 64% to 96% in 
colorectal cancer detection, proving the effectiveness 
of the ResNet architecture in such applications. 

Table 3: Evaluation of Execution Time for Each Epoch 
Between ResNet-18 and ResNet-50 (Sarwinda, 2021). 

Configuration 𝑇  
(seconds) 

𝑇  
(seconds) 

Approach 1  77% 60% 
Approach 2 88% 89% 
Approach 3 88% 93% 

 

This detailed performance assessment of ResNet 
models underscores their adaptability and efficiency 
in handling complex medical imaging tasks across 
different configurations and datasets. 

3.3 Study on the Use of Transformers 
in CT Medical Imaging 

This section explores the application of Transformer 
models in medical imaging processing, particularly 
focusing on their performance in Computer 
Tomography (CT) image analysis. CT, especially for 
diagnosing chest diseases, provides an ideal scenario 
for Transformers due to the high contrast between 
gases and tissues. 

Table 4: Evaluation of Transformer for Computer 
Tomography (He, 2023). 

Citations Datasets Accuracy 
(%) 

illness Body 
part 

COVID-
VIT  

COV19.CT-
DB 

96.0 COVID-19 Lung 

Zhang et 
al. 

COV19.CT-
DB 

76.6 COVID-19 Lung 

Than et 
al. 

COVID-
CTset  

- COVID-19 Lung 

Li et al. - 98.0 COVID-19 Lung 
 

As shown in the Table 4, Than et al. studied the 
impact of patch size on ViT's performance in 
classifying COVID-19 and other lung pathologies. 
They found that a patch size of 32x32 achieved the 
best accuracy, revealing a trade-off between patch 
size and model performance. Li et al. developed a 
ViT-based COVID-19 diagnostic platform that 
converts CT images into streamlined patches suitable 
for ViT input requirements. Using a teacher-student 
model strategy, they enhanced the model's diagnostic 
capabilities by distilling knowledge from CNNs pre-
trained on natural images. Zhang et al. first 
segmented the lung areas in CT images using Unet, 
then inputted the segmented lung regions into Swin-
Transformer for feature extraction. This strategy 
significantly reduced the computational load of the 
Transformer model. The above studies highlight the 
role of pretraining in CT image classification 
processing. Using attention mechanisms to reduce 
computational complexity is particularly crucial for 
processing large-volume images. 

This chapter reviews three significant deep 
learning models—CNN, ResNet, and Transformer—
in medical imaging. CNNs are superior in automatic 
feature extraction, outperforming traditional 
techniques in classifying complex lung images, with 
network enhancements like dense dropout improving 
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accuracy and recall. ResNet, using deep architectures 
and residual learning, excels in tasks requiring the 
detection of subtle differences, benefiting from its 
efficient data use. Transformers handle complex CT 
scans effectively, including those for COVID-19, by 
managing long-range dependencies with attention 
mechanisms and adaptability to various patch sizes 
and pretraining approaches. This analysis highlights 
the distinct advantages and contributions of each 
model to medical imaging technology. 

4 CONCLUSIONS 

This research focuses on evaluating deep learning 
models such as CNN, ResNet, and Transformer in 
medical image processing, with the objective of 
enhancing diagnostic accuracy across various 
imaging modalities. The study involves 
methodological applications and analyses of each 
model on different pathological datasets, including 
interstitial lung diseases and knee joint injuries, 
through ILD and MRI scans. 

Extensive experiments were conducted to 
evaluate the proposed methods. The experimental 
results revealed that CNN excels in automatic feature 
extraction, particularly in environments with limited 
data and ambiguous visual structures. ResNet 
demonstrated superior performance in managing 
depth and complexity, significantly enhancing the 
model's training and generalization capabilities in 
deeper network architectures. Meanwhile, 
Transformers displayed their advantage in handling 
complex, high-dimensional image data, utilizing their 
attention mechanisms to enhance model predictive 
capabilities on large and diverse datasets. 

Future research will explore integrating 
multimodal imaging data to analyze the combined 
effects of various imaging modalities using advanced 
machine learning frameworks. This aims to enhance 
diagnostic precision and robustness, addressing the 
limits of single-modality analysis and advancing AI-
driven diagnostic tools in clinical settings, potentially 
improving patient outcomes and healthcare efficiency. 
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