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Abstract: House prices are a crucial indicator affecting citizens' lives, directly impacting individuals' and families' 
financial situations, as well as the stability and development of entire communities. Therefore, it is imperative 
to conduct in-depth research on the societal impact of house price prediction models, exploring their effects 
on housing markets, economic development, social welfare, and potential challenges and issues. This study 
addresses the issue of accurate house price prediction by conducting extensive analyses on four ensemble 
learning models: Random Forest, XGBoost, AdaBoost, and Stacking. The selected metrics for assessing 
model performance in this experiment include RMSE, R-squared, Explained Variance Score, and MAPE. The 
results demonstrate that the Random Forest model excels across multiple evaluation metrics, outperforming 
other models with the lowest RMSE and MAPE values. XGBoost shows strong competitiveness, providing 
accurate predictions and effectively capturing nonlinear relationships in the data, albeit slightly inferior to 
Random Forest. AdaBoost and Stacking exhibit moderate performance, possibly limited by their ability to 
handle complex relationships and noisy data. 

1 INTRODUCTION 

The property market has always been a dynamic and 
promising field. With the acceleration of urbanization 
and continuous economic development, an increasing 
number of people are choosing to purchase properties 
as a long-term investment and lifestyle choice. This 
situation is not only prevalent in major cities but also 
in some small towns, villages, and countryside areas. 
The growing demand not only drives the steady 
increase in property prices but also makes real estate 
an attractive option for investors. In such an 
environment, accurate prediction of property prices is 
crucial for real estate developers, investors, and 
ordinary home buyers. However, property prices are 
often influenced by various factors, including 
economic factors, physical factors, and individual 
subjective factors. Therefore, there is a greater need 
for a robust model to predict real estate prices. 

In the domain of house price prediction, a 
multitude of scholars explore diverse modeling 
methodologies to investigate various scenarios. These 
models include support vector machines, random 
forests, decision tree models, and others.  

This paper aims to construct a superior predictive 
model for US house prices by comparing various 
techniques. We'll use a Kaggle dataset covering fifty 
US cities, with sales price as the target variable and 

factors like state, city, living area, and rooms as 
predictors. 

For modeling, we primarily selected ensemble 
learning models for comparison. Ensemble learning 
models make decisions and predictions by combining 
the predictions of multiple base models. They 
typically achieve better performance than traditional 
models and have been widely applied in practice. 
Therefore, this study selects four different ensemble 
learning models for comparative analysis: Random 
Forest (RF), Adaptive Boosting (AdaBoost), Extreme 
Gradient Boosting (XGBoost), and Stacking model. 

In Section 2, this paper will review related studies. 
Section 3 will provide a detailed introduction to the 
selected models and their basic principles. The 
specific experimental procedures and analysis of 
experimental results will be outlined in Section 4. In 
Section 5, we will offer the general conclusions of the 
paper, followed by a compilation of all references. 

2 RELATED WORK 

In the field of housing price prediction, researchers 
have adopted various methods to analyze and solve 
different needs and problems. In the early days, 
scholars mainly used hedonic pricing models to 
conduct research on housing price prediction. Until 
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now, this is still a common research method. Some 
scholars have used the hedonic pricing model to 
analyze the impact of the urban railway network on 
Bangkok housing prices, because this model can 
better maintain simplicity and avoid overfitting 
(Tekouabou et al., 2024). However, this model also 
has shortcomings in capturing nonlinear 
relationships. Therefore, researchers began to use 
machine learning models (Zhan et al., 2023). This has 
brought a wealth of research content to the field of 
housing price prediction. For example, some 
researchers used convolutional neural networks 
(CNN) to analyze a data set of 3,000 houses in the 
United States by considering visual cues. The mean 
absolute error (MAE) obtained excellent results 
(Yousif et al., 2023). Some scholars have also found 
that listing prices have a significant impact on 
housing prices, that is, the anchoring effect. 
Therefore, they introduced anchoring effects and 
listing price-related indicators into the model to 
optimize the model (Song and Ma, 2024). They used 
a variety of machine learning models such as 
generalized linear models (LASSO and Ridge) and 
decision trees for training. Experiments have shown 
that by introducing anchoring effect indicators, it 
helps to significantly improve the model evaluation 
index R2. In addition, some scholars have compared 
the predictive capabilities of various Bayesian 
models, such as horizontal Bayesian vector 
autoregression (bvar - 1) and differential Bayesian 
vector autoregression (BVAR-d) (Haan and 
Boelhouwer, 2024). In this way, they study the impact 
of credit-constrained and unconstrained households' 
borrowing capacity on house prices. 

In order to solve the shortcomings of traditional 
machine learning models in housing price prediction, 
such as low model prediction accuracy and 
insufficient generalization ability, ensemble learning 
models have begun to receive more attention. Some 
scholars have used the whale algorithm based on the 
ensemble learning model to optimize the support 
vector regression model and predict housing prices in 
Beijing, Shanghai, Tianjin and Chongqing, and have 
obtained results with higher prediction accuracy than 
traditional models (Wang et al., 2021). In addition, 
some scholars have a similar purpose to this article, 
aiming to select the best housing price prediction 
model for the Spanish real estate market. They used a 
variety of ensemble learning methods for comparison, 
including bagging, boosting and random forest. In the 
end, bagging was chosen because the results in 
MAPE and COD were slightly better. There are also 
Korean researchers who have taken a different 
approach and considered the prices of buildings and 

land respectively to predict the real estate market 
(José-Luis et al., 2020). They also used two integrated 
learning models, random forest and XGBoost, and 
proved that XGBoost has better results in this data set 
(Kim et al., 2021). Finally, some scholars have also 
studied the impact of noise on housing prices, an 
environmental factor that is very rare in normal data 
sets (Kamtziridis & Tsoumakas, 2023). They used the 
XGBoost ensemble learning model to predict housing 
prices in Thessaloniki, proving that the impact of 
noise on prices in different areas of the same city is 
significantly different. 

Although there have been considerable research 
results in the field of housing price prediction, since 
housing price fluctuations are affected by various 
complex factors, they are prone to problems such as 
strong subjectivity, low accuracy, and inability to 
fully reflect real demand. Therefore, there is still a 
need for research when facing different data sets and 
influencing factors. 

3 METHODOLOGIES 

In this study, we first preprocessed the features 
contained in the dataset and conducted basic data 
analysis on the preprocessed data. Subsequently, we 
constructed various models and trained them using 
the dataset. These models include RF, XGBoost, 
AdaBoost, and Stacking model. We obtained 
corresponding results by training these models and 
further analyzed the results. Figure 1 illustrates the 
overall workflow of this study. 

 
Figure 1: Research Workflow (Picture credit: Original). 

3.1 Data Preprocessing and Data 
Analysis 

Before constructing various models, we need to 
preprocess the selected dataset. As the dataset 
provided is highly complete without any missing or 
outlier values, there is no need for imputation or 
handling missing data values. However, several 
features in the dataset are qualitative values, so we 
need to convert qualitative data into numerical data. 
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We chose to convert them into numerical data using 
label encoding. 

Next, we conducted basic data analysis on the 
dataset, where we observed the distribution of data 
and the correlation between variables. Detailed 
results are provided in the following sections. 

During the data analysis stage, we observed that 
some features exhibited high similarity in the dataset. 
This high similarity might lead to multicollinearity 
issues during model training, thereby reducing the 
model's generalization ability. Therefore, in the 
feature selection process, we chose not to include 
these features in the model training. The scale of the 
dataset significantly affects the performance of 
models when using certain machine learning 
algorithms. To address this, Min-Max scaling was 
introduced in this study to transform the dataset, 
scaling each feature into a designated range 
separately, i.e., transforming them between 0 and 1. 

3.2 Model Construction 

Four different models were chosen for the 
comparison of house price prediction. Random Forest 
is renowned for its ensemble learning approach. The 
Random Forest algorithm performs well with high-
dimensional datasets and exhibits robustness when 
handling large-scale data (Li, 2023). XGBoost, a 
gradient boosting algorithm, stands out for its ability 
to handle various data types and complex 
relationships, making it suitable for tasks requiring 
high prediction accuracy. Its success is also credited 
to its excellent resilience against overfitting (Demir 
and Sahin, 2023). AdaBoost is another boosting 
algorithm. It emphasizes iteratively improving model 
performance by focusing on difficult-to-predict 
instances, thereby enhancing prediction accuracy. 
During training, the AdaBoost algorithm achieves 
higher accuracy by continually reducing the error rate 
of the next machine (Ender, 2022). Stacking is a 
meta-ensemble learning technique that utilizes meta-
learners for final prediction, combining the strengths 
of multiple base models to provide enhanced 
performance and adaptability across various datasets. 
To reduce model complexity and avoid excessive 
stacking, only a dual-tiered framework was chosen: 
fundamental learners and meta-learners. Moreover, 
the second layer of stacking typically requires 
relatively simple classifiers; hence, linear regression 
was chosen as the second-layer classifier in this study 
(Liu et al., 2022). By leveraging the unique 
characteristics of these four models, our aim is to 
comprehensively evaluate their performance in the 
task of prediction. 

3.2.1 RF  

The RF predictor comprises M stochastic regression 
trees. For the 𝑗௧௛  tree within a group of trees, the 
forecasted outcome at each individual x is represented 
as 𝑚௡൫𝑥; ∅௝, 𝜕௡൯ . Here, ∅ଵ … … , ∅௠  represent 
unrelated random variables, while 𝜕௡  stands for the 
training variable (Sharma, harsora & Qgunleve, 
2024). Therefore, the estimation of the 𝑗௧௛ tree can be 
expressed as: 𝑚௡(𝑥; ∅௝, ∂௡)= ෎ 𝑋𝑖 ∈ 𝐴௡(𝑥; ∅௝, ∂௡)௒భ𝑁௡(𝑥; ∅௝, ∂௡)௜∈ப೙(∅ೕ)                                  (1) 

Here, 𝜕௡∗൫∅௝൯ represents the set of selected data 
points prior to tree construction. 𝐴௡൫𝑥; ∅௝, 𝜕௡൯௒భ 
refers to the cell containing x. The final formula can 
be expressed as  G୨𝑚ெ,௡(𝑥; ∅ଵ … . ∅௠, ∂௡)= 1𝑀 ෍ 𝑚௡൫𝑥; ∅௝, ∂௡൯௠

௝ୀଵ                                                (2) 

3.2.2 XGBoost  

The algorithm is an ensemble learning method based 
on gradient boosting. Its fundamental approach 
involves combining weak classifiers, CART trees, 
into a strong classifier using an additive model.  𝑦̂௜(௧) = ෍ 𝑓௞௧

௞ୀଵ (𝑥௜)                             (3) 

Here, 𝑦̂௜(௧)  represents the predicted value, and f (𝑥௜)௞  denotes the weak classifier.  

 𝑜𝑏𝑗 = − 12 ෍ 𝐺௜ଶ𝐻௜ + 𝜆்
௜ୀଵ + 𝛾T                  (4) 

In the equation, 𝜆 is a fixed coefficient; 𝛾 is the 
complexity coefficient; T is the number of nodes; G୧ 
represents the cumulative sum of the first-order 
partial derivatives of the samples; H୧  denotes the 
aggregate of the second-order partial derivatives of 
the samples. 

3.2.3 AdaBoost  

Let's assume an initial training dataset 𝐷 ={(𝑥ଵ, 𝑦ଵ), … , (𝑥௡, 𝑦௡)}. We initialize the weights of n 
samples, initially assuming a uniform distribution of 
training sample weight distribution 𝐷௞(𝑖) . 𝐷௞(𝑖) 
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represents the weight of training set samples in the k-
th iteration; The quantity n represents the sample size, 
while K denotes the maximum number of iterations. 
We train a weak predictor ℎ௞(𝑥) under the weighted 
samples and compute its average error: 

𝜀௞ = 1𝑛 ෍ 𝜀௜௡
௜ୀଵ                                (5) 

Update the sample weights 𝐷௞(𝑖) and the weak 
learner weights 𝑊௞, where 𝛽௞ = ఌೖଵିఌೖ and 𝑍௞ are the 

normalization factors for ෌ 𝐷௞(𝑥௜)௡௜ୀଵ = 1. 

𝐷௞(𝑖) = 𝐷௞ିଵ(𝑖)𝛽௞ି ఌೖ𝑍௞                        (6) 

𝑊௞ = 12 ln (1/𝛽௞)                          (7) 

Then proceed to the next iteration until the 
iteration reaches K, and finally obtain the strong 
predictor. 

𝐻(𝑥) = ෍ 𝑊௞ℎ௞(𝑥)௄
௞ୀଵ                     (8) 

3.2.4 Stacking Model  

The Stacking model employs multiple diverse 
algorithmic models for modeling. Initially, m 
different learners are chosen to individually predict 

the data. Subsequently, based on the outcomes 
obtained from each learner, they are input into a 
second-layer learner, ultimately resulting in the 
prediction outcome (Figure 2). 

 
Figure 2: The flowchart of the Stacking model (Picture 
credit: Original)  

4 EXPERIMENTAL PROCEDURE 
AND RESULTS 

4.1 Dataset Overview 

This article selects the American housing price 
dataset from Kaggle, which includes data on 39,982 
residential properties in fifty cities across the United 
States. Each entry in the dataset consists of 14 
attributes (Table 1). 

Table 1: Feature Description Table. 

Attribute Description 

Zip Code A numeric code used for postal purposes, identifying specific geographic areas within the 
United States. 

Price The market value of the property, indicating its monetary worth. 
Beds Number of sleeping spaces. 
Baths Number of bathing places. 
Living Space The habitable area within the property used for living. 
Address The precise location details of the property. 
City The name of the city where the property is situated. 
State The U.S. state where the property is located. 
Zip Code Density The population density within the zip code area. 
Zip Code Population The number of people living in the area 
County The name of the county where the property is situated. 
Median Household Income The median income level of households within the area. 
Latitude Coordinate parameters, used to determine the specific address of housing data. 
Longitude Coordinate parameters, used to determine the specific address of housing data. 
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Figure 3: Address Scatter Plot Diagram (Picture credit: Original). 

 
Figure 4: Correlation Matrix (Picture credit: Original).  

As shown in Figure 3, the geographical 
distribution of all houses in the dataset is depicted. It 
can be observed that the houses in the dataset are 
distributed across most states of the United States. 
This distribution is obtained based on the latitude and 
longitude of each house in the dataset. 

For some redundant information in the dataset, we 
selectively choose which to include in the model. For 
example, among the features such as city, state, 
county, and latitude and longitude, we only selected 
the latitude and longitude of each house as its 
geographical location feature. Following this, we 
explored the correlation between the selected features 
(Figure 4). It can be observed that some features have 
a correlation coefficient greater than 0.7. Therefore, 
we consider them to have significant 
multicollinearity. To address this, we choose to retain 
the feature that has a greater impact or importance on 
the target variable and remove the other feature. 

Additionally, considering their low correlation with 
the 'Price' feature, we removed two features—
'Latitude' and 'Zip Code Population'—with 
correlation coefficients less than 0.1. 

4.2 Experimental Setup 

In this experiment, all models were implemented in 
Python using packages such as pandas, sklearn, and 
seaborn. Below are the specific parameter settings for 
each model used in the experiment. 

In the RF, the number of trees in the decision tree 
is adjusted to 100, while the other parameters remain 
at their default settings. 

Through random search technique, the optimal 
parameter settings for the XGBoost model were 
identified. The best parameter combination is as 
follows: a learning rate of 0.14, a maximum depth of 
4 for each tree, a subsample ratio of 0.93, a column 
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subsample ratio of 0.62, a regularization alpha of 0.01 
for each tree, a regularization lambda of 0.48, a 
minimum split gain of 0.08 for each tree, and a total 
of 139 trees. 

The optimal hyperparameters for the Adaboost 
model were determined through experimentation, 
yielding the following configuration: a learning rate 
of 0.01, utilizing the 'exponential' loss function, and 
comprising 196 estimators. 

The Stacking model operates with default 
parameter settings. 

4.3 Metric Selection  

The selected metrics for evaluating model 
performance in this experiment are RMSE, R-
squared, Explained Variance Score, and MAPE. 

 Root Mean Squared Error (RMSE) 
RMSE, frequently employed, assesses model 
prediction errors comprehensively. It determines the 
variance between predicted values from the model 
and the actual values, squares this difference, 
computes the average, and subsequently derives the 
square root. A reduced RMSE signifies diminished 
disparity between predicted values from the model 
and the observed values, reflecting enhanced 
precision in predictions. 

RMSE = √MSE = ඩ 1𝑀 ෍(𝑥௜ − 𝑥̂௜)ଶெ
௜ୀଵ       (9) 

Where 𝑥௜  represents the actual value, 𝑥̂௜ 
represents the predicted value, and 𝑀  denotes the 
number of predictions. 

 Coefficient of Determination (R-squared) 
Typically, the closer R-squared is to 1, the better the 
model fits the observed data, and the higher the 
proportion of variance that can be explained. 

𝑅ଶ(𝑦, 𝑦̂) = 1 − ෍ (𝑦௜ − 𝑦௜̂)ଶ௡௜ୀଵ෌ (𝑦௜ − 𝑦௜)ଶ௡௜ୀଵ          (10) 

In this equation, y is obtained by taking the mean of y. 

 Explained Variance Score 
This metric measures the extent to which the model 
explains the fluctuations in the dataset. A value of 1 
indicates a perfect fit, while smaller values indicate 
poorer performance. 
 Explained Variance Score(x, 𝑥̂)= 1 − 𝑉𝑎𝑟 {𝑥 − 𝑥̂}𝑉𝑎𝑟 {𝑥}                                                    (11) 

Where 𝐱 represents the true value, 𝐱̂ represents the 
predicted value. 

 Mean Absolute Percentage Error (MAPE) 
It quantifies the prediction errors of a model in 
percentage terms. 

MAPE = 1𝑁 ෎ | 𝐴௧ − 𝐹௧𝐴௧ |ே
௧ୀଵ               (12) 

𝐴௧  represents the actual value, 𝐹௧  represents the 
predicted value, and 𝑁  denotes the number of 
forecasts. 

4.4 Experiment Results Evaluation  

Below are the displays of various evaluation metrics 
for the four models used in the experiment (Table 2). 

After comparing the performance metrics of 
various models, it is evident that RF exhibits the 
lowest RMSE performance, while Stacking's RMSE 
performance slightly trails behind RF but remains 
relatively low. This suggests that compared to the 
other two models, both RF and Stacking have 
relatively small average errors in predicting house 
prices. The poorer RMSE performance of XGBoost 
could be attributed to inadequate parameter settings 
or issues such as noise in the dataset. AdaBoost's 
RMSE, although better than XGBoost, still lags 
behind RF and Stacking, which may be due to 
improper selection of weak classifiers or data 
imbalance issues. 

 

Table 2: Experimental Results. 
Model RMSE R-squared MAPE Explained Variance Score 
Random Forest 388072 0.764986 47.266467 0.764983
XGboost 1605102 0.749524 53.692264 0.749565
Adaboost 1030023 0.655605 283.17976 0.295654
Stacking 439131 0.699079 51.009625 0.699079 
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Figure 5: Scatter Plot (Picture credit: Original).  

Similarly, in terms of R-squared and explained 
variance score, RF achieves values closest to 1, 
indicating the best fit among the models. The results 
of XGBoost and Stacking are relatively close, while 
AdaBoost exhibits a significantly larger difference in 
R-squared and explained variance score, possibly 
indicating issues with underfitting, overfitting, or data 
imbalance. 

RF also demonstrates the lowest MAPE score, 
indicating the smallest average of absolute percentage 
errors between predictions and actual values 
compared to other models. XGBoost's slightly higher 
MAPE may be attributed to its lower robustness 
against outliers. AdaBoost exhibits a higher MAPE 
compared to RF and XGBoost, indicating larger 
percentage errors in its predictions. Stacking falls 
between Random Forest and AdaBoost in terms of 
MAPE, suggesting moderate prediction accuracy. 

The results indicate that Random Forest 
demonstrates superior predictive performance 
compared to the other ensemble learning models 
investigated, with Stacking showing competitive 
performance but still trailing behind RF. XGBoost 
and AdaBoost demonstrate relatively poorer 
performance, potentially due to specific weaknesses 
in their modeling approaches or issues with the 
dataset. 

In addition, we visualized the test set results of 
each model, which facilitated a more intuitive 
analysis. Figure 5 presents the visualization results of 
the four ensemble learning models, with each point 

representing a data point in the test set. In the scatter 
plot, we opted for the x-axis to present the true data 
values, while selecting the y-axis to represent the 
forecasted information. The red line in the graph 
indicates the scenario where the predicted values 
equal the true values, representing the optimal 
prediction. When a point lies on the red line, it 
signifies accurate prediction. 

Observing the visualization results of the four 
models, we observed that the Random Forest and 
XGBoost models tend to make relatively 
conservative predictions, with predicted values 
mostly lower than the true values, especially evident 
as housing prices increase. In contrast, the Adaboost 
model, although exhibiting similar characteristics to 
Random Forest and XGBoost when housing prices 
are high, often produces predicted values higher than 
the true values when housing prices are low. The 
Stacking model shows a more uniform distribution, 
but tends to have higher errors, particularly when 
housing prices are high.  

5 CONCLUSION 

To address the issue of accurate house price 
prediction, this study conducted extensive analyses 
on four ensemble learning models: Random Forest, 
XGBoost, AdaBoost, and Stacking. Among them, the 
Random Forest model consistently demonstrated 
superior performance across multiple evaluation 

IAMPA 2024 - International Conference on Innovations in Applied Mathematics, Physics and Astronomy

44



metrics, outperforming other models. It exhibited the 
lowest RMSE and MAPE values. XGBoost showed 
competitive performance, providing accurate 
predictions and effectively capturing nonlinear 
relationships in the data, albeit slightly inferior to 
Random Forest. The performance of AdaBoost and 
Stacking was moderate, possibly due to limitations in 
handling complex relationships and noisy data. 
Additionally, attention should be paid to the societal 
impact of house price prediction. House prices are a 
vital indicator affecting citizens' lives, directly 
impacting individuals' and families' financial 
situations, as well as the stability and development of 
entire communities. Therefore, in-depth research on 
the societal impact of house price prediction models 
is warranted, exploring their effects on housing 
markets, economic development, social welfare, and 
potential challenges and issues. 
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