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Abstract: The paper introduces the widespread application of personalized recommendation systems across various 
platforms, which provide tailored online services to users based on their historical movements and personal 
profiles, thereby satisfying individualized needs and enhancing user experience and satisfaction. It identifies 
the core objectives of recommendation systems as recommending items most likely to bring maximum utility 
to users while exploring users' potential interest points to balance the "Exploration vs. Exploitation" problem. 
The paper proposes a recommendation system based on the Multi-Armed Bandit (MAB) model, which 
combines the Upper Confidence Bound (UCB) algorithm and the Linear Upper Confidence Bound (LinUCB) 
algorithm into the mixed algorithm, incorporating context-aware selection, dynamic adjustment, and weighted 
averaging to optimize the effectiveness of the hybrid algorithm, ensuring robust and reliable decision-making 
in diverse scenarios. It dynamically adjusts weights to balance the recommendation needs for new and existing 
users, thereby improving overall system performance and user satisfaction. The system design addresses the 
challenges of limited interaction records for new users and limited interaction information and user features 
within the system.

1 INTRODUCTION 

The widespread application of personalized 
recommendation systems across various platforms 
has provided users with tailored online services 
(Linden et al., 2003), greatly satisfying their 
individualized needs and effectively enhancing user 
satisfaction. In each interaction where users seek new 
items, the system employs personalized 
recommendations based on users' historical 
movements and personal profiles. Among these, 
collaborative filtering (Hill et al., 1995), and content-
based recommendation (Resnick and Varian, 1997) 
are common and classical methods. 

The core objectives of recommendation systems 
can be summarized into two aspects: firstly, 
recommending items that are most likely to bring 
maximum utility to users, ensuring they receive 
recommendations aligned with their interests; 
secondly, exploring users' potential interest points by 
attempting to recommend new items that users have 
not yet discovered but may find interesting. The 
balance between these two objectives constitutes the 
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"Exploration vs. Exploitation" (EvE) problem 
(Bubeck and Cesa-Bianchi, 2012). 

"Exploitation" refers to recommending items that 
the system already knows users will like, focusing on 
maximizing short-term gains; whereas "Exploration" 
entails trying out recommendations that the system is 
less certain whether users will like, in order to gather 
more information for making better 
recommendations in the future, emphasizing the 
maximization of long-term gains. The core challenge 
of the EvE problem lies in how to balance these two 
strategies to simultaneously meet users' current needs 
and continually improve the accuracy and 
effectiveness of the recommendation system (Gangan 
et al., 2021). 

The Multi-Armed Bandit (MAB) model provides 
an intuitive and effective framework for addressing 
the "Exploration vs. Exploitation" problem in 
recommendation systems. It simplifies the 
recommendation problem into a gambling scenario 
where pulling each "arm" represents a 
recommendation action, aiming to maximize total 
rewards. However, the standard MAB model 
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primarily focuses on balancing between different 
choices without directly utilizing users' historical 
records and feature information. This limitation may 
result in insufficient recommendation accuracy, as the 
model fails to fully leverage available personalized 
user information to optimize its decision-making 
process (Bubeck and Cesa-Bianchi, 2012). 

Contextual Bandits represent a significant 
improvement over the standard MAB model by 
incorporating additional context information to 
enhance the performance of recommendation 
systems. These context cues can include users' 
historical movements, preferences, demographic 
features, etc. This enhancement allows 
recommendation systems to better consider users' 
individualized needs, thereby achieving more precise 
and personalized recommendations. By incorporating 
context information, the model can better predict user 
responses, leading to more relevant recommendations 
and higher user satisfaction. Thus, Contextual 
Bandits offer an effective solution to address the 
Exploration vs. Exploitation problem in 
recommendation systems. 

The recommended system proposed in this paper 
addresses the challenges of limited interaction 
records for new users and limited overall interaction 
information and user features within the system. It 
adopts a strategy combining the Upper Confidence 
Bound (UCB) algorithm and the Linear Upper 
Confidence Bound (LinUCB) algorithm. Different 
strategies are employed in system design to address 
different environments. In the movie background 
experiment, accumulated regret and accumulated 
reward are used as criteria to evaluate the superiority 
of algorithms. By adjusting the strategy, the goal is to 
maximize accumulated reward to find the algorithm 
that yields the highest user ratings, thereby enhancing 
the overall performance of the system and user 
satisfaction. 

2 SYSTEM MODEL AND 
ALGORITHMS 

In this section, the MAB model and the algorithms 
utilized in the experiments will be discussed, with a 
particular emphasis on effectively balancing 
exploration and exploitation in a dynamically 
changing environment. 

2.1 Contextual Bandits 

In the framework of contextual bandits (Chu et al., 
2011), consideration is given to a scenario of a 
recommendation system. Assume there is a group of 

users 𝑖 = 1,2, … ,𝑚 , where each user has a feature 
vector 𝑎௜ ∈ ℝ௣ , and a set of items 𝑗 = 1,2, … ,𝑛 , 
where each item has a feature vector 𝑏௝ ∈ ℝ௣. These 
feature vectors are combined into matrices 𝐴 ∈ ℝ௣×௠ 
and 𝐵 ∈ ℝ௣×௡ representing the feature information of 
users and items, respectively. 

At each time step 𝑡 ∈ ℤା , a user 𝑖(𝑡)  enters the 
system and is recommended an item 𝑗(𝑡) , then 
provides a rating 𝑟(𝑡), where the rating is determined 
by the dot product of the user’s feature vector and the 
item's feature vector, along with an error term 𝑧(𝑡). 
Specifically, the rating is computed as follows: 𝑟(𝑡) = 𝑎௜(௧)் 𝑏௝(௧) + 𝑧(𝑡)             (1) 

The goal is to design a recommendation approach 
that maximizes the cumulative reward after multiple 
recommendations, or equivalently, minimizes the 
cumulative regret, which is defined as the 
accumulation of differences between the true reward 
and the predicted reward in each round. Specifically, 
the regret ∆(𝑡) in each round can be expressed as: ∆(𝑡) = 𝑟(𝑡) − 𝑎௜(௧)் 𝑏(௧)                 (2) 

Then, the cumulative regret 𝑅்  can be obtained 
by summing up the regrets in each round: 𝑅் = ∑ ∆(𝑡)௧்ୀଵ                      (3) 

By computing the cumulative regret, the system 
can assess the performance of the recommendation 
algorithm. Within the framework of contextual multi-
armed bandits, a strategy can be devised to minimize 
cumulative regret by dynamically selecting 
recommended items. 

2.2 UCB Algorithm 

Table 1: UCB Algorithm pseudocode. 

Algorithm 1 UCB Algorithm 
1. Initialize: 𝑛 = 0, 𝑄(𝑎) = 0, 𝑁(𝑎) = 0 for all 

actions 𝑎 
2. for each experiment do 
3. for  t = 1,2, … , T do 
4. for each user i do 
5. Choose action  𝑎௧ =𝑎𝑟𝑔𝑚𝑎𝑥௔(𝑈𝐶𝐵௔) 
6. Take action 𝑎௧, observe reward 𝑟௧ 
7. Update: 𝑛 = 𝑛 + 1 
8.              𝑁(𝑎௧) = 𝑁(𝑎௧) + 1 
9.              𝑄(𝑎௧) = 𝑄(𝑎௧) + 1 

10. end for 
11. Update cumulative regret 
12. end for 
13. end for 

UCB algorithm is a widely used approach for  
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addressing the multi-armed bandit problem, which 
finds applications across various domains. Its core 
principle revolves around striking an optimal balance 
between exploration and exploitation (Lattimore and 
Szepesvári, 2020). By computing the UCB index for 
each arm, it determines the next action to maximize 
cumulative rewards. The key lies in selecting an 
appropriate exploration parameter 𝑐  (or 𝛽 ) and 
employing a confidence interval calculation formula 
to update the UCB indexes of arms, effectively 
balancing exploration of unknown arms and 
exploitation of known arms. 

Denote the empirical mean reward of arm 𝑗 up to 
time 𝑡 as 𝜇𝑗(𝑡), and the number of times arm 𝑗 has 
been selected up to time 𝑡 as 𝑛𝑗(𝑡). Then, the UCB 
index 𝑈𝐶𝐵(𝑗, 𝑡) for arm 𝑗 at time 𝑡 can be defined as: 𝑈𝐶𝐵(𝑗, 𝑡) = 𝜇௝(𝑡) + 𝑐ට୪୭୥ ௧௡ೕ(௧)               (4) 

Here, 𝑐  is a tuning parameter that controls the 
level of exploration. It is typically chosen to balance 
exploration and exploitation, with a common choice 
being 𝑐 = 2 

To derive the UCB algorithm, it is necessary to 
determine how to select the arm with the highest UCB 
at each time step 𝑡 , and then update the empirical 
mean reward and the number of selections based on 
the observed reward. The arm with the highest UCB 
index at time 𝑡 is selected as: 𝑗(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥௝𝑈𝐶𝐵(𝑗, 𝑡)              (5) 

After selecting arm 𝑗(𝑡) and observing the reward 𝑟(𝑡), the empirical mean reward and the numbers of 
selections are updated as follows: 𝜇𝑗(𝑡)(𝑡 + 1) = 𝑛𝑗(𝑡)(𝑡)∗𝜇𝑗(𝑡)(𝑡)+𝑟(𝑡)𝑛𝑗(𝑡)(𝑡)+1               (6) 𝑛𝑗(𝑡)(𝑡 + 1) = 𝑛𝑗(𝑡)(𝑡) + 1          (7) 

This process is repeated for each time step, 
allowing the UCB algorithm to dynamically adjust its 
arm selection strategy based on the observed rewards 
and the exploration-exploitation trade-off. 

2.3 LinUCB Algorithm 

Table 2: LinUCB Algorithm pseudocode. 

Algorithm 2 LinUCB Algorithm 
1. Initialize: User models {A୧ , b୧ } for each 

user 𝑖, where A୧ is the identity matrix and b୧ is a vector of zeros 
2. for each experiment do 
3. for  t = 1,2, … , T do 

4. for each user i do 
5. Calculate LinUCB values UCB௔ for 

               each arm 𝑎 based on user model {A୧, 
                  b୧} and exploration parameter α 

6. Choose action 𝑎୲୧ = argmax௔ UCB௔ 
7. Simulate pulling arm 𝑎୲୧ =argmax௔ UCB௔ 
8. Update user model {A୧, b୧} based on 

            observed reward r୲୧ 
9. end for 

10. Update cumulative regret 
11. end for 
12. end for 

LinUCB algorithm extends the UCB framework by 
incorporating contextual information about arms, 
making it suitable for more complex scenarios where 
arm performance is dependent on contextual features. 
It operates on the principle of linear contextual 
bandits, where the reward prediction is modeled as a 
linear combination of the arm's features and learned 
coefficients (Wang et al., 2022). The decision-making 
process involves selecting the arm with the highest 
predicted reward, adjusted by an exploration factor 
that accounts for the uncertainty in the estimation. 
Key components include a feature vector for each arm, 
a dynamically updated parameter vector, and an 
exploration parameter 𝑐 (or 𝛽), which influences the 
width of the confidence interval used in selecting 
arms, thereby balancing the trade-off between 
exploring less certain options and exploiting known 
rewards. 

In the LinUCB algorithm, the relationship 
between arms (items) and their features is modeled 
using linear regression. This model calculates the 
expected reward of an arm 𝑗 at time 𝑡, denoted 𝜇ො𝑗(𝑡), 
as the inner product of the regression coefficient 
vector 𝜃𝑗(𝑡) and the feature vector 𝑎𝑖(𝑡)  of the user 
selecting arm 𝑗: 𝜇ො𝑗(𝑡) = 𝜃𝑗(𝑡)𝑇𝑎𝑖(𝑡) 

The LinUCB algorithm seeks to maximize the 
UCB index for each arm at each time step 𝑡. The UCB 
index for arm 𝑗 at time 𝑡, is defined as: 𝑈𝐶𝐵(𝑗, 𝑡) = 𝜃௝(𝑡)்𝑎௜(௧) + 𝑐ට𝑎௜(௧)் 𝐴௝(𝑡)ିଵ𝑎௜(௧) 

Here, 𝐴𝑗(𝑡) represents the covariance matrix of 
arm 𝑗 up to time 𝑡, and 𝑐 is a tuning parameter that 
controls the trade-off between exploration and 
exploitation. The term ට𝑎𝑖(𝑡)𝑇 𝐴𝑗(𝑡)−1𝑎𝑖(𝑡) 
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quantifies the uncertainty in the estimated mean 
reward. 

The arm selected at each time step 𝑡 is the one 
with the highest UCB: 𝑗(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥௝𝑈𝐶𝐵(𝑗, 𝑡) 

Upon the selection of arm 𝑗(𝑡)  and the 
observation of the reward 𝑟(𝑡), updates are made to 
the regression coefficient vector 𝜃𝑗(𝑡)(𝑡)  and the 
covariance matrix 𝐴𝑗(𝑡)(𝑡)  based on the observed 
features and reward. These updates enable the 
LinUCB algorithm to adaptively modify its arm 
selection strategy over time, maintaining an optimal 
balance between exploration and exploitation. 

2.4 Mixed Algorithm 

In this part, the application of different strategies to 
adjust the two algorithms will be introduced, aiming 
to optimize the effectiveness of the system. 

2.4.1 Context-Aware Selection Approach 

The mixed algorithm incorporates context-aware 
selection to determine the appropriate algorithm for 
each decision point. It begins by assessing whether 
relevant contextual information is available for the 
current decision. If contextual information is present 
and deemed highly correlated with the decision, the 
algorithm favours the LinUCB approach. This 
preference stems from LinUCB's ability to leverage 
contextual information, such as user features and 
historical movements, to more accurately estimate the 
potential rewards for each action. 

2.4.2 Dynamic Adjustment Approach 

To ensure flexibility and responsiveness, the mixed 
algorithm employs a dynamic adjustment strategy. 
Periodically, after a fixed number of time steps, 
denoted as 'n,' the algorithm evaluates the 
performance of both the UCB and LinUCB 
algorithms. Based on this comparison, it dynamically 
selects the algorithm that demonstrates superior 
performance over the recent history. This dynamic 
adjustment mechanism allows the algorithm to adapt 
to changing conditions and evolving patterns in the 
data. 

2.4.3 Weighted Averaging Approach 

In addition to context-aware selection and dynamic 
adjustment, the mixed algorithm incorporates 
weighted averaging to combine the outputs of the 
UCB and LinUCB algorithms. Each algorithm is 

assigned an index weight of 0.5, reflecting an equal 
contribution to the final decision-making process. By 
averaging the results of both algorithms, the mixed 
approach aims to mitigate the individual weaknesses 
of each algorithm while leveraging their respective 
strengths. This balanced integration ensures robust 
and reliable decision-making in diverse scenarios. 

3 IMPLEMENTATION AND 
EVALUATION 

For this experiment, the dataset employed is the 
MovieLens dataset (Harper and Konstan, 2015). The 
dataset contains information on movies, users, and 
user ratings, with a total of 18 movie tags. Each time 
the arm is pulled, the system selects a tag and returns 
a movie rating containing that tag as a reward. The 
regret is defined as the difference between the optimal 
possible reward and the gained reward. Through 
experiments, the aim is to find the best-performing 
strategy that maximizes accumulated rewards and 
minimizes accumulated regrets.  

Considering the real-time feedback characteristic 
of online recommendation systems (Zhang et al., 
2020), the experiment step size T is set to 10,000, and 
the number of runs N for each algorithm is set to 10 
to avoid randomness. 

For each output of experimental results, cumulative 
regrets and cumulative rewards, after N trials, the 
final result for mean cumulative regrets is calculated 
as: 𝑚𝑒𝑎𝑛_𝑟𝑒𝑔𝑟𝑒𝑡𝑠 = 1𝑁෍ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑔𝑟𝑒𝑡𝑠ே௜ୀଵ  

𝑚𝑒𝑎𝑛_𝑟𝑒𝑤𝑎𝑟𝑑𝑠 = 1𝑁෍ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑟𝑒𝑤𝑎𝑟𝑑𝑠ே௜ୀଵ  

The experiment sets the optimal possible reward 
for each time step 𝑡 to be 5.  

Figure 1 displays the cumulative regrets and 
cumulative rewards of the UCB algorithm based on 
four exploration coefficients 𝛽 under the MovieLens 
dataset. It can be observed that the smallest 
exploration coefficient 𝛽  yields the best algorithm 
performance. This indicates that using the UCB 
algorithm on this dataset makes it easy to identify the 
arm with the highest average reward without the need 
for excessive exploration of all arms, thus reducing 
unnecessary resource wastage. 
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Figure 1: UCB Algorithm results. 

Figure 2 displays the cumulative regrets and 
cumulative rewards based on four exploration 
coefficients 𝛽  in the LinUCB algorithm under the 
given dataset. It can be observed that the performance 
is poorest when 𝛽  =2, while 𝛽  =1 and 𝛽  =4 show 
relatively better performance.  With the given number 
of steps 𝑇, an average reward of above 3.5 can be 
achieved. 

 
Figure 2: LinUCB Algorithm results. 

Figure 3 illustrates the cumulative regrets and 
cumulative rewards of the mixed algorithm 
mentioned earlier, including the results of the UCB 
algorithm to aid in comparing algorithm performance. 
It can be observed that the Weighted Averaging 
approach performs significantly worse than other 
algorithms, indicating that the allocation of 
exponential weights has a significant impact on 
algorithm results. The Dynamic Adjustment 
Approach is the optimal algorithm in this 
environment, achieving an average reward of 
approximately 4 per round by adopting better results 
every 1000 steps, making it the highest average 
reward. 

 
Figure 3: Muti approaches comparison. 

4 CONCLUSIONS 

In summary, this paper proposes a novel 
recommendation system based on the Multi-Armed 
Bandit model, integrating the UCB and LinUCB 
algorithms. The system dynamically balances 
exploration and exploitation to effectively optimize 
user satisfaction and system performance, thus 
addressing the challenges of personalized 
recommendation. 

Through empirical evaluations, the effectiveness 
and feasibility of the hybrid algorithm in various 
scenarios have been demonstrated. However, there 
are still research deficiencies, such as the inability of 
the context-aware hybrid algorithm to effectively 
demonstrate its advantages in environments where 
the data is complete. Future research could explore 
more advanced techniques, such as integrating 
additional contextual information or enhancing the 
system's adaptive learning capabilities. Additionally, 
studying real-world applications and user research 
will provide valuable insights into the practical utility 
and user acceptance of the recommendation system. 
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