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Abstract: Traditional machine learning algorithms mostly follow a centralized training paradigm, which poses 
challenges to data security and privacy, and restricts the in-depth application of artificial intelligence models 
in many fields. As a great way to train models in siloed data, federated learning has emerged in recent years 
and attracted much attention from the industry and academic community. Though much effort has been 
devoted, challenges persist within federated learning frameworks when addressing data that is identically 
distributed yet lacks independence. This paper focuses on introducing the latest research to solve this problem 
and quantitively discusses their performance on various datasets, aiming to provide the decision-making basis 
for algorithm selection. Specifically, three representative federated learning algorithms are first introduced, 
including their design ideas and key steps. This paper further analyzes the advantages and disadvantages of 
these methods by comparing the performance in accuracy, communication efficiency, different numbers of 
local epochs, and different heterogeneous environments. Extensive results show that MOON is superior to 
FedProx in all aspects of the experiment, showing the superiority of MOON in image classification. 

1 INTRODUCTION 

The huge success of AlphaGo has raised great 
expectations for this kind of big data-driven AI to be 
realized in various industries. However, the reality is 
that in addition to a few industries, many industries 
do not have sufficient data and good quality data to 
support the implementation of artificial intelligence. 
At the same time, due to the restrictions of laws and 
regulations, data often appear in the form of islands, 
and the data of all parties cannot be transferred to a 
centralized server to train the model. In this context, 
federated learning (Li et al., 2020) has been gaining 
traction as a viable option for addressing privacy 
concerns and ensuring data security, garnering 
increasing interest in recent times. 

Federated learning can keep the original data in 
the local client. During every training cycling, 
participants are required only to transmit their 
updated models to a central server, which then 
amalgamates these local models to formulate a 
comprehensive global model. In this process, the 
original data are not exchanged, which solves the 
above problems well, which attracts the research 
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interest of many people and obtains a wide range of 
research and applications (Zhang et al., 2022; Yang et 
al., 2022), including medical image assessment, 
processing of natural language, auto driving. 
However, the heterogeneity of data distribution (Zhao 
et al., 2018) is still an open issue that hinders the 
further development of federated learning. Data 
between participants may have different feature 
distributions, data types, or data sizes. This 
heterogeneity leads to potential inefficiencies in 
federated learning, particularly during the model 
training and amalgamation process, where significant 
disparities can emerge between the average global 
model as well as the global optimum, especially when 
local models are updated and their specific objectives 
diverge substantially from the overarching global 
objective. 

To solve the data heterogeneity problem, methods 
such as feature alignment, data transformation, cross-
device transfer learning, and aggregation strategy 
adjustment can be adopted. MOON (Li et al., 2021) 
and FedProx (McMahan et al., 2017) are two 
representative algorithms. Model-Contrastive 
Federated Learning (MOON) introduces model 
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contrastive loss during local training to correct update 
direction. The objective of comparing model losses is 
to enhance the distinction between features generated 
in the current model iteration and those from 
preceding iterations, while simultaneously reducing 
the discrepancies involving features produced via the 
global and updated models. This is because on the 
server side, the global model has a tendency to 
produce better features in comparison to models that 
are updated locally. FedProx allows local models 
with inadequate training to handle system 
heterogeneity issues. Regardless of whether a local 
model has finished its training (fixed Epoch), 
FedProx combines all participating local models, 
meaning that it does not necessitate all local models 
to be trained with precision. Concurrently, FedProx 
addresses the issue of frequent local model updates 
hindering the global model's convergence by 
integrating a proximal term to the local model's loss 
function. This addition acts as a deterrent against 
excessive deviations of local models from the global 
models. 

Aiming to provide decision-making basis for 
federated learning algorithms selection, this paper 
compares the performance of MOON and FedProx on 
image datasets of deep learning models, and finds the 
superiority of MOON over FedProx in image 
classification.  Specifically, in Section 2, three 
representative federated learning algorithms are first 
introduced, including their design ideas and key steps. 
Section 3 compares the performance of different 
methods on three datasets. Section 4 concludes this 
work and discusses the future development of 
federated learning. 

2 METHOD 

This section first revisits the classic federated 
learning algorithm FedAvg (Li et al., 2020) and gives 
the problem definition of data heterogeneity. Then, 
MOON and FedProx are detailed in the following 
section. 

2.1 Problem Definition 

FedAvg (Li et al., 2020) is a strategy that utilizes 
Stochastic gradient descent (SGD) for updates, which 
performs effectively in real life, and the steps of every 
round are shown in Figure 1. Initially, the server 
selects clients for federated learning participation and 
dispatches the model to them. Subsequently, clients 
utilize Stochastic Gradient Descent (SGD) for model 
refinement using their local datasets. Afterward, 

clients transmit the refined model back to the central 
server. In the final step, the central server 
amalgamates and evaluates the models, with the 
evaluation outcomes serving as a benchmark for 
subsequent training rounds. 

However, FedAvg is not suitable for 
heterogeneous environments (Li et al., 2019), where 
the data distribution on different devices may be quite 
different. Some devices may have more or fewer 
samples, or there may be differences in data quality. 
This leads to some devices contributing 
inconsistently to the federated learning process, 
which affects global performance. To solve this 
problem, the current studies can be primarily 
categorized into two groups: improving the local 
training phase and improving the aggregation phase 
(corresponding to the first and fourth steps of Figure 
1, respectively). The two models in this paper belong 
to the first category. 

 
Figure 1: The workflow of FedAvg algorithm. 

2.2 MOON 

Contrastive learning (Jaiswal et al., 2020) is a 
machine learning method that aims to learn useful 
feature representations by comparing the similarities 
and differences between different samples, and has 
made positive contributions to learning visual 
representations. The main concept is that comparable 
samples are assigned to a corresponding embedding 
space, ensuring that similar samples are in closer 
proximity within the embedding space while 
dissimilar samples are more distant from every other. 
Inspired by the concept of contrastive learning, 
MOON was developed as an adaptation of FedAvg 
with modifications to local training. MOON is 
designed to narrow the divergence between 
representations acquired by the local model and those 
by the global model, enhancing the learning efficacy 
of the global model (Li et al., 2021). Concurrently, it 
amplifies the disparity involving the current local 
model's representations and those from its preceding 
iterations, mitigating the effects of drift during local 
training in order to accommodate accuracy in diverse 
environments. 
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The architecture of MOON's network comprises 
three components: an output layer, a projection head, 
and a foundational encoder, as depicted in Figure 2. 
The foundational encoder extracts vectors from the 
input. Through the projection head, inputs are 
transformed into a fixed-dimensional space. The 
output layer is responsible for generating the 
predicted values for every class. At a weight of w, the 
function Fw(·)  represents the entire network, while 
Gw(·)  represents the network excluding the output 
layer. 

 
Figure 2: The workflow of FedAvg algorithm. 

The training procedure of MOON is shown in 
Figure 3. The MOON has three representations 
during the local training phase: (1) the output derived 
from the most recent model trained locally and then 
transmitted to the server (Zprev = Rwi

tష1(x)), (2) the 
global model sends the representation to the local at 
the start of every round (Zglob = Rwt(x)), and (3) the 
output derived from the current update of the local 
model (Z =  RWi

t(x)). The training objective is to have 
z close to Zglob and z far away from Zprev. 

The local loss in training is divided into two parts: 
the initial component is referred to as the cross-
entropy loss, labeled as ℓsup，while the subsequent 
component represents the characteristic ℓcon  in 
MOON. ℓcon is defined as follows: 

ℓ௖௢௡ = −𝑙𝑜𝑔 a
aାb                             (1) 

a = exp൫𝑠𝑖𝑚൫𝑧, 𝑧௚௟௢௕൯/τ൯                   (2) 𝑏 = exp൫𝑠𝑖𝑚൫𝑧, 𝑧௣௥௘௩൯/𝜏൯                  (3) 
Where, 𝑠𝑖𝑚(·) denotes the cosine similarity function, 
and τ  represents a temperature-related parameter. 
The optimization objectives of MOON are expressed 
as: 

ℓ = ℓsup൫wi
t; (x, y)൯ + μℓcon൫wi

t;wi
tି1;wt; 𝑥൯     (4) 

2.3 FedProx  

2.3.1 Optimization Points for FedProx 

Federated learning frameworks engage multiple 
clients and a central server in collaboration, aiming to 
minimize: 

min
w

f(w) =  ∑ pkFk(w)N
kୀ1                  (5) 

The objective function f(w) is used to describe 
the objective or loss of the optimization problem. N is 
the number of participating devices. pk is the weight 
factor such that pk ≥ 0  and the sum of all weight 
factors is one. Fk(w) symbolizes the local objective 
function, which quantifies the local empirical risk for 
different data distributions Dk. 

One common approach in federated optimization 
to minimize communication is to employ a local 
objective function derived from device data, as 
opposed to utilizing a global objective function, 
which is proxied on the client side. During every 
outer iteration, a subset of devices is chosen to 
optimize a local objective function using a local 
solver. Subsequently, device-generated updates are 
relayed to the central server, where they undergo 
amalgamation to refine the global model. The crucial 
factor for achieving flexible performance in this 
situation is the ability to accurately solve every local 
objective, allowing for the calibration of local 
computation against communication, contingent on 
the volume of local iterations completed. For this 
reason, this definition is formally proposed below, 
which will be used continuously in the following 
papers. 

Definition 1 (γ-inexact solution). For a function h(w; w଴) = F(w) + ஜଶ ||w − w଴|| 2, and  γ ∋ ሾ0,1ሿ , w∗represents a γ-inexact solution of min୵ h(w; w଴) if ||∇h(w∗; w଴)||  ≤  γ||∇h(w଴; w଴)|| , where ∇h(w; w଴) = ∇F(w) + μ(w − w଴ ). Note that a 
smaller γ corresponds to higher accuracy. 

It is crucial to optimize the tuning of hyper-
parameters in FedAvg, especially the number of 
epochs for local training plays an important role in 
convergence, the details are in Algorithm 2 in Figure 
4. Executing more local training times can reduce the 
number of communications, but in a heterogeneous 
environment, more local updates may affect the 
convergence, even deviate from the global goal, and 
may make the device fail to complete the number of 
updates on time. With the change of local data and 
available system resources, the number of local 
updates will be different, so it is necessary to increase 
the convergence robustness and increase the number 
of local updates as much as possible. Obviously, 
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FedAvg does not meet these conditions, so it is 
proposed that FedProx can solve this problem. 

 
Figure 3: The training procedure of MOON algorithm. 

 
Figure 4: The training procedure of federate averaging. 

2.3.2 FedProx 

The framework of FedProx is similar to that of 
FedAvg in that, in every round, devices are selected, 
global models are sent, local updates are performed, 
and then these models are aggregated. The distinction 
lies in the fact that FedProx enables the enhancement 
of FedAvg by varying the workload carried out 
locally on devices based on system resources, and 
then combining incomplete solutions submitted by 
slow performers. FedProx allows local devices to 
perform a variable amount of work according to their 
available system resources, instead of dropping 
backward devices, that is, different devices can 
perform different iterations, provide variable γ, and 
extend from Definition 1 to Definition 2. 

Definition 2 (γ୩୲ -inexact solution).  For a function h୩(w; w୲) =  F୩(w) + ஜଶ ||w − w୲||2, and γ ∈ ሾ0, 1ሿ, w∗  is a γ୩୲ -inexact solution of min୵ h୩(w; w୲) if ||∇h୩(w∗; w)|| ≤  γ୩୲ ||∇h୩(w୲; w୲)|| , where ∇h୩(w; w୲) = ∇F୩(w) + μ(w −  w୲) . Note: a 
smaller γ୩୲  corresponds to higher accuracy. 

It can be seen that from Definition 1 to Definition 
2, the objective function and gradient calculation 
method are mainly changed to local functions on 
every device to adapt to the heterogeneous 
environment. The γ୩୲  approximate solution defined in 
this paper can measure the precision of the solution 
on every device, and evaluate the overall optimization 
more comprehensively. 

After adjusting to the diverse environment, it is 
important to be aware that excessive local updates 
may lead to divergence in the approach as a result of 
the varying underlying data. To solve this problem, 
the above effects can be effectively avoided by 
adding the proximal term. Rather than directly 
minimizing a local function  F୩(·) expressed below, 
Device K employs its selected local solver to 
approximate the minimization of the intended target. min୵ h୩(w; w୲) = F୩(w) + ஜଶ ||w − w୲||2    (6) 

The training procedure of FedProx is shown in 
Algorithm 3 in Figure 5. In particular, the FedAvg  
can be seen as a specific instance of FedProx, where μ = 0, the specially chosen local solver is SGD, and 
the constant γ between devices is fixed. 
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Figure 5: The training procedure of federate averaging. 

3 EXPERIMENT 

3.1 Original Datasets 

This study undertakes a comparative analysis of 
MOON, FedProx, and FedAvg across CIFAR-10, 
CIFAR-100, and Tiny-Imagenet datasets (https:// 
www.kaggle.com/c/tiny-imagenet). Moreover, it 
employs two distinct network architectures: ResNet-
50 (He et al., 2016) as the primary encoder for 
CIFAR-100 and Tiny-Imagenet, and a convolutional 
neural network (CNN) for CIFAR-10. The CNN 
consists of 2 fully connected layers with ReLU 
activation (the first layer having 120 units and the 
second 84 units), along with five convolutional layers 
and a pooling layer (the initial layer with 6 channels, 
followed by one with 16 channels). A two-layer MLP 
serves as the projection head for all datasets, with the 
output dimension set to 256 by default. 

3.2 Experimental Settings 

PyTorch is used to implement MOON, FedProx and 
FedAvg. SGD optimizer is adopted for all three 
methods, where the learning rate is established at 0.01, 
accompanied by a weight decay of 0.00001 and 
momentum of 0.9. The batch size is determined as 64. 
For the CIFAR-10, CIFAR-100, and Tiny-Imagenet 
datasets, the amount of communication rounds is 
designated as 100, 100, and 20, respectively. For 
MOON, the default temperature parameter is 0.5. In 
the article, Dirichlet distribution is utilized to 
simulate non-IID data across participating entities, 
with the Dirichlet distribution parameter 𝛽 is used in 
this paper, where 𝛽 is a floating point number. The 
Dirichlet distribution generates a vector of length N 
representing the probability distribution over N 
categories. This vector is denoted as 𝑝௞, where 𝑝௞,௝ 

denotes the probability that category k is in party j. 
Based on this allocation strategy, it is possible that 
every party may have a limited number (or none at 
all) of data samples in certain categories. 

3.3 Comparison of Precision 

In the MOON model, the hyperparameter 𝜇, which 
governs the model's contrast loss, is calibrated across 
a range of {0.01, 0.1, 1, 5, 10}, with the ideal 𝜇 values 
for CIFAR-10, CIFAR-100, and Tiny-Imagenet 
determined to be 5, 1, and 1, respectively. In the case 
of FedProx, 𝜇, which influences the proximal term, is 
adjusted within {0.001, 0.01, 0.1, 1}, finding the most 
effective 𝜇  values for CIFAR-10, CIFAR-100, and 
Tiny-Imagenet to be 0.01, 0.001, and 0.001, 
respectively. These configurations of 𝜇 are adopted 
for the experiments detailed in this study.  
After using the above parameter settings, this paper 
has obtained the test results in Table 1, which prove 
that for processing non-IID data, the improved 
methods of MOON and FedProx are effective. 
Among them, MOON has the highest accuracy, 2.2% 
higher than FedAvg, and the best improvement. 
Conversely, FedProx demonstrates only a slight 
improvement in precision, the proximal term in 
FedProx does not improve the training performance 
much, because the value of 𝜇 is too small. However, 
if the value of 𝜇 is increased, FedProx will converge 
too slowly and will not have high accuracy. 

Table 1: Average (%) and standard deviation of accuracy 
for MOON, FedProx and FedAvg. 

Method CIFAR-10 CIFAR-100 Tiny-Imagenet 
MOON 67.8േ0.3 65.9േ0.3 24.5േ0.1 
FedAvg 65.6േ0.4 63.9േ0.4 22.3േ0.1 
FedProx 66.1േ0.2 64.1േ0.2 22.4േ0.1 

3.4 Communication Efficiency 

Figure 6 shows that MOON, FedProx and FedAvg 
have almost the same speed of accuracy improvement 
at the beginning of training, and the model contrastive 
loss term and proximal term have little impact. Later 
MOON benefits from the model comparison loss term ℓୡ୭୬ and achieves higher accuracy. At the same time, 
FedProx does not benefit from the proximal term 
obviously, because its optimal μ value is too small, 
making the FedProx precision quite close to FedAvg. 
However, when μ  = 1, precision for FedProx 
improves too slowly, and it is obvious that FedProx 
has limited improvement compared with MOON. 
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Figure 6: Communication efficiency of different methods. 

Table 2 shows the number of rounds required for 
MOON and FedProx to revery the same accuracy 
after running FedAvg for 100 rounds on CIFAR-10, 
CIFAR-100 and Tiny-Imagenet. It can be seen that 
the communication efficiency of MOON can revery 
more than twice that of FedAvg, while the 
communication efficiency of FedProx only increases 
slightly. MOON's way of communicating is more 
efficient. 

Table 2: Comparison of training rounds different methods 
to achieve similar accuracy. 

Method 
CIFAR-10 CIFAR-100 Tiny-Imagenet 

rounds speed
up rounds speed

up rounds Speed
up 

FedAvg 100 1ൈ 100 1ൈ 20 1ൈ 
FedProx 56 1.8ൈ 77 1.3ൈ 17 1.2ൈ 
MOON 28 3.6ൈ 46 2.2ൈ 10 1.8ൈ 

3.5 Number of Local Epochs 

Figure 7 shows how local epochs’ quantity impacts  

final model's accuracy across a range of datasets. 
When there are insufficient local epochs, all methods' 
local updates are insufficient, training proceeds too 
slowly, and accuracy is comparatively low. when the 
count of local epochs exceeds an optimal threshold, 
local training will drift, that is, the local optimal point 
and the global optimal point are inconsistent, which 
makes the precision of all methods decrease. But 
MOON outperforms the alternatives in all cases. 

 

 

 
Figure 7: Impact of the amount of local epochs upon the 
precision of the final model across various datasets. 

3.6 Heterogeneity 

This paper also investigates the effect of information 
heterogeneity upon CIFAR-100 through adjustments 
to the Dirichlet distribution's parameter. A smaller 
value for leads to a more imbalanced partition. The 
findings are presented in Table 3, indicating that 
MOON consistently attains the highest level of 
accuracy across various non-IID data distributions, 
while FedProx occasionally performs less effectively 
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than FedAvg. Experiments show that MOON has 
better robustness. 

Table 3. Precision of MOON, FedProx as well as FedAvg 
under different non-IID information distributions. 

Method β = 0.1 β = 0.5 β = 5 
MOON 62.8% 65.9% 66.3% 
FedAvg 61.9% 63.9% 64.9% 
FedProx 62.2% 64.1% 64.3% 

4 CONCLUSION 

Federated learning offers extensive applications and 
substantial developmental potential, presenting a 
solution to the issue of data silos originating from a 
variety of factors. Among them, the processing of 
non-IID is very important, which greatly affects the 
final performance of the model. To solve this 
problem, two methods, FedProx and MOON, have 
been proposed from the direction of improving local 
training. Therefore, this paper uses FedProx and 
MOON to compare the accuracy, communication 
efficiency, the number of different local epochs and 
different heterogeneous environments, and shows the 
superiority of MOON in image classification. It is 
hoped that these works can help people choose a more 
suitable model. 
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