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Abstract: This study delves into the effectiveness of the Visual Geometry Group Network 16 (VGG16) convolutional 
neural network (CNN) in the crucial task of classifying brain tumors, a pivotal endeavor aimed at enhancing 
diagnostic accuracy and tailoring patient treatment in the field of oncology. Leveraging the renowned VGG16 
model, celebrated for its deep architecture and robust feature extraction capabilities, this research seeks to 
propel the accuracy of brain tumor diagnostics to new heights. Through a meticulously crafted methodology 
encompassing comprehensive image preprocessing, meticulous optimization of the VGG16 model, and 
meticulous comparison with other CNN models, the study meticulously evaluates crucial metrics such as 
accuracy, sensitivity, and specificity. Drawing upon a rich dataset of brain tumor images for analysis, the 
findings underscore VGG16's superior classification performance, highlighting its profound potential to 
revolutionize medical imaging practices and elevate the standard of patient care in oncology. These 
compelling results not only bolster the utilization of deep learning techniques in medical diagnostics but also 
pave the way for future advancements in personalized healthcare methodologies. 

1 INTRODUCTION 

Brain cancer, a formidable adversary in oncology, 
remains a leading cause of cancer-related morbidity 
and mortality worldwide (Harachi, 2024). The 
heterogeneity of brain tumors, with their complex 
biological characteristics, presents a significant 
challenge for accurate diagnosis and classification, 
crucial for effective treatment planning (Xie, 2024). 
The advent of Convolutional Neural Networks 
(CNNs) has opened new vistas in medical image 
analysis, offering a potential leap forward in the 
precision of brain tumor classification (Irgolitsch, 
2024). The significance of this research lies in 
harnessing the power of CNNs, particularly the 
Visual Geometry Group Network 16 (VGG16) 
model, to improve the accuracy and efficiency of 
brain tumor diagnosis, thereby contributing to 
personalized medicine and better patient outcomes. 

In the realm of medical image processing, CNNs 
have emerged as a transformative force, particularly 
in cancer diagnosis, including brain tumors. with 
numerous studies demonstrating their efficacy in 
classifying various types of cancers, including those 
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of the brain. In the domain of medical imaging, 
particularly brain tumor classification, significant 
strides have been made with the adoption of CNNs. 
Research has evolved from traditional image 
processing methods to advanced deep learning 
models, with VGG16 emerging as a key player due to 
its deep architecture and superior feature extraction 
capabilitiesVGG16, a deep CNN architecture, has 
been particularly noted for its success in image 
recognition tasks due to its depth and robust feature 
extraction capabilities(Jahannia, 2024). Previous 
research has leveraged VGG16 for brain tumor 
classification, achieving promising results that 
underscore the model's potential in medical 
applications(Khaliki, 2024). The VGG16 
architecture, known for its depth and robust feature 
extraction, has played a crucial role in this progress. 
It has been effectively used for brain tumor 
classification, showcasing the potential of deep 
learning in medical applications. However, the 
integration of CNNs in clinical workflows is still in 
its infancy, with ongoing debates regarding model 
interpretability, data privacy, and the need for large, 
annotated datasets(Sachdeva, 2024). This study aims 
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to build upon the existing body of work, addressing 
some of these challenges and pushing the boundaries 
of what is currently achievable with CNN-based brain 
tumor classification.  The exploration of CNNs, 
especially VGG16, in brain tumor classification not 
only enhances diagnostic precision(Reddya, 2024) 
but also paves the way for novel therapeutic 
strategies. By accurately categorizing brain tumors, 
clinicians can tailor treatments to individual patients, 
thereby optimizing outcomes and minimizing adverse 
effects(Balajee, 2024). Moreover, the integration of 
CNNs into clinical decision-making processes 
underscores the convergence of technology and 
healthcare, promising a future where medical 
interventions are more data-driven and patient-
specific(Yalamanchili, 2024). While the journey 
toward fully integrating CNNs into routine clinical 
practice is fraught with challenges, the potential 
benefits in terms of improved diagnostic accuracy, 
patient outcomes, and healthcare efficiency are 
immense. The ongoing research and development in 
this area are crucial steps toward realizing the full 
potential of CNNs in medical imaging and oncology, 
signifying a paradigm shift in how brain cancer is 
diagnosed and treated(Rahman, 2024). 

This study utilizes the VGG16 model to develop 
a robust framework for brain cancer detection, 
meticulously adjusting its parameters to gauge their 
impact on model performance. Renowned for its deep 
architecture and remarkable efficacy in feature 
extraction, VGG16 plays a pivotal role in accurately 
identifying various brain tumor types. To further 
enhance the quality of the data, advanced image 
preprocessing techniques are incorporated, thereby 
augmenting the model's learning capabilities and 
predictive accuracy. A comprehensive comparative 
analysis with other CNN models is undertaken, with 
a keen focus on key metrics such as accuracy, 
sensitivity, and specificity in tumor classification. 
Furthermore, the research evaluates VGG16's 
scalability and consistency across diverse datasets 
and operational scenarios, demonstrating its 
adaptability in real-world settings. The results 
unequivocally demonstrate that VGG16, coupled 
with effective preprocessing techniques, surpasses 
conventional models, representing a significant leap 
forward in medical imaging. This advancement holds 
both theoretical and practical implications, enhancing 
diagnostic accuracy and potentially improving patient 
treatment outcomes. Moreover, these findings 
underscore the immense potential of deep learning in 
medical diagnostics, paving the way for impactful 
future research endeavors and clinical applications in 
the realm of healthcare. 

2 METHODOLOGIES 

2.1 Dataset Description and 
Preprocessing 

The dataset used in this study is called the brain tumor 
dataset and is derived from the Kaggle (Seif, 2024). 
The dataset includes brain Magnetic Resonance 
Imaging (MRI) scans obtained from patients with and 
without brain malignancies. Each image acquire is 
labeled with "Yes" or "No" to indicate the presence 
or absence of the tumor. The aim here is to determine 
the presence of tumors in the patient based on 
magnetic resonance imaging. The training data set 
contains 253 images, and before model development, 
this study applies normalization techniques to 
standardize the pixel values in the images. 
Furthermore, this study applies the cropping function 
to focus on regions of interest in brain MRI images, 
which helps to reduce noise and irrelevant 
information. Figure 1 shows some instances coming 
from this dataset. 
 

 
Figure 1: Part of the brain_tumor_dataset dataset 
(Photo/Picture credit: Original). 

2.2 Proposed Approach 

Design and train CNN architectures specifically for 
brain tumor detection, performing experiments using 
different network architectures, regularization 
techniques, and hyperparameters to optimize model 
performance. This CNN model is a typical deep 
learning model used for emotion classification tasks. 
It contains multiple convolutional and pooling layers, 
as well as fully connected and Dropout layers, 
ultimately exporting a sigmoid-activated neuron for 
the dichotomy task. The overall flow chart of the 
model is shown in Figure 2. 
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Figure 2: Flow diagram of the CNN network (Photo/Picture 
credit: Original). 

The core construction of the model lies in its 
clever use of multiple convolution layers and pooling 
layers, which are connected and work together to 
gradually extract various features from the input 
images. These features start with the base edges and 
textures and gradually upgrade to more complex and 
higher-level feature representations. This hierarchical 
feature extraction method enables the model to have 
a deeper understanding of the image content, and lays 
a solid foundation for the subsequent classification 
task. After feature extraction, the model further 
integrates and maps these features using the fully 
connected layer. The fully connected layer transforms 
the extracted features into a form corresponding to the 
final output category by learning the weight and bias. 
In this way, the model can predict the category of the 
input image based on its features. 

 To prevent overfitting of the model during 
training, this paper introduces the dropout layer. The 
dropout layer is discarding some connections of 
neurons randomly during training, so that the model 
does not rely too much on some specific features or 
weights to improve its generalization ability. At the 
output end of the model, this study employs a neuron 
with an s-type activation function. This neuron 
transforms the model's predictions into a value 
between 0 and 1, representing the probability that the 
image belongs to a certain class. This probabilistic 
output mode enables the model to show its prediction 
results more intuitively and facilitates us to make 
subsequent threshold setting and classification 
decisions.  

To optimize the training process of the model, this 
study chooses the binary cross-entropy as the loss 
function, which is well suited for scenarios with 
dichotomous tasks. Meanwhile, this study also 
adopted the Adam optimizer and set the learning rate 
to 1e-4 to ensure that the model can be quickly and 
stably converged to the optimal solution. This study 
also performs a series of preprocessing steps before 
the images enter the network. These steps include 
resizing the images, normalizing them, and applying 

data augmentation techniques. Through these 
preprocessing measures, this study could not only 
ensure the consistency and standardization of the 
input data, but also improve the robustness of the 
model, so that it can better cope with various complex 
image changes and challenges. 

2.2.1 Training Parameter Setting 

During training, 50 training epochs were set and each 
batch containing 32 samples to ensure that the model 
was adequately learned and adapted to the data. 
Meanwhile, to avoid overfitting of the model during 
training, an early stopping strategy was used. When 
the loss of the validation set does not significantly 
improve over the five consecutive epochs, the 
training ends early, thus preserving the performance 
of the model at the best state. Before the training 
started, this study performed a series of preprocessing 
operations on the images. These operations include 
adjusting the image size to meet the input 
requirements of the model, performing normalization 
processing to eliminate differences in brightness and 
contrast between different images, and applying data 
augmentation techniques to increase the diversity of 
training samples and improve the robustness of the 
model. The core part of the model consists of multiple 
convolution layers and pooling layers. These 
hierarchies enable automatic learning and extracting 
key features in images, ranging from lower-level edge 
and texture information to higher-level emotion-
related features. By passing and processing layer by 
layer, the model can gradually deepen the 
understanding of the image content. After feature 
extraction, the model maps these features to the final 
output category through a fully connected layer. The 
fully connect layer transforms the prediction results 
of the model into specific emotion classification 
labels by learning and integrating feature information. 
To prevent model overfitting, this study introduces 
Dropout layers between the fully connected layers. 
The Dropout layer randomly discards the connections 
of some neurons during training, so that the model 
does not rely too much on some specific features or 
weights, thus improving its generalization ability. 
During training, focus on loss and accuracy changes 
in the training and validation sets. By monitoring 
these indicators, this study could understand the 
training state of the model and find and deal with 
possible problems in time. Once the training is 
complete, this study could use the model to classify 
the new images emotionally and evaluate their 
performance. The key to this classification method 
lies in the rational design of the model structure and 
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the training strategy. By continuously optimizing the 
model parameters and the training process, this study 
could improve the performance of the model in the 
emotion classification task, so as to better understand 
and analyze the information about the presence of 
tumors in the image. 

2.2.2 Loss Function 

Loss function plays a crucial role in machine learning 
and deep learning, measuring the difference between 
model prediction results and actual labels, and is a 
key indicator in the model optimization process. 
Through the loss function, that can quantify the 
performance of the model on the training set, and then 
adjust the model parameters through the optimization 
algorithm (such as gradient descent), so that the 
model can better fit the data. Different tasks and 
models may need to use different loss functions, and 
common loss functions include mean square error 
(MSE), cross-entropy, etc. Choosing the appropriate 
loss function can help the model to better learn the 
features of the data and improve the generalization 
ability and accuracy of the model. Therefore, the loss 
function can be regarded as an objective function 
guiding the model learning and is an integral part of 
the model training process. Here the binary crossover 
loss function is used and the formula is as follows: 
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For the binary label y, the value is not 0 or 1, while 
p (y) indicates the probability that the output belongs 
to the y label. As a key indicator of the prediction 
effect of binary classification models, the binary 
cross-entropy loss function plays a crucial role in 
evaluating the model performance. In short, when the 
label y is 1, if the p (y) value predicted by the model 
is close to 1, it means that the prediction of the model 
is highly consistent with the true label. At this time, 
the value of the loss function should be close to 0, 
indicating that the prediction effect of the model is 
very good. On the other hand, if the p (y) value tends 
to 0, that is, the model mistakenly predicts the sample 
with label 1 to 0, the value of the loss function will 
become very lase binary cross-entropy loss function 
to effectively guide the model optimization, thus 
improving the prediction accuracy of the binary 
classification task. 

3 RESULTS AND DISCUSSION 

3.1 Confusion Matrix 

The confusion matrix represents the correspondence 
between the predicted results and the true labels of the 
model on the test set. The values of the confusion 
matrix are slightly different compared to the 
validation set, but the overall trend is similar. 

 
Figure 3: Confusion matrix plot used for the validation 
(Photo/Picture credit: Original). 

 
Figure 4: Test the confusion matrix plot (Photo/Picture 
credit: Original). 

Figure 3 The model performs poorly on the 
predicted category 0 (negative class), with a certain 
number of false positive classes (misclassifying 
negative classes as positive classes). The model 
performed well on predictive category 1 (positive), 
with most being correctly classified. The model 
performs well on the validation set, but there is some 
room for improvement in identifying negative 
classes. This analysis helps us to understand how the 
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model predicts on different categories, and thus guide 
us to further adjustments and improvements. 

Figure 4 The overall performance of the model on 
the test set is relatively stable, like that on the 
validation set. The number of false positive and false 
negative classes increased slightly on the test set 
compared to the validation set, but the overall 
accuracy remained at a high level. Overall, the model 
performed well on the test set, effectively 
distinguishing between the two classes of samples, 
but a small number of samples were still 
misclassified. This analysis helps us to evaluate the 
practical application of the model and provide a 
reference for further improvement. 

3.2 Plot of the Model Results 

During the training process, with the increase of 
epoch, the loss on the training set and the validation 
set gradually decreases, and the accuracy gradually 
improves. 

 
Figure 5: Model loss function (Photo/Picture credit: 
Original). 

 
Figure 6: Model accuracy map (Photo/Picture credit: 
Original). 

Figure 5 With the increase of the epoch, the loss 
value of the model gradually decreases in both the 

training set and the validation set. This shows that the 
model has gradually learned the characteristics of the 
data during the training process and has made some 
progress. However, it should be noted that the loss 
values on the validation set do not always drop and 
sometimes fluctuate, which may be caused by some 
difficulties in the model during the training process or 
noise from the data. Therefore, this study needs to 
consider the performance on the training and 
validation sets to comprehensively evaluate the 
performance of the model. 

Figure 6 shows that the accuracy of the model on 
the training and validation sets increases with the 
epochs. This shows that the model has gradually 
learned the characteristics of the data during the 
training process and has made some progress. 
However, it should be noted that although the 
accuracy of the model on the training set is constantly 
increasing, the accuracy on the validation set is not 
always increased, and sometimes it fluctuates or even 
slightly decreases. This may be due to overfitting of 
the model during training or noise from the data. 

3.3 Adjust the Model Parameters 

The original three convolution layers and pooling 
layers were increased to three, and the number of 
convolution kernels was adjusted to 64,128 and 256, 
respectively, keeping the convolution kernel size at 
(3,3) and the pooling layer size at (2,2). The number 
of neurons in the fully connected layer adjusted the 
original 128 neurons to 256. 

With the increase of epoch, the accuracy of the 
model on the training set was gradually improved, 
from about 52.5% to about 85.6%. On the validation 
set, the accuracy of the model showed a similar trend, 
increasing from the initial ~ 69.2% to the final ~ 
80.8%, as shown in Figure 7. 

 
Figure 7: Model accuracy chart (Photo/Picture credit: 
Original). 
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The model has certain generalization ability and can 
perform well on unseen data. In later times, although 
the model accuracy continued to improve on the 
training set, the accuracy on the validation set began 
to fluctuate and did not consistently improve. This 
may be a sign of model overfitting and can adjust the 
model structure or hyperparameters according to its 
performance on the validation set to further improve 
the model performance and generalization ability. 
Possible adjustments include increasing data increase, 
adjusting learning rate, adjusting network structure, etc. 

3.4 Image Enhancement 

Use ImageDataGenerator to perform image data 
augmentation and create a data generator for the 
training and validation sets. Specific data 
enhancement operations include random rotation, 
horizontal flip, vertical flip, random width, and height 
offset, shear, and random scaling, etc. These 
operations can increase the diversity of the data and 
help to improve the generalization ability of the 
model. The data generator of the training set uses the 
data augmentation operation, while the data generator 
of the validation set does not use the data 
augmentation, maintaining the state of the original 
data. In this way, the model can dynamically acquire 
the enhanced data during training, further improving 
the training effect, showing the partially enhanced 
image as shown in Figure 8. 

 
Figure 8: Image enhancement part of the image display 
(Photo/Picture credit: Original). 

3.5 VGG16 Model 

The pre-trained VGG 16 model was used as the base  

model, and several layers of global average pooling, 
full connectivity and dropout layers were added to the 
top, finally exporting a predicted layer of sigmoid 
activation. 

The pre-trained VGG 16 model was used, where 
include_top=False represents the full connected layer 
without the top, and input_shape= (128,128,3) 
specifies the size of the input image as 128x128 pixels, 
3 channels. All layers of VGG 16 were set to be 
untrainable, that is, base_model.layers[0]. trainable = 
False, so that the weights of these layers are not 
updated during the training process, but only the 
weights of the new layers. A global average pooling 
layer GlobalAveragePooling2D () was added to the 
output of the underlying model to transform the 
feature map into a fixed length vector. Then comes a 
fully connected layer, Dense (128, activation= 
'relu',kernel_regularizer=regularizers.l2 (0.001)), 
using the ReLU activation function and L2 
regularization. A dropout layer Dropout (0.5) was 
added to reduce overfitting. Finally, a Dense layer 
was added as the output layer, using the sigmoid 
activation function, for the deodorization task. The 
model was compiled using the model. Compile 
method, assigning the loss function as dichotomy 
cross-entropy binary crossentropy, the optimizer as 
Adam, with a learning rate of 1e-5, and the evaluation 
index as accuracy. 

EarlyStopping Used to stop training when the 
validation set loss is no longer reduced to avoid 
overfitting. The parameter monitor= 'val_loss' 
represents the loss value of the monitored validation 
set, patience=5 means that it stops training if the loss 
is not reduced for five consecutive epoch validation 
sets and restore_best_weights=True indicates the 
weight restored to the best model when training is 
stopped. ReduceLROnPlateau Is used to lower the 
learning rate when the validation set loss is no longer 
reduced to help the model converge better. The 
parameter monitor= 'val_loss' represents the loss 
value of the monitored validation set, factor=0.1 
represents the factor by which the learning rate will 
be reduced, patience=5 reduces the learning rate if the 
loss of five consecutive epoch validation sets is not 
reduced, and min _ lr = 1 e-7 represents the lower 
limit of the learning rate. The model training was 
performed using the model.fit method, assigning the 
training set data generator train_generator and the 
validation set data generator val_generator, training 
20 epochs, and assigning the callback function as 
[early_stopping, reduce _ lr]. The callback function 
set like this can effectively control the training 
process of the model, avoid overfitting, and achieve 
better performance on the validation set. 
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The accuracy of the model gradually improved during 
the training process, finally achieving an accuracy of 
about 92.6% on the training set and the highest 
accuracy of about 96.2% on the validation set. This 
shows that the model effectively learns the features of 
the data during training and achieves good 
performance on the validation set. As shown in Fig. 9. 

 
Figure 9: Training accuracy of the VGG 16 model 
(Photo/Picture credit: Original). 

4 CONCLUSIONS 

Firstly, this study embarked on a sentiment 
classification project employing a CNN, commencing 
with the utilization of a simple CNN model and 
evaluating its performance on both training and 
validation datasets. Subsequently, the focus shifted 
towards leveraging the VGG16 model and fine-
tuning it, while integrating data augmentation 
techniques to enhance the model's generalization 
capabilities. For the simple CNN model, the observed 
accuracy on the training and validation sets attained 
approximately 85.6% and 80.8%, respectively. 
Following the adoption of the VGG16 model and 
fine-tuning approach, the accuracy on the training and 
validation sets surged to around 92.6% and 96.2%, 
respectively. Through the adjustment of the CNN 
model's structure and parameters, alongside the fine-
tuning of the VGG16 model, endeavors were made to 
bolster the model's performance. Noteworthy 
callback functions such as Early Stopping and Reduce 
learning rate On Plateau are deployed to monitor 
model performance and dynamically adjust during 
training iterations. While commendable results were 
achieved with both the simple CNN and VGG16 
models, superior performance was evident with the 
VGG16 model, particularly in terms of accuracy on 
the validation set. 
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